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Abstract. In the context of the human action recognition problem, we
propose a tensor descriptor based on sparse trajectories extracted via
Variable Size Block Matching. Compared to other action recognition
descriptors, our method runs fast and yields a compact descriptor, due
to its simplicity and the coarse representation of movement provided
by block matching. We validate our method using the KTH dataset,
showing improvements over a previous block matching based descriptor.
The recognition rates are comparable to those of state-of-the-art meth-
ods with the additional feature of having frame rates close to real-time
computation.
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1 Introduction

Human Action Recognition (HAR) has been a rapid growing research field over
recent years. Along with other computer vision themes, it has been boosted
especially by the massive popularization of video recording devices, such as phone
cameras and surveillance equipment. These devices generate an amount of video
data too big to have its semantic value or significance examined by people. Hence
the need of an automated system capable of extracting this information from
videos.

Many, if not all, of the methods for this purpose rely on detecting and track-
ing movement in sequences of frames. That is the case with optical flow, 3-D
gradients, spatio-temporal interest points, block matching, amongst others. The
assumption is that movement can be detected, described, and used to categorize
different actions portrayed in a video.

In the case of block matching, which is the focus of this paper, this motion
information has been largely used for video compression since the introduction of
the method by Jain and Jain [9]. It consists in dividing a frame into rectangular
blocks and searching for corresponding blocks on the following frame. These
corresponding blocks are the ones that are most similar regarding brightness
or color. This results in a set of displacement vectors, one for each block. The
original authors [9] described it as a “piecewise translation”.
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In this work, we propose a video tensor descriptor based on trajectories
obtained via multiple variable size block matchings [26]. This work is an improve-
ment over our latest works [6]. Compared to other well known action recognition
descriptors, like ones based on dense trajectories or 3-D gradients, our method
is fast and yields a compact descriptor, due to its coarser representation of the
movement. In fact, the method runs fast enough to be potentially incorporated
into a real-time application and the final descriptor file size for the whole dataset
rarely exceed that of a single video.

The following subsections show related works and an overview of the method.
In Sec. 2 we go into details for each stage of the method. Section 3 shows the
experimental environment and Sec. 4 the results and discussion.

1.1 Related Work

Since block matching was introduced by Jain and Jain [9] and the later intro-
duction of its variable block size variant [3,26], it has appeared in a number of
publications concerning video coding [2,3,5,13,24,29] and was part of specifica-
tions of codecs like H.263 [15] and H.264 [4,23], amongst others. In this work, we
employ block matching as a motion flow under the assumption that it generates
quality and compact descriptors, as it has been so broadly explored in the video
coding and compression contexts.

Aside from video compression, block matching has been used for shot bound-
aries detection by Amel et al. [1], and video registration by Hafiane et al. [7].

As a crucial component of the block matching routine, several search strate-
gies have been proposed in order to speed up the process of finding the best
matches. Some examples include: Three Step Search [16], Four Step Search
(4SS) [25], Simple and Efficient Search [18], Diamond Search [34], and others.
In our implementation, we chose 4SS as it is a simple to implement, steepest
descent based strategy that runs approximately 10 times faster than the exhaus-
tive approach.

In the action recognition context, techniques like optical flow [21] and 3D
gradients [14] have been shown to produce high recognition rates. The same
applies for the use of trajectories. Both Wang et al. [31,33] and Jain et al. [10]
combine dense sampled trajectories and other descriptors, like Motion Boundary
Histogram (MBH) and Histogram of Optical Flow (HOF) to achieve very high
recognition rates on several datasets. In this work, we use only block matching
information to generate the descriptor. With this, we obtain a computationally
inexpensive descriptor, both in terms of time and space, with recognition rates
comparable to state-of-the-art.

To condense the motion information extracted, a histogram is commonly
used [11,14,20,32]. Histograms are interesting for video description as they are
simple structures which encode a compact representation of the motion informa-
tion. In Mota et al. [20], the final descriptor is an orientation tensor generated
from a Histogram of Oriented Gradients (HOG). Tensors are robust mathemat-
ical tools and good aggregators. They can capture the local orientation and
uncertainties of motion, and thus, could carry more useful information than a
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histogram. In this work, the final video descriptor is an orientation tensor that
accumulates information from all trajectories.

