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RESUMO

Este trabalho visa melhorar um método clássico para o problema de registro ŕıgido, o

ICP (iterative Closest Point), fazendo com que a busca dos pontos mais próximos, uma de

suas fases principais, considere informações aproximadas da geometria local de cada ponto

combinadas à distância Euclidiana originalmente usada. Para isso é necessária uma etapa

de pré-processamento, na qual a geometria local é estimada em tensores de orientação de

segunda ordem. É definido o CTSF, um fator de similaridade entre tensores. O ICP é

alterado de modo a considerar uma combinação linear do CTSF com a distância Euclidiana

para estabelecer correspondências entre duas nuvens de pontos, variando os pesos relativos

entre os dois fatores. Isso proporciona uma capacidade maior de convergência para ângulos

maiores em relação ao ICP original, tornando o método comparável aos que constituem

o estado da arte da área.

Para comprovar o ganho obtido, foram realizados testes exaustivos em malhas com

caracteŕısticas geométricas variadas, para diferentes ńıveis de rúıdo aditivo, outliers e

em casos de sobreposição parcial, variando os parâmetros do método de estimativa dos

tensores. Foi definida uma nova base com malhas sintéticas para os experimentos, bem

como um protocolo estat́ıstico de avaliação quantitativa. Nos resultados, a avaliação

foi feita de modo a determinar bons valores de parâmetros para malhas com diferentes

caracteŕısticas, e de que modo os parâmetros afetam a qualidade do método em situações

com rúıdo aditivo, outliers, e sobreposição parcial.

Palavras-chave: Registro ŕıgido. Iterative Closest Point. Tensor de orientação.

Dissimilaridade de forma.



ABSTRACT

This work aims to enhance a classic method for the rigid registration problem, the

ICP (Iterative Closest Point), modifying one of its main steps, the closest point search,

in order to consider approximated information of local geometry combined to the Eu-

clidean distance, originally used. For this, a preprocessing stage is applied, in which the

local geometry is estimated in second-order orientation tensors. We define the CTSF, a

similarity factor between tensors. Our method uses a linear combination between this

factor and the Euclidean distance, in order to establish correspondences, and a strategy

of weight variation between both factors. This increases the convergence probability for

higher angles with respect to the original ICP, making our method comparable to some

of the state-of-art techniques.

In order to comprove the enhancement, exhaustive tests were made in point clouds

with different geometric features, with variable levels of additive noise and outliers and

in partial overlapping situations, varying also the parameters of the tensor estimative

method. A dataset of synthetic point clouds was defined for the experiments, as well

as a statistic protocol for quantitative evaluation. The results were analyzed in order

to highlight good parameter ranges for different point clouds, and how these parameters

affect the behavior of the method in situations of additive noise, outliers and partial

overlapping.

Keywords: Rigid registration. Iterative Closest Point. Orientation Tensor.

Shape Dissimilarity.
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1 INTRODUCTION

Surface registration is the alignment of 3D surfaces into a common coordinate system. It

is an important process on computer geometry applications, inserted into the processing

pipeline, such as object recognition on 3D scenes, geometry acquisition for computer vision

and medical image applications. Since it is a primary step, alignment errors affect directly

the output of those pipelines, and therefore solve appropriately the registration problem

is fundamental.

Rigid registration is a constrained version of this problem, which aims to find a rotation

and a translation that best align two surfaces. Since the transformation is constrained to

6 degrees of freedom, the problem has a straightforward mathematical definition.

The first successful solution for rigid registration between two point sets was Besl and

McKay’s Iterative Closest Point (ICP) (BESL; MCKAY, 1992). This method is based

on the iterative establishment of correspondences between points on both sets and the

estimation of a transformation that minimizes the Root Mean Square (RMS) Euclidean

distance between the correspondences.

The original ICP method is able to retrieve optimal alignment when both sets represent

completely the same object and there is a small rotation and translation between them.

However, in practice, point sets are mostly partially overlapped and subject to the presence

of outliers and additive noise on the scanner raw data. Notably, these are non-optimal

scenarios in terms of minimizing the L2 error, and the original ICP tends to perform

poorly.

Another issue for the ICP appears when there is a large angular displacement between

the point sets. Efficient coarse registration techniques were developed for this kind of

situation, but usually require additional preprocessing and a non-trivial parameter setup.

The problem of rigid registration has been widely explored by the literature, and

several optimizations of the algorithm ICP, as well as many other algorithms for rigid

registration, have been proposed. However, despite the recent advances, there is not a

closed-form solution for estimating the best alignment in all situations.

Our proposal is to enhance the quality of the correspondences, altering the closest

point criterion to use similarity between geometric features which describe each point on
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the mesh. These features are computed from second-order tensors, which encode the local

geometry of each point. With a proper coarse-to-fine strategy, the modified algorithm

tends to reach a better solution and yield better results at situations where the original

algorithm does not perform well.

1.1 PROBLEM DEFINITION

Given two distinct 3D point clouds M = {−→mi = (xmi , ymi , zmi), |M | = Nm} and D =

{
−→
dj = (xdj , ydj , zdj), |D| = Nd}, rigid registration aims to find the rigid transformation

T : R3 → R3, composed by a rotation and a translation, that best aligns M and D,

minimizing a certain error metric E. The transformation T is global, i.e., unique for

all points. M and D are at least partially overlapped, so that there are regions of the

point clouds which have a similar surface geometry. In general, M and D represent

complementary views of a real object.

The computation of the error metric E is generally point-based, and requires the

establishment of a set of correspondence pairs between M and D. This set desirably

contains points on the shared regions of both meshes and is defined as a base for the

transformation estimation. The criteria used to compose this set is an important issue of

the solution. For instance, the original version of the Iterative Closest Point algorithm,

one of the most traditional fine registration methods, uses an Euclidean L2 metric as both

closest point criterion and error metric.

1.2 OBJECTIVES

The primary objective of this work is to enhance the quality of the correspondences of the

ICP algorithm through the use of local geometric features. The secondary objectives are:

� To present a tensor voting process used to estimate the second-order tensors, briefly

introducing tensor quantities and concepts;

� To introduce a shape similarity factor capable of expressing geometric similarity

between points from the eigenvalues of their tensors;

� To generate a dataset with meshes that make possible a quantitative analysis of the
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method performance on situations with additive noise, outliers and partial overlap-

ping, which compound challenging scenarios for the ICP;

� To analyze the performance of the method on the situations mentioned above, high-

lighting the parameter ranges that yield better results on each situation.

1.3 CONTRIBUTIONS

The main contributions of this work are: 1) a Comparative Tensor Shape Factor (CTSF)

to compare the shape of two tensors representing local geometry, and 2) the strategy to

vary the relative weight of the CTSF and the Euclidean distance.

Our proposals greatly enhance the registration of point clouds mismatched by wide

angle rotations. The secondary but important contributions include: a method for finding

smooth normals given a k-neighborhood, a clearly stated comparison protocol to evaluate

registration methods, a point cloud database composed by a large amount of events that

can be used for future quantitative comparisons with our method.

Furthermore, to our knowledge this is the first work that uses a second-order tensor-

based similarity factor to enhance the solution of the rigid registration problem.

1.4 RELATED WORKS

Research on surface registration has always been an interest field on computer vision and

computer graphics, since several applications make use of this task. However, with the

variety of applications, the notation used on the different approaches is not standardized,

enforcing the importance of surveys and benchmarks in order to categorize and compare

the methods, independently of the application. Throughout the surveys existent on the

literature, we highlight the following works:

� Eggert et al. (1997): compares the performance of four different rigid transformation

estimation methods;

� Rusinkiewicz and Levoy (2001): enumerates six possible stages of optimization on

the ICP algorithm;

� Salvi et al. (2007): proposes a taxonomy for rigid registration methods, classifying

them into coarse and fine, and subclassifying each one of the categories with respect
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to different aspects, such as registration strategy, motion estimation / minimization

strategy, kind of correspondence / efficient search and robustness;

� Tam et al. (2013): formulates the problem as data fitting, summarizing approaches

for rigid and non-rigid registration and grouping them according to its constraints

and optimization methods;

� Dı́ez et al. (2015): focuses on coarse registration, proposing a pipelined classification

and presenting the current state-of-art methods.

In this work, we will follow the taxonomy of Salvi et al. (2007), and summarize the

state-of-art methods on coarse and fine registration separately. They differ in the objec-

tive: while coarse registration aims to compute an initial estimation of the rigid motion

between two clouds of 3D points, fine registration uses an estimation of motion previously

computed in order to converge to a more accurate solution. Among the coarse registra-

tion techniques, the methods will be presented according to the pipeline proposed by Dı́ez

et al. (2015), and in fine registration methods we chose to follow the optimization steps

described in Rusinkiewicz and Levoy (2001), since most methods are modifications of the

original ICP, previously mentioned.

1.4.1 COARSE REGISTRATION

Coarse registration is the alignment of two meshes initially in arbitrary positions. In

general, coarse registration methods are based on the matching of reliable correspondences.

Thus, this problem is closely related to the problem of keypoint detection and description

on 3D point clouds, and good keypoint approaches tend to yield good results on 3D coarse

registration.

Although quantitative comparison for coarse registration methods is rare, literature

provides extensive benchmarks for 3D keypoint detection and description, such as the

SHREC database (BRONSTEIN et al., 2010; BOYER et al., 2011). These benchmarks

are applied not only for rigid registration, but also in other applications related to 3D

keypoint detection, such as 3D pose detection and tracking, symmetry detection and

query databases of 3D meshes. The emphasis of the evaluation on those benchmarks is

on the repeatability of the algorithms on several scenarios, i.e. “how algorithms cope with

certain classes of transformations and what is the strength of the transformations that
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can be dealt with” (BOYER et al., 2011). Some of these scenarios are out of the scope of

rigid registration, like deformation and partial scaling. Thus, in coarse rigid registration

it is not mandatory that a good descriptor should be robust to all the repeatability tests

proposed on the benchmarks. In our work, we take into account robustness to high angles,

additive noise, outliers and partial overlapping situations.

A recent survey (DÍEZ et al., 2015) on coarse registration proposes a generic pipeline,

which consists on three subtasks: a subsampling based on detection of feature points,

the matching of descriptors based on the shape of such points and the search strategy.

Sampling based on feature points is necessary in order to reduce the time spent, especially

when the density of the point sets is high. Strategies to detect feature points on meshes

include normal space sampling (RUSINKIEWICZ; LEVOY, 2001), maximally stable vol-

umes (DONOSER; BISCHOF, 2006), heat kernel signatures (SUN et al., 2009), meshDoG

(ZAHARESCU et al., 2009), a 3D version of Harris detector (SIPIRAN; BUSTOS, 2011)

and intrinsic shape signatures (ZHONG, 2009). Among them, maximally stable volumes

and heat kernel signatures reach good results at most cases of the SHREC database,

returning fewer points with a high level of distinctiveness.

The description is the key step on the coarse registration process, in which correspon-

dences are established according to a shape function, desirably invariant to translation,

rotation and scaling. This shape function can be either a histogram or a signature, based

on topological or geometrical features. Several descriptors are addressed on the survey,

and among them the survey highlights the robustness of ISS (ZHONG, 2009) and SHOT

(TOMBARI et al., 2010), the accuracy of Integral Invariants (POTTMANN et al., 2009)

and HKS (SUN et al., 2009), and the computational time of the PCA (CHUNG et al.,

1998).

As for the search strategy, the goal is to enhance the search process in order to find

the best transformation between the points efficiently. Some of these strategies are alge-

braic surfaces (TAREL et al., 1998), robust global registration (GELFAND et al., 2005),

RANSAC-based methods like the DARCES (CHEN et al., 1999) and the 4PCS (AIGER

et al., 2008) and evolutionary game-theoretical frameworks (SANTAMARÍA et al., 2011),

which is a recent topic (CIRUJEDA et al., 2015; ALBARELLI et al., 2015). The survey

points out the 4PCS as currently the best search strategy.

The 4PCS is a method based on finding small congruent 4-point subsets, which effi-
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ciently achieves good results in different situations, even in the presence of a high amount

of outliers and additive noise. Although originally designed for coarse registration, 4PCS

reaches results comparable to fine registration methods. More recently, a method named

Super-4PCS (MELLADO et al., 2014) was proposed, enhancing the 4PCS in terms of

speed and achieving linear complexity by the use of an efficient data indexing, while

maintaining the alignment quality even in cases of low overlap.

The CTSF, main proposal of this work, consists on a shape comparison factor invariant

to rotation, translation and global scaling, and therefore can be classified as a coarse

descriptor. Thus, it can be used to establish reliable correspondences. However, although

suitable for rigid registration, its use as a detector and its performance on descriptor

repeatability tests tends to be limited, since it is theoretically affected by the presence of

additive noise and also does not cope with topological alterations and distortions on the

mesh, among others.

1.4.2 FINE REGISTRATION

As for the fine registration techniques, the most common approach is the traditional ICP,

and the general effort of the literature is on optimizations of this algorithm.

Several optimizations were proposed so far to enhance the performance of the ICP

in terms of speed, robustness and accuracy. The survey of Rusinkiewicz and Levoy

(RUSINKIEWICZ; LEVOY, 2001) identifies six possible stages of the algorithm in which

optimizations can be made:

� Selecting a subset of points (RUSINKIEWICZ; LEVOY, 2001; MASUDA et al.,

1996; GELFAND et al., 2003);

� Changing the closest point criterion (GODIN et al., 1994; MEN et al., 2011; SHARP

et al., 2002, 1999);

� Weighting the correspondences (RUSINKIEWICZ; LEVOY, 2001; GODIN et al.,

1994);

� Rejecting pairs (CHETVERIKOV et al., 2002; DONG et al., 2014);

� Assigning an error metric (BOUAZIZ et al., 2013; TRUCCO et al., 1999; FITZGIB-

BON, 2003; MAIER-HEIN et al., 2012);
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� Minimizing this error metric (BOUAZIZ et al., 2013; FITZGIBBON, 2003; SEGAL

et al., 2009; YANG et al., 2013).

