
A Video Self-descriptor based on Sparse
Trajectory Clustering

Ana Mara de Oliveira Figueiredo1, Marcelo Caniato1, Virǵınia Fernandes
Mota2, Rodrigo Luis de Souza Silva1, and Marcelo Bernardes Vieira1?

1 Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
{anamara,marcelo.caniato,rodrigoluis,marcelo.bernardes}@ice.ufjf.br

2 Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
virginiaferm@dcc.ufmg.br

Abstract. In order to describe the main movement of the video a new
motion descriptor is proposed in this work. We combine two methods for
estimating the motion between frames: block matching and brightness
gradient of image. In this work we use a variable size block matching
algorithm to extract displacement vectors as a motion information. The
cross product between the block matching vector and the gradient is
used to obtain the displacement vectors. These vectors are computed in
a frame sequence, obtaining the block trajectory which contains the tem-
poral information. The block matching vectors are also used to cluster
the sparse trajectories according to their shape. The proposed method
computes this information to obtain orientation tensors and to generate
the final descriptor. The global tensor descriptor is evaluated by classifi-
cation of KTH, UCF11 and Hollywood2 video datasets with a non-linear
SVM classifier. Results indicate that our sparse trajectories method is
competitive in comparison to the well known dense trajectories approach,
using orientation tensors, besides requiring less computational effort.

Keywords: Block Matching, Human action recognition, Self-descriptor,
Sparse and dense trajectories, Trajectory clustering

1 Introduction

Human action recognition is a challenging problem in Computer Vision, and it
has been an active area of research for over a decade. An important part of
the recognition process is the representation of motion information. This was
approached in different ways over the course of the years. Recently, using video
descriptors for representing this kind of information have become a trend among
researchers. In this context, orientation tensors were used in [1–3] for describing
video information. The tensor keeps data that represent the relationship between
vectors coefficients associated with the original motion information. Likewise,
our work also employs tensors. Our descriptor is the result of the concatenation

? The authors thank FAPEMIG, CAPES and UFJF for funding.



2 A Video Self-descriptor based on Sparse Trajectory Clustering

of separate cluster vectors obtained from cross products between two different
motion informations.

Two different approaches are combined here in order to detect motion dis-
placement. The first one is block matching. The other one is the calculation
of the brightness gradient between two consecutive frames. The cross product
between the vectors of these two methods is calculated, and then this resulting
vector is clustered according to the mean angle of the block matching trajectory
vectors. Following other works in the literature, we use spatial-temporal motion
information for better representing the motion.

In order to evaluate the video descriptor obtained by the proposed method,
we used well-known datasets, such as KTH, UCF11 and Hollywood2. Besides, a
Support Vector Machine (SVM) was employed for classification purposes.

2 Related works

In [4], we have used a block matching method to extract motion information from
a video. In this method, each frame is divided into blocks of a predetermined
size, and each block is matched to a correspondent block in a subsequent frame.
The matching can occur in a sequence of frames in order to obtain the trajectory
of a block within the sequence. The method calculates displacement vectors for
each block and uses a histogram to quantize these vectors. This histogram is
also used to calculate a tensor capable of describing a video.

The idea of using trajectories for extracting human activities has become
increasingly popular. A work that uses the space-time trajectories idea is pre-
sented in [5]. The motion is decomposed into dominant and residual parts. These
parts are used in the extraction of space-time trajectories and for the descriptor
computation. The resulting descriptor, named DCS, is based on differential mo-
tion scalar quantities, as well as on divergence, curl and shear features (hence
the acronym DCS). It uses the Vector of Local Aggregated Descriptor (VLAD)
encoding technique to perform action recognition.

The residual motion discussed above also plays an important role in the
method proposed by [6]. In their work, two methods are combined to estimate
camera motion: SURF descriptors and dense optical flow. Feature points are
matched and used to estimate a homography with RANSAC. A human detector
is also employed to remove inconsistent matches originated from human activity
and trajectories generated from camera motion.

Finally, [1] presented a tensor motion descriptor for video sequences using
optical flow and HOG3D information. In that work, they use an aggregation
tensor-based technique, combining two descriptors. One of them carries polyno-
mial coefficients which approximate optical flow, and the other one carries data
from HOGs. This descriptor is evaluated by a SVM classifier using KTH, UCF11
and Hollywood2 datasets. Orientation tensors are also used as motion descrip-
tors in [7] in conjunction with dense optical flow trajectories. For each optical
flow point, he computes the cross product between the trajectory displacement
vector and the 3D gradient vector in a window around that point. The opti-



A Video Self-descriptor based on Sparse Trajectory Clustering 3

cal flow displacement vectors are also used for clustering based on trajectories
shape. According to this clustering, the resulting motion vectors are grouped
and represented by a tensor.