1.2 Overview

The general workflow of a human action recognition system consists of three
main tasks: motion extraction, motion representation, and action classifica-
tion. Our focus is on the first two tasks, that is, computing a descriptor from
block matching information. A modified Variable Size Block Matching Algorithm
(VSBMA) [26] extracts trajectories from a set of frames, and thus is responsi-
ble for the first task. For the motion representation task, the vectors composing
these trajectories are accumulated into a histogram of directions and then an
orientation tensor is coded from it. These steps are repeated for all the frames
of a video, in order to generate the video descriptor. Figure 1 illustrates this
sequence of steps.

Fig. 1. Technique overview. From left to right: trajectories generated from the block
matching routine, histogram of directions, and orientation tensor. The ellipse is merely
an illustration since the tensor dimension is greater than 2.

2 Proposed Method

2.1 Variable Size Block Matching

The main algorithm consists in dividing a so called “reference frame” into blocks
of pixels and finding for each one a corresponding block in a so called “target
frame” which minimizes a dissimilarity (or error) function. For each block, the
algorithm outputs a displacement vector between the coordinates of a reference
block and its corresponding target.

This dissimilarity function is generally based on pixel intensities within the
analyzed blocks. Although others can be found in related literature [3,9,13], In
our implementation the function of choice was the Sum of Absolute Differences
(SAD). In previous works and preliminary tests, we found that employing other
error functions such as Mean Absolute Differences (MAD) or Sum of Squared
Differences (SSD) had very slight or no impact at all regarding the action recog-
nition context.
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Fig. 2. Binary tree image segmentation from [3]. (a) Frame segmentation scheme. (b)
Tree structure corresponding to (a).

When matching blocks, the blocks evaluated in the target frame are restricted
to a close vicinity of the block coordinates in the reference frame. This vicinity is
called a search window. The search window is established under the assumption
that the movement of objects between frames is somewhat smooth, so it is not
necessary to search the whole target frame. This greatly reduces the cost of
the search, especially for higher resolution sequences. Note also that the size
of the search window limits the magnitude of the displacement vectors. In our
implementation we established a 15 × 15 pixel search window. This means that
the largest vector that could result from a match would be (±7,±7).

Another noteworthy element of the algorithm is the search strategy. Even
with a search window, evaluating all blocks within it is still too big an effort. To
reduce this cost, a number of strategies have been proposed over the years [16,
18,22,25,34]. For this work, we chose Four Step Search (4SS) [25] as the search
strategy. 4SS is a steepest descent strategy that compares at most 27 blocks to
find the match, as opposed to evaluating all the blocks of the search window,
which requires 225 comparisons.

All these elements are also present in a conventional Block Matching Algo-
rithm (BMA). What differentiates VSBMA from BMA is that the sizes of the
blocks in VSBMA change during the matching routine. All blocks have an initial
size, but blocks that have a minimum matching error above a fixed error thresh-
old are divided into smaller blocks and matched again. This process repeats
until the error is below the threshold or the size of the blocks reach a fixed min-
imum size of 4 × 4 pixels. Just like first proposed in [3], we split the blocks into
two smaller blocks, alternating between horizontal and vertical partitions. This
is appropriately represented by a binary tree (Fig. 2), in which the leaves are
blocks of varying sizes. As in picture segmentation [8], the goal is to have blocks
that encompass homogeneous regions, possibly representing objects in the scene.
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Fig. 3. VSBMA displacement vectors. Hotter colors indicate bigger blocks.

(a) (b) (c)

Fig. 4. Treatment for out-of-bounds block coordinates. (a) No treatment. Blocks are
marked in white and regions close to the right and bottom of the image are not consid-
ered. (b) Fill solution. Gaps in said regions are occupied with blocks with different sizes.
(c) Frame extension. The white rectangle now highlights the original frame. Intensity
values for pixels outside of this rectangle are the same as those in the border.

Figure 3 shows a frame with displacement vectors computed through VSBMA
drawn over it. Hotter colored vectors correspond to bigger blocks and colder col-
ored vectors correspond to smaller blocks. The size of the vectors are proportional
to their norms. This example suggests that the motion of more homogeneous
regions of the image can be represented by a single vector, while more detailed
regions need more vectors in order to properly represent its motion.

Boundary Treatment and Trajectory Extration. Each video frame is sub-
divided into non-overlapping blocks with an initial block size. When the video
resolution is not a multiple of the block size, blocks may encompass regions out
of the bounds of a frame, and thus, are not considered, as in Fig. 4. In this case,
a border treatment becomes necessary to completely cover a frame. To solve this
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issue we use the initial segmentation depicted in Fig. 4, positioning as many
whole blocks as possible within the frame and then completing the remainder of
the frame with rectangular blocks, with initial sizes different from other blocks.