Taking into account their taxonomy, our method only modifies the closest point cri-

terion by combining the CTSF and the Euclidean distance. In this aspect, we propose a

novel successive approximation strategy that dynamically changes the closest point cri-

terion, varying the relative weight of the shape factor and the Euclidean distance. The

weights are altered every time the algorithm reaches a local optimum point, increasing the

Euclidean distance influence. This strategy guides the algorithm from a coarse alignment,

based on tensor similarity, to a fine alignment, computed from the Euclidean distance.

Many works propose modifications on the closest point criterion, using other informa-

tion, such as color (GODIN et al., 1994; MEN et al., 2011) or geometric compatibility

(SHARP et al., 1999, 2002), to enhance the quality of the correspondences. Godin et

al. (1994) proposes a method called Iterative Compatible Closest Point that alters the

distance metric to consider also similarity by color, also extensible to other intensity in-

variants. The work of Sharp et al. (1999, 2002) introduces the use of geometric invariant

features such as curvature, moment invariants and spherical harmonics invariants on the

ICP, altering the closest point criterion to a linear combination of Euclidean distance

and feature compatibility. In the prior work, the matching of the points is a weighted

linear combination of the invariant features with the Euclidean distance. In the more

recent work, the method has been reformulated such that the features are weighted by

a factor α2, whose value is set at each iteration as the mean squared Euclidean distance

from the data points to their closest points. This scheme implicitly reduces the weight

of the invariant feature factor as the transformation bring both point clouds closer to

each other. However, this work has as limitation the need of a point grid to compute the

invariant features, which makes it only applicable on range image alignment. Our work

uses a highly similar approach, considering a linear combination between the factors, but

we use a different strategy of variation of the weight. Also, the CTSF is computed from a

k-neighborhood that can be obtained from raw point data, which extends the application

of our method to point clouds in general.

Discarding bad correspondences is a common strategy to deal with outliers and missing

data. One of the methods that use it is the Trimmed ICP (CHETVERIKOV et al., 2002),

which consists on discarding the ε% correspondences that have worse Euclidean distance
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values. An alternative is to discard correspondences according to a distance threshold

instead of a percentage of the mesh. Due to its simplicity, the Trimmed ICP is used as

a standard strategy to deal with partial overlapping, and some works adapt it to discard

correspondences with different distance metrics (MAIER-HEIN et al., 2012; DONG et al.,

2014).

The choice of the error metric and its minimization plays an important role on the

quality of the result. The literature contains approaches that explore other minimization

methods and other error metrics than the L2 norm. The RICP (TRUCCO et al., 1999)

proposes the use of a Least Median Squares regression to enhance the performance in

the presence of outliers and with missing data. The LM-ICP (FITZGIBBON, 2003) uses

the traditional Levenberg-Marquardt non-linear optimization algorithm on the parameter

space, allowing the use of robust kernels and other error metrics. The authors claim that

the results achieved are comparable to the original method in precision and speed. The

EM-ICP (HERMANS et al., 2011) models the point clouds as Gaussian Mixture Models,

adapting the ICP to an Expectation-Maximization process.

Among the recent approaches, the Sparse ICP (BOUAZIZ et al., 2013) uses Lp norms

to change the error metric. The sparsity induced by the use of Lp norms when p ∈ [0, 1]

reduces the influence of outliers on the transformation estimation, but the optimization

problem becomes non-convex and the minimization is made by Augmented Lagrangian

methods. The Generalized ICP (SEGAL et al., 2009) associates each point to a covari-

ance matrix, computed from a principal component analysis on its nearest neighbors,

and assumes that the error between each point and its correspondence is drawn from a

Gaussian distribution. The transformation is then estimated using a maximum likelihood

estimation process. This method was later expanded (SERVOS; WASLANDER, 2014) to

build a Multi-Channel kernel descriptor capable of incorporating features of the images,

such as reflectance coefficients and color, to enhance the quality of the correspondences.

The Anisotropic ICP (MAIER-HEIN et al., 2012) computes a cross-covariance matrix for

each point and uses this information on the closest point computation and on the error

minimization, adapting the problem to deal with anisotropic and inhomogeneous errors.

Our work links to the Generalized ICP and Anisotropic ICP since these works also

express local geometry information of points on covariance matrices. However, to our

knowledge, our method is the first rigid registration approach to treat local covariance
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matrices as second-order tensors and use invariant tensor properties to compute similarity

between patches on both sets. There is a previous method (REYES et al., 2007), differ-

ent from the ICP, that uses second-order tensors computed by a voting process to solve

the rigid registration problem, but this work differs from ours on the use of a complex

geometric algebra formulation, while we use a single factor computed directly from the

tensor eigenvalues.

A recent trend is to use Lie algebra properties to optimize in the parameter space. The

GoICP (YANG et al., 2013) achieves globally optimal solutions under the L2 error for any

initial position, integrating the ICP minimization with a branch-and-bound search on a

3D motion space. The Trimmed ICP was later extended to a Lie Group parametrization

formulation, the LieTrICP (DONG et al., 2014), which improves the accuracy on partial

overlapping situations and select automatically the amount of points discarded, reformu-

lating the error function to deal with anisotropic errors through the use of Lie algebra

properties. The LieTrICP is able to retrieve anisotropic scale transformations, besides the

rigid transformation.

For further details on recent advances, the survey of Tam et al. (2013) treats the

registration as a data fitting problem and summarizes many approaches for the problem

of rigid and non-rigid registration, classed with respect to the registration constraints

and optimization methods. Salvi et al. (2007) classifies registration methods in coarse

and fine, comparing results in terms of error, parameter variation and execution time

on different examples. Despite the well stated error measurement protocol in various

aspects of performance, the results presented on this survey are merely qualitative and

lack statistical relevance. Unfortunately, most works on rigid registration present a weak

experimental setup, with low statistical backup and results only for few cases.
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2 FUNDAMENTALS

Our method has as input the single 3D position of each point, not requiring any other

information. The basic assumption here is that when two points belonging to different

viewpoints of the same object have the same neighborhood disposition, they are likely to

represent the same region in two different views of an object. Thus, our method aims to

use an estimation of the local geometry disposition of the points, encoded on second-order

tensors, in the matching step of the ICP.

This chapter presents basic concepts of second-order tensors and the preprocessing

stage of tensor voting, necessary to encode the geometric information of each point.

2.1 SECOND-ORDER TENSORS

A tensor is a generalization of the concept of vector and scalar. Mathematically, we

represent a second-order tensor or rank-two tensor by a n × n matrix associated to a

locality on on Rn. In this work, the matrix dimension is 3× 3, since our input is a set of

3D points, and we use a type of tensors known on the literature as orientation tensors.

An orientation tensor is a special case of a second-order tensor, in which the matrix

representative of the tensor is a covariance matrix, therefore symmetric and positive-

semidefinite. Since the eigenvalues of the orientation tensors are greater or equal to

zero, the covariance matrix can be decomposed in three parts, each one encoding the

contribution of the linear, planar and spherical part of the tensor.

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + (λ3)T3 (2.1)

The tensor T1 encodes the direction of the main eigenvector. T2 represents the plane

formed by the two main directions, and T3 accumulates all the three main directions

equally. Based on the eigenvalues λ1, λ2 and λ3, we compute the tensor anisotropy

coefficients cl, cs and cp (WESTIN et al., 1997) as shown in Equations 2.2, 2.3 and 2.4, in

order to describe the neighborhood geometry. We assume that the eigenvalues are sorted
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in descending order, i.e. λ1 ≥ λ2 ≥ λ3.

cl =
λ1 − λ2

λ1 + λ2 + λ3
, (2.2)

cp =
2 · (λ2 − λ3)
λ1 + λ2 + λ3

, (2.3)

cs =
3 · λ3

λ1 + λ2 + λ3
. (2.4)

If the tensor presents a high cl (or linear coefficient), the main direction is predominant

in relation to the other two. This is an indication of a high curvature region. In turn, a high

cp (planar coefficient) indicates that the neighborhood has two predominant directions.

In this situation, the local geometry can be approximated by a plane, and the point is

probably in a low curvature region. If the three eigenvalues have similar magnitudes,

the spherical coefficient (cs) is large, and no information can be inferred about the local

geometry.

Figure 2.1 shows superquadric glyphs (KINDLMANN, 2004) that represent tensors

with high linear, planar and spherical anisotropy, respectively. The figures on the rest of

this work that represent graphically second-order tensors will follow that glyph represen-

tation.

Tensor with high cl Tensor with high cp Tensor with high cs

Figure 2.1: Representations of shapes of tensors with high cl, cp and cs, respectively.

Our local geometry estimation method is based on the accumulation of vector votes

from a neighborhood, weighted by an influence scalar function. The direct accumulation

of vector votes is not appropriate, since vectors in opposite orientations would cancel

themselves. Tensors are suitable to accumulate geometric information, since they are able

to accumulate those votes regardless of the orientation of the vectors. Thus, two basic

operations are used: the transformation of a vector in a stick tensor and the weighted

sum of tensors.

A vector ~a can be encoded in an orientation tensor A through the product ~a·~aT , which
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generates a covariance matrix. This tensor has two null eigenvalues, and its main eigen-

vector is the direction pointed by ~a. Also, the geometry information can be approximated

by a stick, since the linear coefficient is high.

Consider, for example, two stick tensors A and B, which represent vectors ~a and ~b.

The weighted sum T of these two tensors encodes the plane generated by ~a and ~b.

T = w1 ·A + w2 ·B (2.5)

The geometry encoded by T will be planar (higher cp) if the angle between ~a and

~b is 90◦, and linear (higher cl) if both vectors are colinear. The main direction of the

resulting tensor is the line which bisects the angle between ~a and ~b, and the eigenvalues

are proportional to the colinearity between ~a and ~b. The use of weight factors scale the

influence of each direction, affecting directly the shape of the resulting tensor.

When more than two vectors encoded in stick tensors are summed, the information

encoded on the resulting tensor tends to capture the main orientation of all tensors scaled

by their norms and weights. Such influence is represented in the eigenvalues of the covari-

ance matrix. If all the vectors belong to a plane, the tensor will have planar geometry,

and if all the vectors point out to the same direction, the tensor will have a high cl and

linear geometry.

T =
∑
i

wi ·Ai (2.6)

2.2 TENSOR ESTIMATION

To estimate the local geometry of both point sets, a preprocessing stage based on a tensor

voting process is applied, aiming to estimate orientation tensors that represent the local

geometry. The basic assumption is that when two points belonging to different viewpoints

of the same object have the same neighborhood disposition, they are likely to represent a

common region of one object in different views. Thus, the estimation of those orientation

tensors generates additional information, that can be used on the ICP algorithm.

This preprocessing method has as input the single 3D position of each point, not re-

quiring any other information. Since the method relies on nearest neighbors to compute

the tensors, we assume that the input point cloud represents a surface. Volumetric repre-
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sentations would add internal points among the neighbor lists, which would affect directly

the output of the tensor estimation.

2.2.1 TENSOR VOTING FRAMEWORK

The preprocessing stage used in this work computes a second-order tensor for each point,

representing its local geometric disposition. It is based on the method proposed by Vieira

et al. (2004), and uses a tensor voting framework based on the well known work of Medioni

et al. (2000); Mordohai and Medioni (2006). Tensor voting has many formulations and

deals efficiently with a wide number of problems on computer vision and computer graph-

ics, including surface reconstruction, stereo vision, edge detection, data repairing and

optical flow, and is acknowledged for its robustness to outliers.

The tensor voting algorithm is the accumulation of the influence of the local neigh-

borhood on a point, which generates a tensor that encodes an estimation of the local

distribution of a feature. For each point, a voting field is generated. The point propa-

gates its information as a vote to all his neighbors, and uses the information cast by them

in order to generate the tensor.

The general formulation of the tensor voting algorithm is described by:

Tp =
∑
q∈N(p)

fqp ·Tqp, (2.7)

where N(p) is the neighborhood of the point, fqp is a scalar field that weights the influence

of each neighbor q ∈ N(p), and Tqp is the vote that each neighbor q casts on the point p.

Our implementation of the tensor voting is composed by two steps. In the first step,

a coarse estimation of the main curvature directions is obtained for each point. In the

second, the previous estimation is enhanced, increasing the influence of coplanar structures

on the neighborhood, and consequently the local planarity of the tensor. This is made

by the use of a different distance metric, the distance over an elliptical trajectory. It is

possible to perform the second step more than once, in order to enhance continuously the

planarity of the tensors. With the second step, the influence of unstructured outliers on

the point set tends to be attenuated, since those points are mostly not coplanar with the

tangent plane defined by each point’s normal vector.

In our case, the neighborhood of each point is represented by the list Lk(p) of its k
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nearest-neighbors sorted by their Euclidean distances. Conversely, we represent as L−1k (p)

the list of points that contains p into its k nearest neighbors. The method assumes that

these lists are previously computed.

The tensor voting process is analogous to mathematical morphology techniques in 2D

images, such as erosion and dilation. Those techniques use structuring elements to modify

each pixel according to the information contained on its neighbors, enhancing or reducing

the influence of structured information. Each voting step can be seen as an application

of a structuring element.

2.2.2 FIRST PASS - RADIAL STRUCTURING ELEMENT

The first step builds for each point p a second-order tensor Tp, which accumulates the

weighted sum of stick tensors built from the vectors −→pq, for each neighbor q ∈ Lk(p). The

influence function fqp is a Gaussian decay proportional to the Euclidean distance between

p and q with standard deviation σp. This deviation is proportional to the closeness of the

neighbors, such that the farthest neighbor qf has influence 0.01.

σp =

√
||−→pqf ||2
ln 0.01

. (2.8)

The tensors Tqp are stick tensors built from a tensor product of a normalized vector

v̂qp with itself transposed. In this step, the vote direction v̂qp is the normalized vector p̂q.

The output of the first step is the set of tensors Tp:

Tp =
∑

q∈Lk(p)

fqp · v̂qp · v̂Tqp =
∑

q∈Lk(p)

e

−||−→pq||2

σ2
p · p̂q · p̂qT , (2.9)

where the Gaussian influence function fqp is proportional to the Euclidean distance be-

tween p and q, with standard deviation σp, as in Equation 2.8. The Equation 2.9 corre-

sponds to the application of a 3D isotropic radial structuring element. The third main

direction of Tp is a rough estimation of the normal on points with planar neighborhood.