In the new method presented in this work, block matching is employed as in
[4], but a Variable Size Block Matching Algorithm (VSBMA) is used instead to
obtain a better division of the frame. In our work, the approach of using block
matching vectors considerably reduces the effort needed for tracking motion, as
compared to the use of HOG3D and dense trajectories.

3 Proposed Method

The basis for our proposed method will be presented in the following sections.
The method presentation will be divided in five stages. In general terms, we cal-
culate the block displacement using the 4SS block matching. The displacement
vector is used in the computation of the cross product with the brightness gradi-
ent in the block area. The resulting three-dimensional vectors are then clustered
according to the average of the angles of trajectory vectors.

Two different variations of the method were used during experiments. These
differences are entirely concentrated in the first stage, presented in Section 3.1,
where the sparse trajectories are computed using block matching. Both the
method of block division and the trajectory formation are switched in each
variation. The subsequent stages remain unchanged.

3.1 Computing sparse trajectories

The input of our method is a video, i.e., a set of frames V = {Fk}, where
k ∈ [1, nf ] and nf is the number of frames. The goal is to characterize a video
sequence action, so the movement is described for k− 1 frames, because at least
one successor frame is needed for the calculation. We also need to calculate
the displacement block between the first two frames of the sequence. For that
purpose, a Variable Size Block Matching Algorithm (VSBMA) is used. The frame
k of the video is subdivided into nx×ny non-overlapping blocks of exactly s0×s0
pixels, where s0 is an initial block size fixed for the first frame. If the frame
dimension is not a multiple of s0, the remaining right and bottom pixels do
not form blocks, as can be seen in Figure 1(a). The algorithm searches for each
block from the reference frame in the target frame based on any BMA search
strategy. If the match error found is greater than a fixed threshold, the block is
split into four half-sized blocks until the error is below the threshold or it reaches
a predetermined smallest permitted size ss. A quadtree is used for this purpose
with leaf nodes corresponding to blocks of varying sizes. The objective is to make
the edge of the blocks coincide with the border of objects in the scene, forming
regions with uniform displacement. After this block division, a final number of
blocks nb is reached, where nb ≥ nx · ny, as can be seen in Figure 1(b).

VSBMA is used here with a 4SS strategy to generate the displacement vectors
map. For each block Bi, displacement vectors v k

i = (x, y) ∈ R2 are calculated,



4 A Video Self-descriptor based on Sparse Trajectory Clustering

(a) 3x5 blocks of
32x32 pixels

(b) 69 blocks of
variable sizes

(c) VSBMA dis-
placement vectors
map

(d) An example of
a block division in
the second varia-
tion

Fig. 1. An example of motion estimation using VSBMA

where i ∈ [1, nb] is the block index. In this way, the most representative size
is selected for each region of the frame. Specifically, the frame is divided into
blocks with a predetermined initial size, which are split only when the lowest
Block Distortion Measure (BDM) is still above the established threshold. Thus,
a single frame can have blocks of various sizes, and their displacement vectors
are all in the same map.

In order to explore the information of object trajectory through the video,
we use t pairs of adjacent frames from the sequence, where t is the size of the
trajectory generated from t + 1 frames. The block in the reference frame k is
matched with a block in the ‘target’ frame, finding the correspondent block in
frame k + 1. The correspondent block found is used as a reference block for the
next match. The subsequent pairs use the same block size configuration as the
first pair in the sequence.

An initial frame k and t successor frames are used to generate t vectors for
each block trajectory, starting on the original grid. The number of frames used
in the trajectories are predetermined and equal for all video.

The vector describing the displacement of a block between two consecutive
frames is defined as v k

i,j = (x, y) ∈ R2, where k is the index of the initial frame
of the sequence and j ∈ [1, t] is the index of the reference frame used to compute
the vector. The set of these t vectors of all blocks form a map of motion vectors
referent to k-th frame, as can be seen in Figure 1(c), where t = 4.

3.2 Generating histograms using cross product vectors

The same reference frames used to compute the BM are selected as references to
compute the brightness gradient. These brightness gradient vectors are used to
calculate the cross product with BM displacement vectors. As these displacement
vectors have only the spatial components (x, y), a third component representing
the time displacement is added, in order to make possible the cross product
computation. As only a single frame displacement is considered, the temporal
coordinate is set to 1.