Even with this approach of filling the frame with blocks, another issue
remains. Since all blocks are confined within the bounds of the frame, objects
leaving the scene result in extraneous vectors with high error values. The frame
is then extended as shown in Fig. 4 to overcome this problem. The intensity value
for an out-of-bounds pixel is the same as its closest neighbor in the borders of
the image, creating a stretching effect. Note that this solution also supplants the
previous one, as blocks that do not fit in the original frame, fit in the extended
frame. This is also coherent with block matching implementations specified in
H.263 and H.264 (HEVC) [15,30].

Frame n Frame n+1 Frame n+2

Fig. 5. Example trajectories starting on frames n (top) and n + 1 (bottom). On the
upper sequence, an object is tracked from frame n to frame n+2. Segmentation remains
as on frame n. On the lower sequence, another object is tracked from frame n + 1 to
frame n + 3 (not depicted). In this case, the segmentation used is the one resulting
from matches between frames n + 1 and n + 2.

In order to extract trajectories, a set of frames, instead of just a pair, is ana-
lyzed. When doing so, VSBMA is used between the first and second frames of the
set, and the following matches are carried out as conventional block matching,
using the target of a previous match as reference for the following one. This way,
the frame segmentation occurs only once and stays the same for the rest of the
round of computations. This procedure is repeated in such way that all frames
of the video serve as starting point for a trajectory. Figure 5 shows trajectories
starting on two consecutive frames presenting different behaviours. Notice that
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the same region of the frame may be segmented in two different ways, depending
on the reference frame, resulting in different trajectories. This is the case when
objects appear or disappear during the sequence, enter or leave the camera’s
field of view, or if the sequence has distinctive shots or cuts. For such cases,
especially regarding scene cuts, the trajectories carry erroneous motion infor-
mation, since the assumption of continuous motion is toppled. By overlapping
multiple trajectories, these errors have less impact on the overall accumulated
motion information.

The use of these sparse trajectories computed via block matching is an
attempt to obtain quality results, as found in other trajectory based works [10,
31,32], but at a lower computational cost. Not only block matching serves as a
low-cost kind of flow, compared to gradients or optical flow, but it also provides
a coarser representation of objects in the scene compared to dense or keypoint
sampling. This results in less trajectories carrying possibly the same meaningful
motion information as a set of dense trajectories.

2.2 Generating the Descriptor

Histogram of Directions. The result of block matching is a displacement
vector d(i, j) = (dx, dy) for each block, where (i, j) are the block indexes.
These vectors are converted to equivalent polar coordinates c(i, j) = (θ, r) with
θ = tan−1( dy

dx
), θ ∈ [0, 2π] and r =‖ d(i, j) ‖. All displacement vectors of all

trajectories starting in the reference frame are used to form a histogram of
directions.

A motion direction histogram is used as a compact representation of the
motion vector field obtained from each frame. It is defined as the column vector
hf = (h1, h2, . . . , hnθ

)T , where nθ is the number of cells for the θ coordinate.
We use a uniform subdivision of the angle intervals. Each interval is populated
as the following equation:

hl =
∑

i,j

r(i, j) · ω(i, j) , (1)

where l = 1, 2, . . . , nθ and ω(i, j) is a vector weighting factor, which is a Gaussian
function with σ = 0.01 in our experiments.

Consequently, a histogram is computed for each video frame, represented by
a vector hf with nθ elements. It encodes all displacements of all blocks forming
trajectories starting at the frame and spreading throughout a fixed number of
frames ahead.

Tensor Descriptor. An orientation tensor is a representation of local orienta-
tion which takes the form of a n × n real symmetric matrix for n-dimensional
signals [12]. Given a vector v ∈ R

n, it can be represented by the tensor T = vvT.
Then, we use the orientation tensor to represent the histogram hf ∈ R

nθ . The
frame tensor, Tf ∈ R

nθ×nθ , is given by:

Tf = hf · hT
f . (2)



290 F.L.M. de Oliveira and M.B. Vieira

Individually, these frame tensors have the same information as hf , but several
tensors can be combined to find component covariances.

Orientation Tensor. The average motion of consecutive frames can be
expressed using a series of tensors, given by

T =
nf∑

f=1

Tf

‖ Tf ‖2 ,

using all video frames. By normalizing T with a L2 norm, we are able to compare
different video clips or snapshots regardless their length or image resolution.
Since T is a symmetric matrix, it can be stored with d = nθ(nθ+1)

2 elements.
If the motions captured in the histograms are too different from each other,

we obtain an isotropic tensor which does not hold useful information. But, if
the accumulation results in an anisotropic tensor, it carries meaningful average
motion information of the frame sequence [20].