31

2.2.3 SECOND PASS - COPLANAR STRUCTURING ELEMENT

The tensors Tp obtained in the first step are used as input to the second step. Here,

another structuring element is applied on the point set, in order to enforce the influence

of local coplanar structures. Differently from the first step, here each point p casts a stick

vote on its neighbors q , based on a vector v̂pq, and its influence on the tensor Sq is given

by a function fpq, proportional to the coplanarity between p and q . This function ensures

that points aligned to the tangent plane have higher influence.

To estimate v̂pq and fpq, we first bring all points to a different coordinate system, where

the axes (x̂, ŷ, ẑ) are respectively aligned with the normalized eigenvectors (ê1, ê2, ê3) of

Tp. The transformation of each neighbor q to this system is obtained by the application

of a rotation matrix Rp built from ê1, ê2 and ê3 on the vector −→pq, generating a new point

denoted q ′. In this system, the correspondent point p ′ of the point p is the origin. Note

that −→pq is a column vector (3× 1).

q′ =


ê1

ê2

ê3

 · (−→pq).
The next step is to express q′ in spherical coordinates:

ρq′ =
√
q′2x + q′2y + q′2z,

θq′ = tan−1
q′y
q′x
,

φq′ = tan−1
q′z√

q′2x + q′2y

.

For each neighbor q′, there is a unique ellipsoid E with eccentricity tanαellip that is

centered over the ẑ′-axis and tangent to p′ and q′. Figure 2.2 shows ellipses with different

αellip parameters passing through an arbitrary point, in a 2D representation.

The coplanarity between p and a neighbor q is proportional to the distance de between

p′ and q′ over this ellipsoid, which is given by:

de(p, q) = de(p
′, q′) = ρq′ ·cosφq′ ·

(
1+
(

2− 1

tan2 αellip

)
·tan2 φq′

) tan2 αellip
2 · tan2 αellip − 1 . (2.10)
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Figure 2.2: Family of ellipses (2D representation) passing through the point (3.0, 1.5) with
different values of αellip.

To avoid numerical instabilities on the computation of de(p, q), the angle αellip must be

at least tan−1
√
2
2
≈ 35.26◦. Smaller values of αellip would result in a negative base and a

negative exponent, yielding an invalid operation.

From the spherical distance defined in Equation 2.10 and the standard deviation σp

from Equation 2.8, we define the influence fpq, exerted from p on each neighbor q ∈ Lk(p).

Like in previous step, the farthest point in Lk(p), using Euclidean distance, has influence

0.01. Ideally, σp should be built such that the point with the bigger elliptical trajectory

has influence of 0.01, but since our work applies the structuring element several times,

this operation would require the recalculation of the k-nearest neighbors by the elliptical

distance at each pass, which is computationally expensive.

The influence of points misaligned to the tangent plane is constrained by discarding

points with tanφq′ > tanφmax.

fpq =


e

−de(p, q)
σ2
p , φq′ ≤ φmax,

0.0 , φq′ > φmax.
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The vote vector v̂pq requires the computation of the angle βq′ , which is the angle formed

by the x′-axis and the line tangent to E at the point q′. The direction defined by the

angle βq′ is assumed to be an estimation of a vector that belongs to the tangent plane of

q ′. In function of αellip and φq′ , βq′ is:

βq′ = tan−1
2 · tan2 αellip · tanφq′

tan2 αellip − tan2 φq′
.

By the replacement of the angle φq′ for βq′ and the conversion of q ′ back to Euclidean

coordinates, we obtain a vector v̂′pq.

v̂′pq = (cos θq′ · cos βq′ )̂i+ (sin θq′ · cos βq′)ĵ + (sin βq′)k̂. (2.11)

The vote vector v̂pq is obtained by the application of the inverse rotation matrix R−1p :

v̂pq = R−1p · v̂′pq.

Figure 2.3 shows a cut of the plan y′ = 0 depicting the vector v̂pq and the angles φq′

and βq′ for an arbitrary point, in a case where αellip = 30◦.
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q′

φ
β

→
e3p

v̂′pq

Angle β and vector v̂′pq. αellip=30 ◦

Figure 2.3: 2D geometric representation of the angles φ, β and vector v̂pq of an arbitrary
point q′. Note that v̂pq is normalized.
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The vote Spq cast by p on a neighbor q is expressed by:

Spq = fpq · v̂pq · v̂Tpq.

Finally, the resulting tensor Sp for a point p is composed by the weighted sum of the

tensors built from the votes received on the point, cast by all the points that have p as a

neighbor:

Sp =
∑

q∈L−1
k (p)

Sqp =
∑

q∈L−1
k (p)

fqp · v̂qp · v̂Tqp. (2.12)

2.2.4 IMPROVEMENTS AND DISCUSSION ABOUT THE PARAME-

TERS

The differences between the original method Vieira et al. (2004) and the one proposed

and used in this work are:

1. We propose an iterative reapplication of the second step, through the recalculation

of the tensors using with Sp as input. With this process, the planarity properties of

the final tensors are continuously enhanced. The method stops when the average cp

stops improving or a maximum number of iterations is reached. In all experiments,

we use a maximum of 100 iterations. In Subsection 2.2.4.1, we show the advantages

of this iterative reapplication of the second step.

2. The original method uses all the points of the cloud as neighborhood and sets a de-

fault value for the standard deviation, equal for all points. We use a k-neighborhood

and set the value of σ proportional to the distance to the k-th neighbor. In Subsec-

tion 2.2.4.2, we discuss the effects of using this approach.

3. The original method uses the normal information for surface reconstruction. Thus,

the computation of the vector v̂pq is set to encode the normal in the first main

direction of the tensor. Our implementation, in turn, encodes the normal in the

third eigenvector, since the region geometry is as important as the normal itself in

our work.

4. The original approach treats αellip and φmax as the same variable, while we choose to

deattach them. The consequences are discussed in Subsections 2.2.4.3 and 2.2.4.4,
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and the effects of different parameters on the rigid registration are shown in the

Experimental Results, on Subsection 4.3.2.

Before introducing the CTSF and the proposed method, we chose to show visual results

of the tensor estimation method, and discuss the effects of the variation of each parameter

of the method on those results. The next Subsections deal with the iterative enhancement

process, the size of the neighborhood k and the angles αellip and φmax.

2.2.4.1 Enhancement obtained by the iterative scheme

Here we aim to show the effectiveness of the iterative scheme, by comparing visual results

of the tensors obtained after the radial structuring element application, after a pass of the

coplanar structuring element and after the iterative coplanarity enhancement. As stated

on the beginning of this Section, second-order tensors here are graphically represented

by superquadric glyphs, using the parametrization described in Kindlmann (2004). The

color indicates the cp of each tensor, and tensors highlighted in hotter colors have higher

planarity coefficients. On all the examples we consider k = 25% of the points on the

original Octopus mesh, i.e. k = 956, in order to provide better visual hints about the

performance of the algorithm. The parameters αellip and φmax are set with the default

value of 45◦. We show that the planarity of the tensors is enhanced by the use of the

iterative method even in hard situations, such as point clouds with outliers and additive

noise. Figure

Figure 2.4: Color of the tensors according to its cp. Reddish tensors are more planar.

Figure 2.5 shows the differences between the tensors obtained after the application of

the radial structuring element, after one pass of the second structuring element, and the

final result, after six applications of the second structuring element on the original Octopus

point cloud. In this case, the method stopped after six iterations, because from the sixth

to the seventh iteration the average planarity coefficient decreased. The iterative process

effectively increases the planarity of the tensors of the point cloud, which is particularly

notable on the head of the octopus, the more planar region of this point cloud.

Figure 2.6 shows an example of tensor estimation with a large amount of outliers. In

this case, we added 200% of the original number of points of the Octopus point set, gener-
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ated by an uniform distribution inside a sphere with radius r = 2, on a normalized point

cloud for which the biggest side is 1. The difference of the planarity coefficients between

Figures 2.8b and 2.8c indicates that the iterative enhancement is effective in acquiring

better geometry information of planar regions even with unrealistic outlier amounts, which

is highlighted on the head of the Octopus. The method achieves good results with un-

structured outliers inside the sphere. The presence of structured outliers, in turn, would

affect the result since the tensors would encode structures generated by the outliers.

Additive noise is naturally is a hard scenario for the tensor estimation, since the

smoothness of the neighborhood is compromised. In our work, the noise was synthetically

added to each point and is generated by two random variables: a normalized direction,

generated by a random isotropic distribution on a sphere, and a magnitude factor gen-

erated by a Gaussian random variable. The scale factor is generated on an interval for

which the biggest value is proportional to the larger bounding box side by a factor δ, in

order to control the additive noise strength. Results obtained show that for δ = 0.01 the

(a) After the radial structuring
element.

(b) After one pass of the copla-
nar structuring element.

(c) Final result, after six passes
of the coplanar structuring ele-
ment

Figure 2.5: Orientation tensors for the Octopus with k = 25%, αellip = φmax = 45◦.

(a) After the radial structuring
element.

(b) After one pass of the copla-
nar structuring element.

(c) Final result, after four
passes of the coplanar structur-
ing element

Figure 2.6: Orientation tensors for the Octopus with 200% of outliers, k = 25%, αellip =
φmax = 45◦, and 200% of outliers.
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method is still capable of encoding planarity information. As we can note in Figure 2.7,

tensors on the head of the octopus still have large planarity coefficient values. However, for

δ = 0.05 our method is unable to reach good results even after the iterative enhancement

application, as shown in Figure 2.8.

(a) After the radial structuring
element.

(b) After one pass of the copla-
nar structuring element.

(c) Final result, after six passes
of the coplanar structuring ele-
ment

Figure 2.7: Orientation tensors for the Octopus with k = 25%, αellip = φmax = 45◦. In
this case, the scale of the additive noise is up to 1% of the biggest bounding box side.

(a) After the radial structuring
element.

(b) After one pass of the copla-
nar structuring element.

(c) Final result, after four
passes of the coplanar structur-
ing element

Figure 2.8: Orientation tensors for the Octopus with k = 25%, αellip = φmax = 45◦. In
this case, the scale of the additive noise is up to 5% of the biggest bounding box side.

2.2.4.2 Size of the neighborhood

The number of neighbors k is an important parameter on the tensor estimation process.

This value affects the scale of the neighborhood and the computation of σp. Figure 2.9

shows examples of output tensors of the method for different values of k on the Bunny

point cloud and the neighborhood of a point for each value of k. If the value of k is

very small, the tensor may have insufficient information of the local geometry, as shown
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in the result with k = 1%. In counterpart, for k = 100%, the resulting tensor encodes

information on distant points of the set. This explains the fact that the planarity of

the tensors is generally lower with the increase of k. Subfigure 2.9p shows that larger

neighborhoods contain points which not necessarily are desirable. As example, a point

on the back of the bunny consider neighbors on its ear. However, those points have

small influence on the tensor estimation, and some of them are disconsidered through the

φmax angle constraint, which is represented by the red edges at the subfloats (e)-(h) and

(m)-(p). On larger neighborhoods, more points are disconsidered through the constraint.

As the size of the neighborhood increases, the k-th nearest neighbor gets further from

the point, which increases the standard deviation of the Gaussian influence (Eq. 2.8). In

this case, the decay caused by the difference of distances is attenuated for close neighbors,

which makes their influence more similar. The practical consequence is a tendency of the

algorithm to produce tensors that are smoother in relation to its neighbors, representing

the relative distribution of the point with respect to a bigger region of the mesh.

The case where k = 100% can be seen as a degenerate case, in which using all the

points as neighbors yield a plane that is not tangent to the surface. However, our latter

results at registration suggests that this is not necessarily bad for our application. This

is an interesting issue and will be discussed with more details on Chapter 4.

Our formulation of considering σp dependent of the k-th nearest neighbor makes the

method sensitive to the density of the point cloud. If this density is not homogeneous,

σp will have different values on different regions of the point cloud, and a decay based on

a distance threshold can produce more uniform results. It is easy to adapt our approach

to consider a distance threshold, but this would require a parameter calibration for each

point cloud, which would be highly sensitive to its scale. On the other hand, the use of a

fixed number of neighbors or percentual value of the number of points makes easier the

parameter tuning and analysis.
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(a) k = 1% = 17 (b) k = 5% = 93 (c) k = 10% = 187 (d) k = 15% = 282

(e) k = 1% (f) k = 5% (g) k = 10% (h) k = 15%

(i) k = 25% = 471 (j) k = 50% = 943 (k) k = 75% = 1415 (l) k = 100% = 1888

(m) k = 25% (n) k = 50% (o) k = 75% (p) k = 100%

Figure 2.9: (a)-(d), (i)-(l): Orientation tensors for the Bunny point cloud with larger
values of k, set as percentuals of the number of points. Tensors highlighted in hotter
colors have higher planarity coefficients. (e)-(h), (m)-(p): Neighborhood and estimated
tensor of a point on the back of the Bunny, varying the amount of neighbors. Neighbors
with green edges are below the angle φmax = 45◦ constraint, and neighbors with red edges
are disconsidered for having φ > φmax. Note that as k gets bigger, the number of red
tensors (i.e. with higher cp) diminish.
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2.2.4.3 Angle φmax

The restriction on the angle φmax constrains the influence of points misaligned to the

tangent plane, defined by the normal of p. Higher values of φmax tend to produce smoother

surfaces, while smaller values allow more details at cost of robustness to outliers (VIEIRA

et al., 2004). The choice of 45◦ is a mid term of both cases. The Figure 2.10 represents a

cut on the plan y′ = 0, showing influence isolines between the origin and points over their

respective elliptical trajectories.