These calculated cross products are represented by a vector set defined as:

Ck
i,j = {c k

q | q ∈ Bk
i,j , c

k
q = v k

i,j × g k
q }, (1)



A Video Self-descriptor based on Sparse Trajectory Clustering 5

where q is a point in the block Bk
i,j and g k

q is the brightness gradient in that
point.

The motion vector set obtained from each block is represented by a mo-
tion estimation histogram. All the resulting vectors in Ck

i,j are converted to

equivalent spherical coordinates and quantized into histogram h k
i,j . Then, we

normalize these histograms, as is common in computer vision, to make it invari-
ant to brightness magnitude. We have tested the L1 and L2 norm for histogram
normalization and the first one obtained better results.

3.3 Clustering the trajectories of a frame

In order to address the problem of camera motion, trajectories are clustered
based on their shape. As this clustering groups trajectories with similar angle
sequences, the camera motion trajectories tend to be in the same cluster.

For each trajectory an angle vector is associated, which has a length equal to
t − 1. The angles are calculated between two consecutive displacement vectors
of the trajectory. The vector a k

i of the trajectory i is created using a k
i =

(aki,1, ..., a
k
i,t−1), as the following equation

aki,j = cos−1

(
v k
i,j · v k

i,j+1

‖ v k
i,j ‖ · ‖ v k

i,j+1 ‖

)
, (2)

where j ∈ [1, t− 1] is the index of the vector element.
The result of this equation is a number between 0 and 180, because it gives us

the smallest angle between two connected vectors in the trajectory. This angle
vector is then used in k-means clustering, and the mean of all angles of each
cluster is used to sort the cluster.

The number of clusters nc is predetermined and stay the same for the whole
video. Each cluster Xc = {i | a k

i was assigned to the cluster c} tends to have
very similar trajectories.

3.4 Generating the frame descriptor

The histograms, h k
i,j , are represented by an orientation tensor T k

i,j = h k
i,j ·h k T

i,j

where T k
i,j ∈ Rnθ .

Individually, these tensors have the same information as h k
i,j , but several

tensors can be combined to find component correlations. In order to determine
an orientation tensor that describes the block displacement in the i-th trajectory
we sum all tensors along the same trajectory into a single tensor Tk

i :

Tk
i =

t∑
j=0

T k
i,j . (3)

For the frame k, we generate c tensors Tk
c , which together contains all in-

formation about the frame trajectories. These tensors are composed by tensors



6 A Video Self-descriptor based on Sparse Trajectory Clustering

corresponding to trajectories associated to this cluster position c:

Tk
c =

∑
i∈Xc

Tk
i . (4)

As proposed by [7], the clusters c of each frame are ordered using the ascend-
ing angles φ and θ. The tensors Tk

c follow the same ordering. It ensure that the
vectors with similar angles tend to be in the same cluster number for all frames.

3.5 Generating the final video descriptor

At this point, all frames have c tensors in ascending order. In order to obtain
the information about the whole video, we accumulate the tensors of all frames
to obtain the descriptor for the video. To make it possible, for each cluster c, we
generate a tensor Tc for the video by accumulating the tensors Tk

c :

Tc =

nf∑
k=0

Tk
c , (5)

respecting the ascending order given by the histogram angles. In other words,
the tensors corresponding to smaller angles of all frames will be added together,
the tensors corresponding to second smaller angles of all frames will be added
together and so on.

Finally, we concatenate the tensors Tc to obtain a vector d that describes
the video:

d = (T k
1 , ..., T

k
c )

This descriptor encapsulates all information about the motion within the
video.

3.6 Variations of the method

In the first variation of the proposed method the process of block division occurs
between the first two frames of the sequence. The second variation modifies the
block division process, by allowing it to occur in every frame of the sequence.

The first variation is a result of the steps outlined in the previous sections.
First, VSBMA displacement vectors are computed using t pairs of adjacent
frames, as shown in Section 3.1. In this phase, we use the pair of frames t0 in
the block division process, and this final division defines the size of each block.
This size remains the same for the processing in the next frames.

In the second variation, a modification is introduced in the block division
part of VSBMA. We use all trajectory frames in this division. We initially divide
frame f0 into blocks of a predetermined initial size. Each block is searched in
the subsequent frame f1 and can be divided according to the match error, as
explained in Section 3.1. In the first variation, we had two conditions for ending
the division of a block: the match error should be smaller than the threshold or



A Video Self-descriptor based on Sparse Trajectory Clustering 7

the division should result in four blocks smaller than the smallest predetermined
size. In this second variation, if we reach the first condition, we try to continue
the process using the next frame f2. The division process proceeds until the block
size reaches the smallest size. In Figure 1(d), we can notice that the number of
blocks increased considerably compared to the previous method. This happens
because all frames contribute to the division process, and frames in the end of the
sequence produce additional divisions when compared to the other variations.