3 Experiments

The method is validated using the KTH dataset [28], which contains 600 videos
of six human actions: walking, running, jogging, boxing, hand waving and hand
clapping. These actions are performed by 25 people in 4 different scenarios:
outdoors, outdoors with scale variation, outdoors with different clothes, and
indoors. In this work, contrary to the protocol suggested in [28], the dataset is
not split in sequences. The videos have a resolution of 160×120 pixels and 25fps
frame rate.

We use a SVM classifier to evaluate our descriptor on KTH. All tests were
run on an Intel�CoreTM2 Quad Q9550 2.83GHz with 4GB memory running a
single thread per video. This is an important remark, as the speed of the method
could be even further improved running more parallel threads or in an up to date
system.

Table 1 shows the parameter values used on our experiments. Through-
out descriptor computation and classification, there are other parameters to be
tuned, such as descriptor size (related to number of histogram bins), standard
deviation σ of histogram Gaussian weighing, other error functions and search
strategies, search window size, and minimum block size. However, we chose to
focus on the three main parameters: initial square block width, VSBM error
threshold and trajectory size. We have conducted experiments with 7 initial block
sizes, 4 threshold values, and 7 trajectory sizes, to a total of 7 × 4 × 7 = 196 dif-
ferent parameter settings. For all the other parameters, we rely on values found
in the literature and previous experience with some of the tools used in this
work.

The values for block sizes were chosen based on the dataset resolution of
160 × 120 pixels, H.264 (HEVC) specification of block sizes ranging from 8 × 8
up to 64 × 64 [30], and recognition rates from preliminary experiments that
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Fig. 6. Contour plot showing classifier accuracy for each parameter setting regarding
block and trajectory sizes. Lighter colors indicate higher accuracy values. The highest
value is marked as a black dot.

Table 1. Parameter values for experiments with VSBMA

Parameter Values

Initial block width (pixels) 16, 24, 32, 40, 48, 56, 64
VSBM error threshold 2000, 4000, 8000, 16000

Trajectory size (frames) 6, 7, 8, 9, 10, 11, 12

showed a decrease in quality for larger blocks. As for threshold values, the choice
was based on the maximum matching error value (block width × block height ×
#channels × 255), and on the apparently decreasing power law distribution of
error values suggested also by preliminary experiments.

To assess and compare the quality of our descriptor in the action recognition
context, we measure the recognition rate, which is the output of a SVM clas-
sifier, which takes the descriptors for the whole database. We follow the same
classification protocol as [28]. The classifier produces 6 recognition rates for each
parameter combination, 3 using a triangular kernel, and 3 using a Gaussian ker-
nel. From these results, we take the highest ones achieved and present them in
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Table 2. Summary of best recognition rates

Block Size Threshold Trajectory Size Accuracy

24 2000 10 91.7
24 2000 11 92.1
40 4000 8 91.7
40 4000 9 91.2
40 4000 11 91.7
40 8000 6 92.1
40 8000 8 91.7
40 8000 12 91.7
48 8000 9 92.1
48 8000 10 92.1
48 8000 11 91.7
48 8000 12 91.7

Sec. 4. In order to evaluate the efficiency of the method, we consider the frame
rate at which block matching operates.

4 Results and Discussion

4.1 Recognition Rates

Table 2 shows a summary of the results obtained. Notice the predominance of
block sizes 40 and 48, and of thresholds 4000 and 8000. This can be attributed
to the segmentation process including all relevant motion information from the
cases with smaller block sizes into the cases with bigger block sizes. This is also
true for the cases with block size 56 and 64, except that these block sizes do
not produce better results. In these cases, the initial segmentation includes too
many of out-of-bounds pixels. Consider, for example, a block size of 56 and the
dataset resolution of 160 × 120. Horizontally, 3 blocks fit within the image with
only 2 columns of pixels out-of-bounds, but vertically only 2 blocks fit perfectly,
and the third one has 48 rows of out-of-bounds pixels. Although not amongst
the best results, the recognition rates of these parameter settings reach upwards
of 90.7%.

By observing the accuracy results to come to these conclusions, we are assum-
ing that these block matching settings have no interaction or confounding with
any other parameters of the process of generating and classifying the descriptor.

Figure 6 shows a contour plot of the same data. In lighter shades we can
see the higher accuracy cases. This visualization allows for a quick recognition
of what may be the optimal parameter setting, or at least delineate a relation
between the parameters in order to achieve good results. It also shows the effect
previously mentioned, where block size 56 has noticeably poorer results.