Figure 2.10: Influence over the elliptical trajectory, cut on the plan y′ = 0: hotter colors
means greater influence. φmax = αellip = 45◦

The original approach sets φmax = αellip in all cases. In our work, we assume that these

values can be different but highly recommend that the angle φmax should be smaller than

αellip. The direction of the vote vector v̂pq is reverted for points with φ > αellip, since the

curvature sign changes in that case. Figure 2.11 shows three examples of vote vectors for

points with φ = 30◦, 45◦ and 60◦, in a case where αellip = 45◦ . The vector v̂p2q′ indicates

a divergent direction in relation to the central point, and should not be considered.
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Angle β and vectors v̂p0 q, v̂p1 q and v̂p2 q. αellip=45 ◦

Figure 2.11: 2D geometric representation of the angles φ, β and vector v̂pq of an arbitrary
point q′. Note that v̂pq is normalized.

2.2.4.4 Angle αellip

The parameter αellip impacts on the calculation of the angle βq′ and the influence factor

fpq. The distance de is a combination between the Euclidean distance and the coplanarity

with the tangent plane. Smaller αellip values give more influence to the coplanarity. As

αellip gets closer to 90◦, the influence field converges to a sphere, which is the first step

structuring element, based solely on the Euclidean distance. Figure 2.12 represent the

influence fields elements with different αellip values, respectively 36◦, 45◦, 60◦ and 90◦.

(a) αellip = 36◦ (b) αellip = 45◦ (c) αellip = 60◦ (d) αellip = 90◦

Figure 2.12: Influence over the elliptical trajectory for different values of αellip, respectively
36◦, 45◦, 60◦ and 90◦, on a cut on the plan y′ = 0: hotter colors means greater influence.
Note that when αellip = 90◦, the structuring element adquires the shape of a sphere.
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3 PROPOSED METHOD

After the computation of the tensors, we have a local estimation of the neighborhood

distribution for each point of the point cloud. Points that have a similar neighborhood

disposition tend to have associated tensors with similar eigenvalues. Conversely, if we can

measure dissimilarity between eigenvalues, we can express numerically the dissimilarity

between the neighborhood distribution of two points, and this can be used to enhance the

quality of correspondences between two meshes.

For this, we introduce a a shape dissimilarity factor between tensors, named Compar-

ative Tensor Shape Factor (CTSF), and propose an adaptation to the matching step of

the ICP in order to use this factor.

In the next Sections we describe the computation of the dissimilarity between the

tensors, and the coarse-to-fine weighting scheme used on the ICP.

3.1 COMPARATIVE TENSOR SHAPE FACTOR - CTSF

We define a factor to compare the normalized shapes called Comparative Tensor Shape

Factor (CTSF). The CTSF between two tensors S1 and S2 is given by:

CTSF (S1,S2) =
3∑

k=1

(
λŜ1
k − λ

Ŝ2
k

)2
. (3.1)

where Ŝi is the normalized form of a tensor Si, using the L2 matrix norm, and λŜmk is the

k-th greatest eigenvalue of the tensor Ŝm. Bigger values of CTSF indicate tensors with

dissimilar shapes.

Geometrically, a second-order tensor can be represented as an ellipsoid with axes

proportional to its eigenvalues. Two ellipsoids have the same shape if the proportion of

their axes, i.e. matrix eigenvalues, is the same. In this aspect, the CTSF represents the

difference of shape proportions between two ellipsoids.

By normalizing the tensors of both Model and Data point sets, we can compare the lo-

cal geometry despite the densities involved. As a consequence, the difference of magnitude

of the original tensors is irrelevant in our method.

The eigenvalues of a tensor are invariant to rigid transformations, due to the isometric
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nature of these transformations. Therefore, the CTSF is suitable to the ICP matching step

as a compatibility factor between two points, particularly when combined with a tensor

estimation algorithm that provides consistent input tensors. Figure 3.1 shows some cases

of high and low CTSF between two tensors.

Low CTSF

High CTSF

Table 3.1: Examples of how the CTSF is affected by the geometry of planar tensors. Note
that the CTSF is invariant to the to orientation of the tensors and to their magnitude,
due to the normalization.

Mathematically, we map points and their associated tensors into a space in which the

axes are the normalized eigenvalues λ1, λ2, λ3, in which λ1 ≥ λ2 ≥ λ3, and
3∑

k=1

λ2k = 1.

Thus, the representation of each point on this space is a normalized vector. Since the

eigenvalues are assumed to be ordered, the domain of the vectors is a region inside a unit

sphere, where λ1 ∈ [
√
3
3
, 1], λ2 ∈ [0,

√
2
2

], λ3 ∈ [0,
√
3
3

]. The CTSF is the squared Euclidean

distance between two vectors in this domain. The maximum distance on this space is the

one between a stick and a ball tensor.

Other eigenvalue comparison factors can be defined, such as the difference between

the anisotropy coefficients. We chose the direct comparison between the eigenvalues for

the simplicity and generalization capacity of this factor.

This measurement can also be generalized as a shape dissimilarity factor for second-

order tensors with higher dimensions, which can be useful in problems other than rigid

registration. In this case, each eigenvalue λi is in the interval [0,
√
i
i

] for i > 1. The CTSF

for N -dimensional tensors is defined as:

CTSF (S1,S2) =
N∑
k=1

(
λŜ1
k − λ

Ŝ2
k

)2
.
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3.2 MODIFIED ITERATIVE CLOSEST POINT

Assuming that both point sets of the ICP are different visions from the same object or

surface and that the sampling rate of the sets is the same, the geometric neighborhood

disposition of a point mi ∈ M is the same of its correspondent dj ∈ D. Thus, the tensor

Smi has the same shape of Sdj , and the CTSF between them tends to zero.

The modification on the ICP proposed by this work aims to benefit from the invari-

ance to rigid transformations of the CTSF in order to provide better correspondences

on situations where the closest point provided by Euclidean distance can be inaccurate.

However, if only shape information is used in the matching step, the alignment obtained

is coarse, and small details on the adjustment of the sets are compromised. Thereby,

we consider the distance in the matching step as a combination of the CTSF and the

Euclidean distance, using a weighting strategy to control their relative influence.

Our method uses a weighting factor w to combine CTSF and Euclidean distance (ED),

and controls the variation of the parameter when the algorithm reaches a local optimum of

the error function. Let i be the number of local optima reached. We define the matching

function as:

d(p, q) = ED(p, q) + wi · CTSF (Sp,Sq), (3.2)

wi = w0 · bi, b < 1 and 0 ≤ wi < w0 (3.3)

where the parameter b impacts on the variation of the relative weight between CTSF

and Euclidean distance at each ICP loop, and w0 is the initial influence of the Euclidean

distance, most likely a small value. In practice, the weight of the CTSF is divided by b

every time a local optimum is reached. The algorithm stops when wi ≈ 0, so that only

Euclidean distance is considered on its last loop. With this process we are able to guide the

solution in order to give more importance to the tensor dissimilarity in the first iterations,

coarsely recovering the transformation for higher angle displacements, and to reach fine

alignment when the sets are close enough, condition in which the matching based on

Euclidean distance (original ICP formulation) tends to work better. We set w0 = 10000

and b = 0.1 as default values of the parameters, but show results with different values of

b. Our method is summarized on Algorithm 1.

The CTSF and the Euclidean distance are measurements of distinct magnitudes, since
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Algorithm 1: Modified Version of the ICP algorithm

Require: M,D, k, a, w0

1: Tensor Estimation of M
2: Tensor Estimation of D
3: i← 0
4: wi ← w0

5: while wi > 10−6 do
6: C ← Nearest Neighbors(M , D, wi, 1− wi)
7: T ← Transformation Estimation (D, C)
8: if RMS(T ·D, M) < RMS(D, M) then
9: update T

10: else
11: i← i+ 1
12: wi ← b(loga w0)−i

13: end if
14: end while
15: return T

one of them is a distance factor and the other one is a shape dissimilarity factor.

In the optimization aspect, each step of the weight variation is an execution of the

ICP algorithm with a different relative weight associated to the CTSF on the matching of

points. The weight variation works as a coarse-to-fine successive approximation method.

Each step of the process is a scale reduction of the CTSF in comparison to the Euclidean

distance.

The value of b controls the reduction on the weight factor of each step of the process.

With smaller values, the method perform fewer steps, and in most cases fewer iterations.

For values near 1, the method performs more iterations and possibly reaches better results,

since the landscape of the function is changed more smoothly. Therefore, an increase on b

implies on an increase of the precision of the transformation estimation and bigger chances

of convergence. The downside is that a linear increase on the value of b implies on an

exponential increase on the number of iterations in this formulation.

Since our algorithm alters the matching step of the Iterative Closest Point, it can be

used alongside any minimization strategy. In our experimental setup, we modify both

the original ICP and the Sparse ICP (BOUAZIZ et al., 2013) to use the CTSF in the

matching step, combined with the weight variation strategy.
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4 EXPERIMENTAL RESULTS

In fine rigid registration literature, in order to highlight the good performance of the

proposed method, most works present only qualitative comparisons with other methods.

These comparisons are usually made with a small number of point clouds and on situations

predetermined by the author. This type of evaluation is generally inconclusive, because

the behavior observed in a single case may not describe the overall performance of the

method. The quantitative evaluation of methods on many randomly generated events

would be a more suitable form to describe the general performance. However, this type

of analysis is hard, since the time spent on each execution is big, especially on larger

point sets. Furthermore, large initial rotations are not usually a matter of concern for fine

registration methods since they assume that both sets are coarsely pre-aligned.

Our work presents an experimental setup for quantitative evaluation of registration

methods. For this, we generate a large dataset composed of transformations between two

point clouds that include cases with wide angle initialization, additive noise, outliers and

partial overlapping. With this dataset, we can characterize the behavior of the methods

with different parameter values and on different situations.

In this chapter we describe the experimental setup of this work, presenting the point

clouds used on the dataset, the procedures for generation of additive noise and outliers,

the methods used on the evaluation and the results obtained.

4.1 DATASET

The dataset used in our work is composed by synthetically generated events that deal with

usual issues on rigid registration. We consider an event as an alignment situation between

two point clouds. Our dataset has two types of events: the first type contains point

clouds with outliers and additive noise and the second deals with partially overlapped

point clouds, also synthetically generated.

The base point clouds used in the generation of the events were sampled versions of
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the Bunny1, the Happy Buddha1, the Octopus2 and the Genus3. The sampling process

was necessary due to the large number of executions performed on the experimental setup,

in order to reduce the time spent on each event. For the Bunny point cloud we use the

smallest zippered version available online. The other sampled point clouds were obtained

through a Poisson-disk sampling algorithm (CORSINI et al., 2012) available on MeshLab4.

Those point sets were chosen because they have different geometric features: the

majority of points of the Bunny have a smooth neighborhood, except the points on the

ears and on the feet, which are high curvature regions. The Happy Buddha, despite

being composed mostly by small planar patches, has the geometry similar to a dumbbell,

presenting a radial symmetry that make it a harder point set, particularly on wider angles.

The Octopus, on the other side, has mostly high curvature regions. The Genus is a point

cloud composed mostly by planar regions, but can be challenging due to its symmetry

axes, increasing the chance of misalignment. Figure 4.1 shows the point clouds that

compose our dataset.

We scale the point sets to a bounding box whose biggest side is 1.0, keeping the

original aspect ratio. This normalization is the first step of the event generation and

is applied before the rigid transformation, the addition of outliers and additive noise

and the generation of the subsets on the partial overlapping case. This way, the error

measurements for all the point clouds are on a similar order of magnitude.

For wide angle result evaluation, we sample the rotation angle interval [0◦ − 180◦]

at each 15◦. The dataset has the same number of events for each angle and parameter

configuration. In each event, an axis-angle rotation is applied in one of the point clouds,

through the generation of a random unit vector ~v following an isotropic distribution in an

unit sphere. One of the meshes is rotated around ~v. The transformation does not include

a translation part. We also consider this a more challenging scenario for the ICP, since

there is a bigger chance of reaching a wrong local minima, specially on wide angles where

the sets are incorrectly prealigned.

Additive noise, outliers and partial overlapping are generated randomly by synthetic

1Provided by Stanford University Computer Graphics Laboratory on http://graphics.stanford.

edu/data/3Dscanrep/ .
2Provided courtesy of INRIA by the AIM@SHAPE-VISIONAIR Shape Repository.
3Provided by École Polytechnique Fédérale de Lausanne Computer Graphics and Geometry Labora-

tory on http://lgg.epfl.ch/statues_dataset.php
4http://meshlab.sourceforge.net

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://lgg.epfl.ch/statues_dataset.php
http://meshlab.sourceforge.net
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(a) Bunny. (b) Happy Buddha.

(c) Octopus. (d) Genus.

Figure 4.1: The point sets used on the experiment: (a): Bunny (containing 1889 points).
(b): Happy Buddha (3118 points). (c): Octopus (3822 points). (d): Genus (2711 points).

processes, with a different seed for each process. All the random variables are generated

by a Mersenne Twister pseudo-random number generator. The next Subsections detail

the synthetic algorithms for generation of events with additive noise, outliers and partial

overlapped point clouds.

4.1.1 ADDITIVE NOISE AND OUTLIERS

The first type of event of the dataset addresses realistic non-optimal scenarios with addi-

tive noise and outliers. The point sets are fully overlapped, that is, all the points on the

base mesh are used to generate both Model and Data meshes, which are distinguished by
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the application of a rigid transformation and the addition of outliers and additive noise

on both. The seeds used for generation of outliers and additive noise are distinct for each

point cloud, therefore the two point clouds generated in one event have different outliers

and a different perturbation by additive noise.

Outliers are randomly generated by a uniform distribution in a sphere with radius 2.0,

when the bigger side of the normalized bounding box has size 1.0.

For additive noise generation, we perturb each point −→pi adding a vector −→ri . The direc-

tion of −→ri is generated by an isotropic distribution over a unit sphere, and its magnitude is

obtained through a Gaussian random variable and scaled by a parameter δ, that controls

the strength of the noise. This scheme of synthetic additive noise generation is not as

usual as the addition of a perturbation on the normal direction of each point, but was

chosen for this work because it yields more challenging scenarios. The general equation

for additive noise is shown in Equation 4.1.

−→pi = −→pi + δ ·N(0, 1) · −→ri (4.1)

We generate events with outliers in a quantity ω proportional to a percentage of the

points in the cloud, having events with ω = 0%, 5% and 20%, and a variable perturbation

factor δ for the additive noise (0, 0.01 and 0.05). Higher amounts of outliers and additive

noise hardly represent realistic situations. For δ values bigger than 0.05, the additive noise

degenerates the mesh such that most of its geometrical information is lost. Figure 4.2

illustrates the effect of additive noise and outliers.

(a) Original Octopus. (b) Octopus with additive
noise (δ = 0.05).

Figure 4.2: Examples of application of additive noise and outliers to the Bunny point set.

Figure 4.4 details the generation of synthetic events with outliers and additive noise.
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(c) Octopus with ω = 20% of Outliers. (d) Octopus with additive noise and outliers com-
bined (δ = 0.05 and ω = 20%)

Figure 4.2: Examples of application of additive noise and outliers to the Bunny point set.

Figure 4.3: Pipeline of generation of events with noise and outliers.
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4.1.2 PARTIAL OVERLAPPING

The second type of event addresses partial overlapping situations, simulating the process

of object reconstruction. For that, we generate subsets of the base meshes that are

continuous in relation to the nearest neighbors list, controlling the percentage amount

of overlapping (β) and non-overlapping points (α) between those subsets, relative to the

number of points on the base mesh. Table 4.1 shows the parameter combinations for α

and β.

α 12.5% 25%

β 75% 50% 25% 12.5% 50% 37.5% 25% 12.5%

Table 4.1: Variation of the parameters for the second type of event: percentage of points
on the overlapping region (α) and on the non-overlapping region (β).

The number of non-overlapping points α is the same for both point clouds. We gen-

erate events with different levels of overlapping, varying the number of points in the

shared region β. With higher values, both point clouds have more points in common.

When both point clouds have α = 25% of unique points that are not on the other cloud

(non-overlapping), the maximum overlapping amount (β) would be 50%. As the rate

between the overlapping points and the non-overlapping points of the meshes diminish, it

is expected to be harder for the methods to align the point sets.

The first step for synthetic subset generation is a region growing algorithm based on

a breadth search on the k-nearest-neighbors list, initiated on a random point to generate

the overlapping region. In sequence, another breadth search is made on points on the

boundary of the overlapping region for the generation of the non-overlapping regions

of both point clouds, until the number of points desired is reached. To make sure the

percentages are right, the number of points of the generated subsets is checked. In case

it is wrong, the subsets are discarded and two new subsets is generated.

Figure 4.4 details the generation of synthetic events with partial overlapping.

Figure 4.5 shows examples of partially overlapped point clouds, with the variation of

the parameters α and β.

Like in the first type of event, we also sample the rotation angle interval at each 15◦.
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Figure 4.4: Pipeline of generation of events with partial overlapping.

(a) (b)

Figure 4.5: Partial overlapping examples: green points indicate the overlapping region,
and blue and red points indicate the non-overlapping region. (a) and (b): α = 25%, β =
25%, average difficulty.
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(c) (d)

Figure 4.5: (c) and (d): α = 12.5%, β = 25%, the hardest parameter setup, since the
overlapping region is smaller than the non-overlapping regions.

(e) (f)

Figure 4.5: (e) and (f): α = 12.5%, β = 75%, the easiest parameter setup, with the largest
proportion between the size of the overlapping region and the non-overlapping region.
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4.2 ERROR MEASUREMENT PROTOCOL

In the fine registration literature, many error measurements are presented, such as residual

errors, convergence regions and rotation and translation error. Since most works present

qualitative results, visual results are shown in order to link these error measurements with

the convergence of the methods on the chosen examples. Many works also present data

on the number of iterations and the time spent on the execution, in order to highlight

their computational efficiency.

In this work, we use two types of error measurements: the ground-truth root mean

squared error (GT-RMS), which is the average Euclidean distance between the points on

the first point cloud and their correct correspondences on the second, and the labeled

error, which is the number of correct correspondences between both clouds.

The GT-RMS error is only measured between inliers, since outliers do not have correct

correspondences. For the same reason, in partial overlapping events, only points on the

overlapping region are considered. As a consequence, this error measurement can only be

used with synthetically generated point clouds. It is important to emphasize the difference

between the RMS used on the ICP, measured between the point and the correspondence

estimated by the method, and the GT-RMS, between the point and its known correct

correspondence. The GT-RMS is used only for error evaluation and cannot be used in

the ICP, since it requires a ground-truth of previously known correspondences.

The labeled error can be used to evaluate cases of exact correspondences, since there

is a guarantee that each point has a correspondent on the other mesh. In additive noise

situations, the exactness of this measurement is lower, because the original position of the

points is modified.

For the quantitative analysis, we have two clear result patterns - success and failure.

If an algorithm fails to reach alignment on an event, it does not matter whether the final

error obtained is big or not. Mean and standard deviation of the GT-RMS can be affected

by the magnitude of the error in failure cases, and this fact can lead to wrong conclusions

about the method performance. Therefore, the convergence rate can be better analyzed

through a success/failure histogram. As a global success rate, we count the number of

successful experiments through a threshold segmentation on the GT-RMS error and the

labeled error, whose limit values are set based on previous qualitative observations and

depend of the amount of additive noise and outliers.
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For events with fully overlapped point clouds, the threshold criterion considered is

simple on situations without additive noise: 95% of the correspondences must be correct,

and the GT-RMS error is at maximum 10−2. Outliers would not alter the GT-RMS

criterion neither the labeled error, so the threshold criterion stands the same.

As stated before, additive noise can affect the exactness of the error measurements.

The number of correct labeled correspondences tends to decay even on successful cases,

but it is still possible to distinguish success from failure by those thresholds. With additive

noise, we define a minimal labeled error of 100 correct correspondences combined with

a maximal RMS error of 0.1, so that it is highly unlikely that a failure event is not

identified by those threshold values. However, with high levels of additive noise, this

threshold segmentation becomes harder, and some successful events might be classified as

a failure. Table 4.2 shows the threshold values considered on our evaluation.

Situation Max GT-RMS Min labeled

Point clouds without additive noise 10−2 Np · 95%

Point clouds with additive noise 10−1 100 points

Table 4.2: Threshold values used for events with additive noise and outliers

On the partial overlapping events, both labeled error and RMS error were calculated

considering only the ground-truth correspondences of the overlapping region. We consider

an event successful when its GT-RMS error is lower than a threshold of 0.05 and it has

more than 90% of the points on the overlapping region with correct labeled correspon-

dences. The list of ground-truth correspondences is computed on the subset generation

algorithm.

Measurements of number of iterations were also taken from each method execution. In

Section 4.5, we discuss the variation on the number of iterations in function of the weight

step b of the ICP-CTSF.

4.3 RESULTS WITH ADDITIVE NOISE AND OUTLIERS

4.3.1 SETUP DETAILS

To characterize the behavior of our method with different parameter values, we separate

15 events of the first type for each value of angle, additive noise and outliers, performing a
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preliminary step with 36 combinations of method parameters, i.e. the size of the nearest

neighbor list (k), the ellipsoid angle αellip and the cut angle φmax. The parameter b is set

as 0.1 in this step, since this parameter is independent from the others, and its behavior

is known: bigger values reaches better results performing more iterations. Thus, we use

a value that is a midterm between performance and time spent.

In this preliminary step, the correspondences are always established using the CTSF-

based matching and the transformation is estimated using Horn quaternion method (HORN,

1987). The difference between the methods is in the information encoded on tensors that

are used as input for the ICP.

Table 4.3 shows the parameter configurations evaluated on the preliminary step.

k αellip φmax

1%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

k αellip φmax

5%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

k αellip φmax

25%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

k αellip φmax

50%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

k αellip φmax

75%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

k αellip φmax

100%

30◦ 36◦

30◦ 45◦

45◦ 45◦

30◦ 60◦

45◦ 60◦

60◦ 60◦

Table 4.3: Combination of parameters k, αellip and φmax.

Thereupon, we use the parameter values that presented better results and execute

more 30 events to compare the behavior of our method with other approaches. We raise

the value of the parameter b to 0.75 in order to achieve better results, since the amount

of methods to be executed is lower. In this step, we execute the original ICP and the

Sparse ICP (BOUAZIZ et al., 2013), with both matching functions based on CTSF and

Euclidean distance.

The first step of the experiment is not executed with the Sparse ICP because it would

yield a high computational cost. Yet, since all the parameters evaluated affect only the

tensor estimation, the correspondences provided by the CTSF are the same. Thus, pa-

rameters that yield better results on the Original ICP with the CTSF should also reach

better results on other methods using the CTSF.
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For the Sparse ICP, we use the norm parameter p = 0.4, which offers a good trade-off

between performance and robustness, according to its authors. The error sequence of the

Sparse ICP, unlike the original ICP, is not monotonically descent, so the standard method

stops when a fixed number of ICP iterations is made, whose default value is 100, or when

the error reaches below a stopping threshold. In order to adapt the CTSF weighting

scheme to the Sparse ICP method, for each weight value we execute 100 iterations of

the method or until the error is smaller than the threshold parameter. The decay of the

weight parameter is the same as described in Algorithm 1. The stopping threshold error

parameter is set to 10−5. The other parameters are the default parameters of the source

code made available by the authors5.

4.3.2 FIRST STEP - BEST PARAMETER SEARCH

In the first step of the experimental setup for outliers and additive noise we highlight the

parameter combination with the best overall performance for each point cloud, and some

of the observed tendencies. We perform 15 experiments for each configuration, although

ideally more results should be generated in order to obtain full statistical backup.

The results are grouped by the presence/absence of outliers and additive noise. The

last row is the overall success rate of the method. Since the experiments are paired, the

same conditions were tested for all the methods. Tables 4.4, 4.5 and 4.6 presents the

success rate for each parameter configuration on each point cloud, and Figures 4.6, 4.7,

4.8 and 4.9 show the average success rate per angle, grouping by neighborhood size and

angle parameter combinations for each point cloud. In each table, are highlighted the

best result for each group of events and the best overall result.

5Available at https://code.google.com/p/sparseicp/

https://code.google.com/p/sparseicp/
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Figure 4.6: Overall success by k and by angle combination for the Bunny.
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Figure 4.7: Overall success by k and by angle combination for the Happy Budha.
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Figure 4.8: Overall success by k and by angle combination for the Octopus.
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k = 100.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 96.94% 100.00% 91.94% 95.74%

45◦ 30◦ 100.00% 97.22% 100.00% 94.31% 96.85%

45◦ 45◦ 100.00% 99.17% 100.00% 96.39% 98.21%

60◦ 30◦ 100.00% 97.22% 100.00% 95.83% 97.53%

60◦ 45◦ 100.00% 100.00% 100.00% 97.78% 99.01%

60◦ 60◦ 100.00% 99.44% 100.00% 95.97% 98.09%

k = 75.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 100.00% 100.00% 98.75% 99.44%

45◦ 30◦ 100.00% 99.44% 100.00% 99.72% 99.75%

45◦ 45◦ 100.00% 100.00% 100.00% 100.00% 100.00%

60◦ 30◦ 100.00% 100.00% 100.00% 99.58% 99.81%

60◦ 45◦ 100.00% 100.00% 100.00% 99.86% 99.94%

60◦ 60◦ 100.00% 100.00% 100.00% 100.00% 100.00%

k = 50.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 100.00% 100.00% 99.17% 99.63%

45◦ 30◦ 100.00% 100.00% 100.00% 99.86% 99.94%

45◦ 45◦ 100.00% 100.00% 100.00% 99.03% 99.57%

60◦ 30◦ 100.00% 100.00% 100.00% 99.44% 99.75%

60◦ 45◦ 100.00% 100.00% 100.00% 99.72% 99.88%

60◦ 60◦ 100.00% 100.00% 100.00% 99.31% 99.69%

k = 25.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 99.72% 96.67% 90.00% 94.75%

45◦ 30◦ 100.00% 100.00% 98.33% 95.28% 97.53%

45◦ 45◦ 100.00% 99.44% 97.78% 90.00% 94.94%

60◦ 30◦ 100.00% 100.00% 99.17% 96.94% 98.46%

60◦ 45◦ 100.00% 99.72% 98.33% 91.11% 95.62%

60◦ 60◦ 100.00% 98.89% 96.94% 90.14% 94.69%

k = 5.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 88.61% 66.39% 56.25% 70.56%

45◦ 30◦ 100.00% 87.22% 65.83% 56.67% 70.31%

45◦ 45◦ 100.00% 90.28% 63.33% 55.28% 69.81%

60◦ 30◦ 100.00% 85.83% 67.22% 56.39% 70.19%

60◦ 45◦ 100.00% 88.89% 69.44% 55.97% 71.17%

60◦ 60◦ 100.00% 90.28% 66.11% 53.33% 69.57%

k = 1.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 75.83% 40.56% 35.69% 52.84%

45◦ 30◦ 100.00% 78.61% 46.39% 35.28% 54.57%

45◦ 45◦ 99.44% 76.94% 41.94% 35.14% 53.09%

60◦ 30◦ 100.00% 76.39% 47.50% 34.86% 54.14%

60◦ 45◦ 100.00% 77.50% 45.56% 36.94% 54.88%

60◦ 60◦ 100.00% 79.44% 48.61% 35.42% 55.31%

Table 4.4: Success on outliers and noise situations - Bunny. Darker cells indicate higher
convergence rates.
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k = 100.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 92.78% 99.72% 82.22% 90.43%

45◦ 30◦ 100.00% 86.11% 100.00% 77.08% 86.73%

45◦ 45◦ 100.00% 97.22% 97.22% 90.56% 94.57%

60◦ 30◦ 100.00% 88.61% 100.00% 77.92% 87.65%

60◦ 45◦ 100.00% 95.28% 99.17% 88.47% 93.64%

60◦ 60◦ 100.00% 99.17% 99.44% 93.61% 96.85%

k = 75.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 85.83% 99.72% 85.56% 90.37%

45◦ 30◦ 100.00% 90.83% 98.89% 86.53% 91.73%

45◦ 45◦ 100.00% 84.72% 96.11% 77.64% 85.80%

60◦ 30◦ 100.00% 88.06% 99.72% 83.75% 90.06%

60◦ 45◦ 100.00% 97.22% 94.44% 84.17% 91.11%

60◦ 60◦ 100.00% 94.72% 99.44% 83.75% 91.48%

k = 50.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 95.83% 96.94% 78.33% 88.77%