State-of-the-art comparison: We can see a clear improvement over our previous
block matching based descriptor [6], especially considering that the best result
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Fig. 7. Bar graph showing running speed for each parameter setting. Each group of
bars represents a block size and bars within a group represent a different trajectory
size, increasing from left to right.

Table 3. Comparison with state-of-the-art and previous works for KTH dataset

Authors Recognition Rate

Klaser et al. (2008) [14] 91.0
Liu et al. (2009) [17] 93.8

Mota et al. (2013) [19] 93.2
Sad et al. (2013) [27] 93.3

Wang et al. (2013) [33] 95.3
Figueiredo et al. (2014) [6] 87.7

This work 92.1

in that work was obtained with the most computationally expensive method
proposed, MSMV. Although still below the state-of-the-art recognition rates
like 93.2% in [20] and 95.0% in [33], the results obtained using block match-
ing are comparable. The best recognition rates from the literature are obtained
using combinations of video characteristics [10,20,32]. This often leads to a very
demanding process, in terms of computational effort. In our work, we use only
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motion information extracted with VSBMA, achieving real time computation
capability in some parameter settings.

4.2 Frame Rates

Figure 7 shows a bar graph of the frame rates measured in our experiments. Bars
are grouped by block size and each bar within a group shows the frame rate for
a different trajectory size, increasing from left to right.

By comparing different groups, we can see that the impact of the trajectory
size is approximately the same on all cases, reducing frame rates in roughly
50% between trajectory sizes 6 and 12. Like the accuracy results, frame rates
are noticeably lower for block sizes greater than 40. In our implementation, the
intensity values for pixels beyond image dimensions are computed by demand,
whenever they need to be evaluated. For the cases with bigger blocks, greater
portions of blocks are out-of-bounds, thus leading to an increased number of
pixel intensities calculations in order to compare two blocks.

Fig. 8. Contour plot showing running speed for each parameter setting on VSBMA.
Lighter colors indicate higher framerate values.
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Figure 8 shows a contour plot of average frame rates for the same experi-
ments as above. Lighter shades show higher frame rates. This graph highlights
one important aspect: the execution speed is not a trade-off versus recognition
accuracy. Note that the best recognition rates were obtained with block sizes
40 and 48, and trajectory sizes of 6, 9, 10, and 11. With the exception of the
case with block size 40 and trajectory size 6, none of these parameter combina-
tions are within the region of highest frame rates, but they are not within the
region of lower frame rates either. In fact, the two contour plots represent very
distinct surfaces, with no apparent correlation between them.

5 Conclusion

We presented a tensor self-descriptor based on variable block matching trajecto-
ries. The trajectories are accumulated into orientation histograms which in turn
are coded into orientation tensors.

This is a work within the context of Human Action Recognition. It aims
to provide a baseline for further developments regarding sparse trajectories and
block matching in this context. We view our approach as a promising work, since
it yields results close to those of state-of-the-art methods at low computational
costs.

Future works may include several improvements, both on block matching and
on its use for action recognition. Better exploration of the parameters, adaptive
threshold values, adaptive trajectory sizes, block merging operations, and differ-
ent block geometry are a few examples of improvements that can be made on the
block matching end. As for human action recognition, the integration of other,
more complex, techniques and datasets is going to be the next improvement of
this work.

Acknowledgments. Authors would like to thank FAPEMIG, CAPES and UFJF for
funding.
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12. Johansson, B., Farnebäck, G.: A theoretical comparison of different orientation
tensors. In: Proceedings of the SSAB Symposium on Image Analysis, pp. 69–73
(2002)

13. Kim, J.W., Lee, S.U.: Hierarchical variable block size motion estimation technique
for motion sequence coding. Optical Engineering 33(8), 2553–2561 (1994)
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32. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion bound-
ary descriptors for action recognition. International Journal of Computer Vision
103(1), 60–79 (2013)

33. Wang, H., Schmid, C., et al.: Action recognition with improved trajectories. In:
International Conference on Computer Vision (2013)

34. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion
estimation. IEEE Transactions on Image Processing 9(2), 287–290 (2000)


	Variable Size Block Matching Trajectories for Human Action Recognition
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 Proposed Method
	2.1 Variable Size Block Matching
	2.2 Generating the Descriptor

	3 Experiments
	4 Results and Discussion
	4.1 Recognition Rates
	4.2 Frame Rates

	5 Conclusion
	References