45◦ 30◦ 100.00% 96.94% 99.17% 82.22% 91.23%

45◦ 45◦ 100.00% 99.17% 98.89% 84.58% 92.72%

60◦ 30◦ 100.00% 98.06% 100.00% 86.67% 93.64%

60◦ 45◦ 100.00% 100.00% 96.39% 81.53% 90.99%

60◦ 60◦ 100.00% 100.00% 98.61% 87.92% 94.32%

k = 25.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 85.83% 70.28% 50.69% 68.33%

45◦ 30◦ 100.00% 88.89% 75.56% 54.17% 71.73%

45◦ 45◦ 100.00% 89.44% 73.61% 46.81% 68.15%

60◦ 30◦ 100.00% 87.78% 77.50% 57.08% 73.21%

60◦ 45◦ 100.00% 93.33% 77.50% 50.97% 71.73%

60◦ 60◦ 100.00% 86.11% 76.94% 50.00% 69.57%

k = 5.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 80.56% 45.00% 31.81% 53.15%

45◦ 30◦ 100.00% 84.17% 44.72% 29.58% 52.90%

45◦ 45◦ 100.00% 87.50% 45.83% 30.28% 54.20%

60◦ 30◦ 100.00% 85.28% 48.89% 33.61% 55.86%

60◦ 45◦ 100.00% 88.89% 44.72% 30.69% 54.44%

60◦ 60◦ 100.00% 90.56% 45.28% 31.81% 55.43%

k = 1.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 90.00% 31.39% 26.11% 49.69%

45◦ 30◦ 100.00% 86.67% 38.06% 26.53% 50.62%

45◦ 45◦ 100.00% 92.78% 33.61% 27.08% 51.23%

60◦ 30◦ 100.00% 86.67% 35.00% 26.81% 50.06%

60◦ 45◦ 100.00% 93.06% 36.11% 25.56% 51.17%

60◦ 60◦ 100.00% 95.28% 38.89% 29.03% 53.83%

Table 4.5: Success on outliers and noise situations - Happy. Darker cells indicate higher
convergence rates.
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k = 100.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 91.11% 100.00% 92.36% 94.63%

45◦ 30◦ 100.00% 86.94% 100.00% 92.78% 93.89%

45◦ 45◦ 100.00% 88.89% 100.00% 92.64% 94.26%

60◦ 30◦ 100.00% 90.28% 100.00% 92.50% 94.51%

60◦ 45◦ 100.00% 90.56% 100.00% 93.33% 94.94%

60◦ 60◦ 100.00% 91.39% 100.00% 91.39% 94.26%

k = 75.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 94.44% 98.33% 84.86% 91.67%

45◦ 30◦ 100.00% 93.33% 99.17% 89.44% 93.64%

45◦ 45◦ 100.00% 92.50% 95.56% 83.61% 90.06%

60◦ 30◦ 100.00% 92.78% 98.89% 90.56% 93.95%

60◦ 45◦ 100.00% 94.17% 99.44% 90.00% 94.14%

60◦ 60◦ 100.00% 93.06% 96.94% 84.58% 90.93%

k = 50.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 83.06% 83.61% 64.72% 76.91%

45◦ 30◦ 100.00% 89.72% 85.56% 71.11% 81.67%

45◦ 45◦ 100.00% 91.39% 83.33% 67.50% 79.94%

60◦ 30◦ 100.00% 90.83% 88.89% 76.39% 85.00%

60◦ 45◦ 100.00% 90.56% 83.61% 71.39% 81.54%

60◦ 60◦ 100.00% 93.33% 83.61% 71.53% 82.22%

k = 25.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 85.56% 74.44% 61.11% 73.83%

45◦ 30◦ 100.00% 87.50% 81.39% 65.56% 77.78%

45◦ 45◦ 100.00% 85.56% 75.56% 61.67% 74.32%

60◦ 30◦ 100.00% 90.83% 83.06% 68.89% 80.37%

60◦ 45◦ 100.00% 91.11% 79.44% 64.86% 77.84%

60◦ 60◦ 100.00% 90.83% 77.22% 65.42% 77.53%

k = 5.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 87.78% 58.33% 46.53% 64.26%

45◦ 30◦ 100.00% 88.33% 62.22% 49.58% 66.60%

45◦ 45◦ 100.00% 91.94% 60.83% 50.97% 67.72%

60◦ 30◦ 100.00% 90.56% 62.22% 49.44% 67.04%

60◦ 45◦ 100.00% 93.33% 58.61% 51.25% 67.65%

60◦ 60◦ 100.00% 93.61% 58.89% 52.36% 68.27%

k = 1.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 82.50% 36.94% 30.69% 51.30%

45◦ 30◦ 100.00% 85.28% 38.06% 31.39% 52.47%

45◦ 45◦ 100.00% 91.94% 39.44% 32.92% 54.94%

60◦ 30◦ 100.00% 84.72% 37.50% 33.06% 52.96%

60◦ 45◦ 100.00% 94.72% 37.50% 29.44% 53.58%

60◦ 60◦ 100.00% 95.28% 39.72% 32.27% 55.44%

Table 4.6: Success on outliers and noise situations - Octopus. Darker cells indicate higher
convergence rates.
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k = 100.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 79.44% 74.72% 63.61% 73.64%

45◦ 30◦ 100.00% 80.56% 75.56% 64.86% 74.63%

45◦ 45◦ 100.00% 79.72% 81.94% 63.75% 75.37%

60◦ 30◦ 100.00% 75.28% 80.28% 61.94% 73.21%

60◦ 45◦ 100.00% 84.44% 82.22% 65.14% 77.10%

60◦ 60◦ 100.00% 91.67% 86.11% 73.06% 83.09%

k = 75.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 85.28% 73.89% 68.06% 76.73%

45◦ 30◦ 100.00% 90.56% 83.33% 70.97% 81.30%

45◦ 45◦ 100.00% 85.83% 73.89% 64.03% 75.06%

60◦ 30◦ 100.00% 93.06% 83.89% 69.58% 81.36%

60◦ 45◦ 100.00% 85.56% 69.44% 63.61% 73.83%

60◦ 60◦ 100.00% 89.44% 79.72% 66.25% 78.15%

k = 50.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 77.78% 77.50% 56.11% 70.56%

45◦ 30◦ 100.00% 81.39% 80.56% 58.19% 72.96%

45◦ 45◦ 100.00% 85.00% 83.06% 61.67% 75.86%

60◦ 30◦ 100.00% 86.11% 79.44% 65.56% 77.04%

60◦ 45◦ 100.00% 82.22% 81.39% 62.64% 75.31%

60◦ 60◦ 100.00% 91.11% 82.50% 65.14% 78.64%

k = 25.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 80.28% 57.50% 50.42% 64.14%

45◦ 30◦ 100.00% 87.22% 60.83% 52.92% 67.53%

45◦ 45◦ 100.00% 93.33% 67.50% 58.75% 72.96%

60◦ 30◦ 100.00% 86.94% 62.50% 53.61% 68.15%

60◦ 45◦ 100.00% 96.39% 68.89% 57.78% 73.52%

60◦ 60◦ 100.00% 95.56% 72.22% 59.72% 74.94%

k = 5.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 80.00% 49.44% 41.67% 58.40%

45◦ 30◦ 100.00% 79.44% 49.72% 39.72% 57.47%

45◦ 45◦ 100.00% 78.33% 49.72% 42.50% 58.46%

60◦ 30◦ 100.00% 83.33% 45.83% 41.25% 58.15%

60◦ 45◦ 100.00% 81.39% 49.72% 45.00% 60.25%

60◦ 60◦ 100.00% 81.11% 50.28% 42.64% 59.26%

k = 1.00%

αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

36◦ 30◦ 100.00% 83.89% 41.39% 40.83% 57.10%

45◦ 30◦ 100.00% 81.11% 45.28% 43.75% 58.64%

45◦ 45◦ 100.00% 85.56% 43.61% 37.78% 56.60%

60◦ 30◦ 100.00% 77.22% 41.94% 41.53% 56.05%

60◦ 45◦ 100.00% 86.39% 45.28% 40.28% 58.27%

60◦ 60◦ 100.00% 87.22% 47.50% 40.42% 59.01%

Table 4.7: Success on outliers and noise situations - Genus. Darker cells indicate higher
convergence rates.
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Figure 4.9: Overall success by k and by angle combination for the Genus.

In general, for all point clouds, higher values of k lead to better results with outliers.

It is intuitive that the influence of an outlier will be attenuated as the neighborhood gets

larger. Although larger neighborhoods include either outliers and inliers, the coplanarity

induced by the second step of the tensor estimation process makes the tensors encode

effectively the surface geometry and attenuates the influence yielded by neighbors mis-

aligned to the tangent plane. This way, tensors with higher values of k are more robust

to the presence of outliers, and conversely achieve better results on the experiment.

For additive noise, the behavior was different. Additive noise affects directly the

structuring of the points on the surface. Therefore, tensors are likely to lose their planarity

with the presence of additive noise and the precision of the estimation becomes lower,

regardless of the size of the neighborhood. In most cases, the performance was similar

for all values of k, and even smaller values like k = 1% reached consistent results in cases

with only additive noise. However, since those values are sensitive to outliers, the overall

performance is worse, and bigger values of k are recommended for more robustness.

The angle parameters αellip and φmax have only a slight influence on the results, such

that there is no dominant parameter combination. As discussed in Subsections 2.2.4.3

and 2.2.4.4, higher values of φmax yield smoother surfaces, while smaller values allow

more details at cost of robustness to outliers. The parameter αellip controls the coplanar

influence constraint, in which smaller values give more influence to coplanar points. A

slight trend is observed for cases with additive noise, in which methods with αellip =

60◦ perform better in general. In fact, point clouds with additive noise lose their local

planar structure and the effectiveness of the coplanar constraint tends to be lower. The
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plane estimated is, in most cases, imprecise, and points that should have a significant

contribution can be wrongly penalized. Therefore, the use of bigger angles raise the

probability of encoding correctly the local geometry, specially in additive noise cases.

The graphics on Figures 4.6, 4.7, 4.8 and 4.9 show that in fact the method is more

sensitive to variations on the parameter k, especially for higher angle displacements.

For the Bunny, the graphics show that the overall performance of the methods with

k ≥ 25% is above 90% for all αellip and φmax values. As stated on Section 4.1, the Bunny

is mostly composed of low curvature regions, but has the feet and the ears with high

curvature. Due to absence of symmetry, the correspondences yielded by the CTSF were

accurate, with a low amount of false-positives, and therefore it was an easier point cloud,

with higher convergence rates.

More specifically, k = 75% obtained better results, above 99% for all parameter com-

binations. For k = 100%, the convergence rate for additive noise was slightly lower. The

overall performance of small values of k was negatively impacted by outliers.

The chosen parameter combination for the second step was k = 75%, αellip = 60◦,

φmax = 60◦, that yielded success in 100% of the events. However, the choice could either

be for k = 75%, αellip = 45◦, φmax = 45◦, that also reached convergence in all cases.

On the Happy Budha point cloud, high convergence rates were reached for k ≥ 50%.

Although the performance in cases with only additive noise was not impacted, lower values

of k had problems dealing with outliers. For instance, k = 1%, αellip = 60◦, φmax = 60◦

converged in 95.28% of cases with only additive noise, but the same parameter combination

reaches 29.03% combining noise and outliers.

Overall, the best value of k for the Happy Budha was k = 100%. If compared to the

results of the Bunny, k = 25% presented lower convergence rates, which means that in

order to correctly represent the geometry of the point cloud more points are needed on

the Happy Budha. The graphics show that k = 50% obtained better results with higher

angles, but k = 75% and k = 100% obtained better results for lower angles.

For the angles combination, αellip = 60◦ and φmax = 60◦ presented a little higher

convergence rate for higher angles, if compared to other angles. The parameter combina-

tion chosen was k = 100%, αellip = 60◦, φmax = 60◦, with an overall convergence rate of

96.85%.

On the Octopus, the differences of performance between the values of k were more
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distinguishable in cases with outliers, in which bigger values of k reached better results.

For cases with only additive noise, the performance was similar between the different

parameters. The graphics illustrate the levels of performance for each k value and the

little impact of the parameters αellip and φmax on the result. The combination chosen was

k = 100%, αellip = 60◦, φmax = 45◦, with overall performance of 94.94%.

The Genus was the hardest point cloud of the dataset. Although the method is capable

to recover the alignment for all original cases, the performance was strongly affected by

outliers, impacting negatively the overall success rates. The graphics show a much higher

decay for higher angles, and this is explained by the high number of local optima caused

by the symmetry.

The performance differences between the different angle values for αellip and φmax are

higher. For outliers, αellip = 60◦, φmax = 60◦ was the better setup in smaller k’s and in

k = 100%. Better results with additive noise were reached for k = 25%, with 96.39%

of success rate in the best case, but the performance was counterbalanced by the rates

with outliers. The best overall success rate was 83.09%, with k = 100%, αellip = 60◦,

φmax = 60◦. This combination of parameters performed particularly well with outliers,

reaching 86.11% with only outliers and 73.09% with both outliers and noise, smaller rates

if compared to the results on the other point clouds.

4.3.3 SECOND STEP - BEST RESULT SEARCH

In this step, we used the best parameters obtained on the first step for more 30 executions

on each point cloud. The methods evaluated were the Original ICP and the Sparse ICP,

with matching functions based on the CTSF and Euclidean distance. The value of b was

raised to 0.75, in order to enhance the results of the method. This also increases the

execution time of the method, and the time spent on most executions of the Sparse ICP

combined with the CTSF was very high, if compared to other methods.

For this step, we detail the success rate for each level of outlier and additive noise.

The tables show that the success rates of the CTSF methods are effectively enhanced for

high angles. This was expected, since such results are similar to the ones obtained on

the first step for this parameter combination, and fine methods were not designed to cope

with bad initialization situations. However, with small angles (up to 30◦) the convergence

rates are reasonable for the original methods with Euclidean distance-based matching.
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This way, the results obtained are coherent, and with the proper coarse initialization the

methods should be able to reach better convergence rates.

The Sparse ICP with the CTSF obtained poor convergence rates particularly on the

Genus point cloud, which was pointed out in the first step as the hardest point cloud of

the dataset. The graphic shows that the Sparse ICP was affected by high angles, probably

because of the number of a local optima easily reachable from angles bigger than 90◦.

ICP 0.00% 5.00% 20.00% Overall
σ = 0.00 29.44% 29.44% 21.11% 26.67%

σ = 0.01 16.94% 21.94% 14.17% 17.69%
σ = 0.05 16.67% 18.61% 13.06% 16.11%
Overall 21.02% 23.33% 16.11% 20.15%

Sparse ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 44.44% 45.56% 40.56% 43.52%

σ = 0.01 41.11% 40.28% 35.28% 38.89%
σ = 0.05 32.78% 33.61% 28.89% 31.76%

Overall 39.44% 39.81% 34.91% 38.06%

ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.72% 100.00% 99.91%

σ = 0.01 100.00% 100.00% 100.00% 100.00%
σ = 0.05 100.00% 100.00% 100.00% 100.00%
Overall 100.00% 99.91% 100.00% 99.97%

Sparse ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 95.00% 100.00% 98.33%

σ = 0.01 100.00% 100.00% 100.00% 100.00%
σ = 0.05 100.00% 100.00% 98.33% 99.44%

Overall 100.00% 98.33% 99.44% 99.26%

Table 4.8: Success per additive noise and outlier level, second step - Bunny. Darker cells
indicate higher convergence rates.
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Figure 4.10: Overall success by method on the Bunny.
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ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 40.00% 40.56% 33.06% 37.87%

σ = 0.01 22.50% 30.00% 21.39% 24.63%

σ = 0.05 33.61% 36.39% 31.39% 33.80%

Overall 32.04% 35.65% 28.61% 32.10%

Sparse ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 48.06% 49.17% 33.33% 43.52%

σ = 0.01 47.22% 47.22% 33.61% 42.69%

σ = 0.05 41.39% 43.06% 36.11% 40.19%

Overall 45.56% 46.48% 34.35% 42.13%

ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 100.00% 100.00% 100.00%

σ = 0.01 100.00% 100.00% 95.28% 98.43%

σ = 0.05 99.44% 98.61% 92.50% 96.85%

Overall 99.81% 99.54% 95.93% 98.43%

Sparse ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 86.94% 75.00% 87.31%

σ = 0.01 100.00% 98.89% 76.67% 91.85%

σ = 0.05 91.11% 87.22% 73.33% 83.89%

Overall 97.04% 91.02% 75.00% 87.69%

Table 4.9: Success per additive noise and outlier level - Happy Budha. Darker cells
indicate higher convergence rates.
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Figure 4.11: Overall success by method on the Happy Budha.
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ICP 0.00% 5.00% 20.00% Overall
σ = 0.00 14.44% 16.94% 8.89% 13.43%
σ = 0.01 11.39% 14.72% 6.11% 10.74%

σ = 0.05 9.72% 14.17% 6.11% 10.00%
Overall 11.85% 15.28% 7.04% 11.39%

Sparse ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 26.39% 28.33% 29.44% 28.06%
σ = 0.01 26.11% 23.06% 26.39% 25.19%
σ = 0.05 20.00% 24.44% 25.28% 23.24%

Overall 24.17% 25.28% 27.04% 25.49%

ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 100.00% 100.00% 100.00%
σ = 0.01 96.94% 100.00% 100.00% 98.98%
σ = 0.05 90.56% 98.32% 94.66% 94.50%

Overall 95.83% 99.44% 98.23% 97.83%

Sparse ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.17% 95.28% 98.15%

σ = 0.01 100.00% 98.61% 92.44% 97.03%
σ = 0.05 94.17% 91.94% 89.66% 91.93%

Overall 98.06% 96.57% 92.47% 95.70%

Table 4.10: Success per additive noise and outlier level - Octopus. Darker cells indicate
higher convergence rates.
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Figure 4.12: Overall success by method on the Octopus.
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ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 36.94% 36.11% 34.72% 35.93%

σ = 0.01 30.56% 32.50% 23.89% 28.98%

σ = 0.05 31.01% 29.72% 31.94% 30.89%

Overall 32.84% 32.78% 30.19% 31.93%

Sparse ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 50.83% 51.94% 50.28% 51.02%

σ = 0.01 45.83% 48.06% 49.17% 47.69%

σ = 0.05 39.44% 39.44% 43.06% 40.65%

Overall 45.37% 46.48% 47.50% 46.45%

ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.17% 82.78% 93.98%

σ = 0.01 99.44% 95.83% 76.67% 90.65%

σ = 0.05 90.25% 81.11% 65.28% 78.87%

Overall 96.57% 92.04% 74.91% 87.84%

Sparse ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 99.17% 63.31% 56.39% 72.98%

σ = 0.01 71.39% 63.33% 58.31% 64.37%

σ = 0.05 65.27% 61.11% 55.83% 60.72%

Overall 78.64% 62.58% 56.84% 66.03%

Table 4.11: Success per additive noise and outlier level - Genus. Darker cells indicate
higher convergence rates.
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Figure 4.13: Overall success by method on the Genus.
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4.4 RESULTS WITH PARTIAL OVERLAPPING

In this type of event, we evaluate 30 events for each parameter configuration of angle and

overlapping/non-overlapping amount. The methods chosen were the Sparse ICP method,

the original ICP, and its trimmed version, using match functions based on the Euclidean

distance and on the CTSF. As stated before, it is known that the original ICP formulation

is not proper for partially overlapped point clouds, therefore its performance tends to be

poor.

In this case, we chose not to do the preliminary step and use the values of αellip = 45◦

and φmax = 45◦, due to the high computational time that would be spent.

Specifically on partially overlapped point clouds, only correspondences between points

over the common region are considered correct. The effectiveness of the CTSF is possibly

lower in this case, because the neighborhood of the points on the overlapping region can

include points outside of this region, generating different tensors for each point cloud.

Figure 4.14 illustrates this situation.

(a) 5 neighbors (b) 10 neighbors (c) 15 neighbors

Figure 4.14: Example of nearest neighbors with partial overlapping point clouds. In this
case, the blue points are inside the overlapping region, while red and green points are
unique regions of each point cloud. Note that as the number of neighbor gets larger the
neighborhoods of the two point clouds consider points outside the overlapping region,
which yield different tensors.

It is fair to conclude that as the value of k increases, the difference between the regions

represented by the tensors would increase, since points outside of the overlapping region

have a bigger chance of being used in the computation of the tensor. Conversely, smaller
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values of k have a tendency to provide similar tensors between correspondences on the

overlapping region, since the number of different neighbors outside the overlapping region

tends to be smaller and limited to a boundary of the region. Theoretically, those tensors

can be identified more easily by the method. If the size of the neighborhood is too small,

however, the information cast on the tensors can be insufficient to represent the local

geometry. We test four values of k: 15%, 10%, 5% and 1% of the points.

The Trimmed ICP was included on the evaluation of this type of event since it is a

classical strategy to deal with partial overlapping point sets. For this method, we fixed the

amount of discarded points in 10% of the number of points of the mesh, although ideally

the amount should be proportional to the overlapping percentage. In practical situations,

the amount of overlapping between the point sets usually is unknown. Therefore, this

value is set as an intermediate value.

The Tables 4.12, 4.13, 4.10, 4.15 show the percentual convergence rate per overlapping

and non-overlapping amount, and the graphics show the general convergence per angle on

the four meshes.

α 12.5%

β 75.0% 50.0% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 91.39% 95.00% 16.39% 0.00%

Trimmed ICP CTSF k = 10% 95.00% 95.83% 16.39% 0.00%

Trimmed ICP CTSF k = 5% 93.89% 89.44% 19.72% 0.28%

Trimmed ICP CTSF k = 1% 75.83% 78.06% 21.94% 0.28%

Trimmed ICP 18.61% 16.67% 1.67% 0.00%

ICP CTSF k = 15% 99.44% 38.61% 3.61% 0.00%

ICP CTSF k = 10% 99.72% 39.17% 4.44% 0.00%

ICP CTSF k = 5% 98.89% 38.61% 4.44% 0.00%

ICP CTSF k = 1% 91.39% 36.94% 4.72% 0.00%

ICP 25.28% 7.50% 0.56% 0.00%

Sparse ICP CTSF k = 15% 93.89% 94.72% 72.22% 26.11%

Sparse ICP CTSF k = 10% 95.56% 96.94% 73.33% 27.50%

Sparse ICP CTSF k = 5% 95.56% 93.33% 75.56% 33.89%

Sparse ICP CTSF k = 1% 93.33% 93.89% 71.31% 32.22%

Sparse ICP 41.67% 29.44% 13.65% 6.11%

α 25.0%

β 50.0% 37.5% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 45.83% 4.72% 0.28% 0.00%

Trimmed ICP CTSF k = 10% 50.28% 5.28% 0.28% 0.00%

Trimmed ICP CTSF k = 5% 50.00% 5.56% 0.00% 0.00%

Trimmed ICP CTSF k = 1% 44.44% 8.06% 0.00% 0.00%

Trimmed ICP 6.39% 1.39% 0.00% 0.00%

ICP CTSF k = 15% 8.33% 0.28% 0.00% 0.00%

ICP CTSF k = 10% 9.17% 0.28% 0.00% 0.00%

ICP CTSF k = 5% 8.61% 0.00% 0.00% 0.00%

ICP CTSF k = 1% 8.33% 0.56% 0.00% 0.00%

ICP 1.11% 0.00% 0.00% 0.00%

Sparse ICP CTSF k = 15% 84.12% 73.06% 50.70% 0.00%

Sparse ICP CTSF k = 10% 87.19% 80.78% 56.55% 0.00%

Sparse ICP CTSF k = 5% 89.69% 78.33% 55.00% 0.00%

Sparse ICP CTSF k = 1% 89.94% 75.21% 58.89% 0.00%

Sparse ICP 29.05% 17.83% 9.44% 0.00%

Table 4.12: Success per overlapping and nonoverlapping level - Bunny. Darker cells
indicate higher convergence rates.
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α 12.5%

β 75.0% 50.0% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 76.39% 80.00% 7.50% 0.00%

Trimmed ICP CTSF k = 10% 93.06% 85.00% 7.78% 0.00%

Trimmed ICP CTSF k = 5% 95.28% 88.33% 11.39% 0.00%

Trimmed ICP CTSF k = 1% 99.17% 93.33% 15.83% 0.00%

Trimmed ICP 31.11% 20.28% 1.39% 0.00%

ICP CTSF k = 15% 94.44% 10.83% 0.00% 0.00%

ICP CTSF k = 10% 95.56% 10.56% 0.28% 0.00%

ICP CTSF k = 5% 96.94% 10.83% 0.28% 0.00%

ICP CTSF k = 1% 96.94% 11.39% 0.56% 0.00%

ICP 36.39% 1.67% 0.00% 0.00%

Sparse ICP CTSF k = 15% 78.21% 82.45% 48.75% 1.39%

Sparse ICP CTSF k = 10% 89.89% 88.02% 53.20% 2.50%

Sparse ICP CTSF k = 5% 92.66% 91.34% 57.38% 6.94%

Sparse ICP CTSF k = 1% 94.25% 94.40% 55.99% 9.44%

Sparse ICP 46.57% 34.73% 10.86% 1.67%

α 25.0%

β 50.0% 37.5% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 6.67% 0.28% 0.00% 0.00%

Trimmed ICP CTSF k = 10% 6.39% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 5% 8.33% 0.28% 0.00% 0.00%

Trimmed ICP CTSF k = 1% 9.72% 0.28% 0.00% 0.00%

Trimmed ICP 1.67% 0.00% 0.00% 0.00%

ICP CTSF k = 15% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 10% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 5% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 1% 0.00% 0.00% 0.00% 0.00%

ICP 0.00% 0.00% 0.00% 0.00%

Sparse ICP CTSF k = 15% 73.45% 53.61% 21.39% 0.00%

Sparse ICP CTSF k = 10% 77.12% 56.67% 27.78% 0.00%

Sparse ICP CTSF k = 5% 89.17% 64.72% 32.22% 0.00%

Sparse ICP CTSF k = 1% 91.27% 71.94% 39.17% 0.00%

Sparse ICP 33.61% 20.28% 7.22% 0.00%

Table 4.13: Success per overlapping and nonoverlapping level - Happy Buddha. Darker
cells indicate higher convergence rates.

α 12.5%

β 75.0% 50.0% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 81.11% 58.06% 2.22% 0.00%

Trimmed ICP CTSF k = 10% 87.78% 57.78% 2.22% 0.00%

Trimmed ICP CTSF k = 5% 90.28% 63.61% 2.50% 0.00%

Trimmed ICP CTSF k = 1% 92.78% 75.28% 3.89% 0.00%

Trimmed ICP 14.17% 8.33% 0.56% 0.00%

ICP CTSF k = 15% 5.28% 1.67% 0.00% 0.00%

ICP CTSF k = 10% 5.00% 2.22% 0.28% 0.00%

ICP CTSF k = 5% 9.44% 2.22% 0.00% 0.00%

ICP CTSF k = 1% 12.78% 1.94% 0.28% 0.00%

ICP 1.39% 0.00% 0.00% 0.00%

Sparse ICP CTSF k = 15% 98.33% 74.72% 25.83% 2.50%

Sparse ICP CTSF k = 10% 99.17% 72.50% 23.89% 3.06%

Sparse ICP CTSF k = 5% 99.44% 75.56% 31.67% 2.22%

Sparse ICP CTSF k = 1% 99.72% 79.17% 28.61% 3.06%

Sparse ICP 26.67% 23.33% 10.28% 0.83%

α 25.0%

β 50.0% 37.5% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 4.44% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 10% 4.44% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 5% 3.89% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 1% 3.61% 0.00% 0.00% 0.00%

Trimmed ICP 0.28% 0.00% 0.00% 0.00%

ICP CTSF k = 15% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 10% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 5% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 1% 0.00% 0.00% 0.00% 0.00%

ICP 0.00% 0.00% 0.00% 0.00%

Sparse ICP CTSF k = 15% 62.78% 42.50% 19.72% 0.00%

Sparse ICP CTSF k = 10% 73.61% 43.61% 21.94% 0.00%

Sparse ICP CTSF k = 5% 72.50% 49.44% 24.15% 0.00%

Sparse ICP CTSF k = 1% 83.33% 76.39% 36.54% 0.00%

Sparse ICP 20.56% 20.00% 10.83% 0.00%

Table 4.14: Success per overlapping and nonoverlapping level - Octopus. Darker cells
indicate higher convergence rates.
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α 12.5%

β 75.0% 50.0% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 77.22% 77.78% 15.56% 0.28%

Trimmed ICP CTSF k = 10% 82.50% 81.67% 18.33% 0.28%

Trimmed ICP CTSF k = 5% 83.06% 84.17% 22.50% 0.28%

Trimmed ICP CTSF k = 1% 83.89% 83.61% 25.56% 0.28%

Trimmed ICP 27.22% 19.17% 3.06% 0.00%

ICP CTSF k = 15% 42.22% 17.50% 1.11% 0.00%

ICP CTSF k = 10% 46.11% 19.44% 0.83% 0.00%

ICP CTSF k = 5% 51.39% 19.17% 1.11% 0.00%

ICP CTSF k = 1% 57.50% 18.89% 2.22% 0.00%

ICP 12.78% 4.17% 0.28% 0.00%

Sparse ICP CTSF k = 15% 75.83% 76.94% 52.50% 2.50%

Sparse ICP CTSF k = 10% 85.56% 83.61% 56.11% 3.06%

Sparse ICP CTSF k = 5% 90.28% 88.06% 61.11% 7.78%

Sparse ICP CTSF k = 1% 91.67% 83.89% 61.67% 13.33%

Sparse ICP 47.50% 38.06% 19.17% 3.89%

α 25.0%

β 50.0% 37.5% 25.0% 12.5%

Trimmed ICP CTSF k = 15% 12.50% 0.28% 0.00% 0.00%

Trimmed ICP CTSF k = 10% 15.00% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 5% 15.28% 0.00% 0.00% 0.00%

Trimmed ICP CTSF k = 1% 17.22% 0.00% 0.00% 0.00%

Trimmed ICP 5.28% 0.00% 0.00% 0.00%

ICP CTSF k = 15% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 10% 0.28% 0.00% 0.00% 0.00%

ICP CTSF k = 5% 0.00% 0.00% 0.00% 0.00%

ICP CTSF k = 1% 0.00% 0.00% 0.00% 0.00%

ICP 0.28% 0.00% 0.00% 0.00%

Sparse ICP CTSF k = 15% 71.11% 66.94% 26.11% 0.00%

Sparse ICP CTSF k = 10% 79.72% 75.28% 34.72% 0.00%

Sparse ICP CTSF k = 5% 86.11% 83.89% 43.06% 0.00%

Sparse ICP CTSF k = 1% 88.89% 82.78% 53.33% 0.00%

Sparse ICP 38.06% 28.89% 11.67% 0.00%

Table 4.15: Success per overlapping and nonoverlapping level - Genus. Darker cells indi-
cate higher convergence rates.
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Figure 4.15: Convergence per angle on the Bunny, with all partial overlapping levels.
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Figure 4.16: Convergence per angle on the Happy Budha, with all partial overlapping
levels.
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Figure 4.17: Convergence per angle on the Octopus, with all partial overlapping levels.
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Figure 4.18: Convergence per angle on the Genus, with all partial overlapping levels.

In this experiment, it is clear that the CTSF enhances the convergence of the ICP

also in partial overlapping situations. In the large majority of situations, the CTSF-based

methods obtained better results than the original methods. However, the success rates

were nowhere near the ones obtained on full overlap events, and there is a substantial

decay as the proportion between the number points over the overlapping region and over

the non-overlapping region gets smaller.

The Sparse ICP with the CTSF presented the best overall performance with partial

overlapping. All the CTSF-based methods presented a slight variation with relation to the

rotation angle, which indicates that the CTSF is effective for high angle displacements even

in partial overlapping situations, yielding approximately the same convergence probability

for all angle values. However, most of the parameter combinations for partial overlapping

had proven themselves as hard scenarios, with very low convergence rates. The Sparse

ICP had an advantage in comparison to the Trimmed ICP in this aspect, reaching much

better rates particularly in cases where α = 25%, for which the Trimmed ICP was hardly

successful. The original ICP method combined with the CTSF achieved good results for

α = 12.5% and β = 75% on the Bunny and Happy Budha, but in general performed

poorly.
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Analyzing the variation of the parameter k, smaller values of k presented slightly

better results, as expected, with the exception of the Bunny. This tendency is more easily

observed on cases with a low overlapping amount. The reduction of the number of points

on the overlapping region and the increasement of the points on the non-overlapping region

significantly impacted both Sparse ICP-CTSF and Trimmed ICP-CTSF methods. On

Tables 4.12, 4.13, 4.10 and 4.15, we observe that the convergence rates were particularly

lower when β = 12.5%, and null in cases where β = 12.5% and α = 25%. Besides the

natural difficulty of events with small overlapping regions, the CTSF also loses part of

its accuracy in these cases, because the neighborhood used for the tensor estimation is

hardly similar on points on both meshes.

4.5 ADDITIONAL RESULTS

In this section, we show qualitative results of alignment situations addressed by our

dataset, and discuss the effect of the parameter b (weight step) of the iterative coarse-to-

fine scheme used on the ICP-CTSF.

4.5.1 ITERATIVE COARSE-TO-FINE SCHEME

To show the importance of the coarse-to-fine scheme, we vary the parameter b of the

weight combination between the CTSF and the matching step on the Genus, which is the

point cloud that obtained the worst results on full overlapping events. The same events

were executed for b = 0, 0.001, 0.01, 0.3, 0.5, 0.75 and 0.9, and Tables 4.16 and 4.17 shows

the results for the same events considered on the first step of the evaluation. When b = 0,

we perform a minimization totally based on the CTSF, followed by the original ICP. The

other parameters used are the ones that reached better results: k = 100%, αellip = 60◦

and φmax = 60◦.

Table 4.16 shows that the weight variation in fact has influence on the results of the

method, and better results are obtained with bigger values of b. The result with the bigger

value of b (b = 0.9) is enhanced by approximately 5% when compared to the original result,

with b = 0.1. The convergence rate is also reduced with smaller weights, and for b = 0

the rate is lower in all cases. In cases with outliers, particularly, the convergence rate was

nearly null. In some events, the coarse alignment is executed, but the fine adjustment
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Weight step (b) Clean Noise Outliers
Noise +
outliers

Overall

0.9 100.00% 94.72% 90.83% 81.81% 88.70%

0.75 100.00% 93.06% 91.39% 80.00% 87.65%

0.5 100.00% 93.06% 90.00% 76.94% 85.99%

0.3 100.00% 91.94% 88.33% 75.56% 84.75%

0.1 100.00% 91.67% 86.11% 73.06% 83.09%

0.01 100.00% 90.00% 83.61% 71.39% 81.42%

0.001 100.00% 88.89% 81.67% 68.47% 79.44%

0.0 100.00% 0.56% 59.72% 35.14% 40.12%

Table 4.16: Success per weight step - Genus

Weight step (b) Clean Noise Outliers
Noise +
outliers

Overall

0.9 227.70 598.91 621.81 659.35 589.61

0.75 89.09 248.33 255.37 291.58 251.42

0.5 41.68 117.40 127.38 155.52 128.15

0.3 28.04 77.03 88.99 111.78 89.69

0.1 18.63 50.22 63.26 81.20 63.38

0.01 13.31 35.20 50.06 61.77 47.88

0.001 11.49 32.14 42.84 57.83 43.64

0.0 6.99 7.00 6.36 5.99 6.41

Table 4.17: Average number of iterations per weight step - Genus

between the clouds was insufficient to consider the event successful.

However, the number of iterations grows exponentially when the weight step gets closer

to 1, as confirmed by Table 4.17. Therefore, this result comproves the tradeoff between

chances of convergence and number of iterations associated with this parameter.

4.5.2 QUALITATIVE RESULTS

Figures 4.21, 4.23 and 4.19 show examples of successful alignment situations respectively

with partial overlapping and additive noise. In all figures, the two point clouds are red

and black. When the point have a correct correspondence, its color is changed to green.

Figures 4.22, 4.24 and 4.20 show the variation of the RMS error, in red, and the ground-

truth RMS error (GT-RMS), in green, throughout the iterations. Points marked in the

x-axis indicate the iterations in which the weight is changed.
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(a) Iteration 1
RMS = 0,520668
GT-RMS = 0,449581

(b) Iteration 2
RMS = 0,520668
GT-RMS = 0,449581

(c) Iteration 7
RMS = 0,330357
GT-RMS = 0,269590

(d) Iteration 20
RMS = 0,113371
GT-RMS = 0,165358

(e) Iteration 40
RMS = 0,060175
GT-RMS = 0,098581

(f) Iteration 45
RMS = 0,056042
GT-RMS = 0,077697

(g) Iteration 68
RMS = 0,036350
GT-RMS = 0,024591

(h) Iteration 92
RMS = 0,006032
GT-RMS = 0,000850

Figure 4.19: Convergence for the Genus, partial overlapping with α = 75%, β = 12.5%,
rotation of 105◦. Method: Trimmed ICP+CTSF, with k = 1%, αellip = 60◦, φmax = 45◦.
Green points indicate correct correspondences.
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Figure 4.20: RMS and GT-RMS errors per iteration on the Genus. Between iterations
10 and 50, the GT-RMS is higher than the RMS. This can indicate that the method was
following a wrong local minimum but recovered itself, yielding a successful result.
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(a) Iteration 1
RMS = 1.561111, GT-RMS = 1.451593

(b) Iteration 2
RMS = 0.626960, GT-RMS = 0.326479

(c) Iteration 3
RMS = 0.528149, GT-RMS = 0.088650

(d) Iteration 92
RMS = 0.041573, GT-RMS = 0.070954

Figure 4.21: Convergence for the Bunny on a case with outliers and noise, original ICP
with CTSF, angle of 180◦, with 20% of outliers and δ = 0.05, k = 100%, αellip = 60◦

and φmax = 45◦. Note that in (c) the point clouds are already have the same orientation.
Green points indicate correct correspondences.
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Figure 4.22: RMS and GT-RMS errors per iteration on the Bunny example. In this case,
the alignment is reached in the first iterations, and only slightly enhanced with smaller
weights.
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(a) Iteration 1
RMS = 1.093765
GT-RMS = 1.028373

(b) Iteration 2
RMS = 0.921383

GT-RMS = 0.850880

(c) Iteration 5
RMS = 0.397163
GT-RMS = 0.080367

(d) Iteration 13
RMS = 0.393860
GT-RMS = 0.068015

(e) Iteration 18
RMS = 0.245980
GT-RMS = 0.029073

(f) Iteration 26
RMS = 0.113790
GT-RMS = 0.011223

(g) Iteration 32
RMS = 0.047715
GT-RMS = 0.003969

(h) Iteration 55
RMS = 0.027734
GT-RMS = 0.01144

Figure 4.23: Sequence of convergence for the Octopus on a case with outliers, original ICP
with CTSF, angle of 105◦, with 20% of outliers, k = 100%, αellip = 60◦ and φmax = 45◦.
Green points indicate correct correspondences.
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Figure 4.24: RMS and GT-RMS errors per iteration on the Octopus example. Note that
the effect of the weight changes in the errors are well defined and the method continues
to follow the same correct optima since its first iterations.
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5 CONCLUSION

This work presents a new method for rigid registration, based on tensor eigenvalues. This

is the first rigid registration approach that treats covariance matrices as second-order ten-

sors. The tensors are estimated by a two-step voting process using 3D tensor structuring

elements, aiming to infer how likely their neighborhood form a surface. In order to com-

pare tensors, we define the CTSF, a similarity factor based on tensor invariant features.

This factor is used on the ICP matching step in order to enhance the quality of correspon-

dences. A heuristic weighting strategy between the Euclidean distance and the CTSF is

proposed to guide the solution from a coarse alignment, based on tensor dissimilarity, to

fine, based on Euclidean distance. This enhances the convergence probability, specially on

wider initial angle situations. Since only the matching step is modified, our approach can

be used alongside many minimization methods. The major drawback is the preprocessing

time needed for the tensor estimation, specially on large point sets.

The analysis made on our dataset is quantitative and considers only the success or

failure of each event. On that sense, our experiments reveal that the convergence rate of

the CTSF methods is enhanced in situations of wider angles, additive noise and outliers

when compared to their respective non-CTSF versions. On partial overlapping situations,

the CTSF was capable of enhancing the convergence of the Trimmed ICP and the Sparse

ICP in general. The wide angle registration of partial overlapping surfaces makes easier

the task of 3D object reconstruction, thus the importance of such results.

The main parameter added to the ICP is the size k of the neighborhood of each

point, which defines the extent of the structuring elements in the tensor estimation. It is

important to note that no input point is discarded at any time during the process. Our

method takes into account the information of all input points regardless they are inliers

or outliers.

As future works, the CTSF can be used as a dissimilarity factor between any second-

order tensors and applied in tasks other than rigid registration. Since our heuristic weights

Euclidean distance and dissimilarity between tensors, any covariance matrix that repre-

sents locally the surface can be used instead of ours. Other steps and variants of the ICP

can also be adapted to use the CTSF to enhance the alignment, such as the minimization
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and the selection of points. Our tensor estimation step can be optimized in terms of

speed, by computing the nearest neighbors list faster. It is also possible to determine a

value of k that adapts better for each region of the mesh, which could reach better results

on partial overlapping cases.



REFERENCES

AIGER, D.; MITRA, N. J.; COHEN-OR, D. 4-points congruent sets for robust pairwise

surface registration. In: ACM. ACM Transactions on Graphics (TOG), 2008. v. 27,

n. 3, p. 85.
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