4 Experimental Results

Our proposed method makes use of six parameters. Three of them are important
for VSBMA: the initial block size, the minimum allowed size for blocks and the
threshold of block division. These parameters directly affect the final division
of the blocks and, consequently, the descriptor performance. Plus, we have the
trajectory size t, which is the amount of frame pairs used in the computation
of displacement vectors. This number has to be large enough to satisfactorily
catch the temporal information. The number of bins is another parameter. It
affects the histogram, since this is uniformly divided into a specified number
of bins. Finally, the number of clusters c is used by the k-means algorithm for
grouping samples. All clustering steps are done using the stopping criterion of
500 iterations or less than 0.01% of change in the cluster membership from last
iteration.

The main goal of this experimentation is to obtain the best parameter con-
figurations, in order to compare our results with similar works. The proposed
method was then tested with different values for each parameter in the KTH
dataset. In order to test our descriptor in more realistic scenarios, we also used
the UCF11 and Hollywood2 datasets, which have more action classes and col-
orful videos. We performed these tests using the best parameter configuration
found in KTH tests. As the videos in these datasets require more computational
resources, varying the parameters would not be viable.

In order to measure the recognition rate achieved using our descriptors, we
use an SVM classifier, which takes the descriptors for the whole database. We
follow the same classification protocol as [8]. We use both Triangle and Gaussian
kernel and a one-against-all strategy for multiclass classification. We produce 6
recognition rates for each parameter combination, 3 using a triangular kernel,
and 3 using a Gaussian kernel. In the following sections, we present the highest
result achieved from these ones.

4.1 Results for the first variation

In order to determine the best parameter configuration for our tests, we decided
to run experiments by incrementally fixing each parameter, based on empirical
knowledge acquired during the development of this work. We started by eval-
uating the effect of varying the first parameter, i.e., the initial block size. By
analyzing the results, we fixed this parameter with the size value that produced



8 A Video Self-descriptor based on Sparse Trajectory Clustering

the best recognition rate. Then, we moved on to the second parameter and ini-
tiated a new set of experiments to determine, out of a set of predetermined test
values, which one yielded the best result. As before, once tests were finished, the
best value was permanently assigned to the parameter, initiating, then, tests for
determining a value for the third parameter, and so on. This process continued
until we were able to fix all six parameters. This set of values formed our in-
tended best parameter configuration. Below we present the set of values tested
for each parameter:

– Initial block size: 16× 16, 32 × 32 and 48× 48
– Minimum allowed block size: 4 × 4 and 8× 8
– Threshold: 5, 7, 10, 15, 20, 25 and 30
– Number of bins: 12, 24, 26 and 30
– Number of clusters: 1, 2, 3 and 4
– Trajectory size: 2, 4, 6, 8 and 10

The values highlighted in the list above are the ones that compose the final
configuration. Figure 2 shows the results obtained for each parameter variation.
Notice that the trajectory size was also varied during each experiment. In the
majority of tests, the best result were achieved with a trajectory size of 6. We
tried to find a combination of parameters that would provide good results with a
satisfactory number of trajectories. Ideally, this number has to be small enough
so as to not require too much computing and large enough to accommodate
important information.

Although we empirically determined the best values for each parameter, we
can interpret the results to provide some insights on what might actually be
happening behind the scenes. For example, during the initial block size tests,
we noticed a significant increase in recognition rate when a 32 × 32 size was
used. This is depicted by the red curve in Figure 2(a). We believe this is related
to having some blocks in the region without major movements when their size
is 16 × 16, besides describing redundant information. We can also observe the
effects of varying the smallest permitted block size, shown in Figure 2(b). One
can observe that the rates for 8 × 8 size (shown in blue) tend to worsen as the
trajectory size increases. Besides, its best result is still much below the 4 × 4
curve. It occurs because blocks of smaller sizes can correctly represent regions
of important movement.

In Figure 2(c), we can note the threshold of 5 is associated with the worst
curve of the graph. This value causes the formation of many trajectories, and
these may have noisy information. The best results of these tests was obtained
for two threshold values: 10 and 25. A threshold of 10 still causes the generation
of many trajectories, consequently worsening performance. However, considering
a larger span of trajectory sizes, a threshold of 10 could maintain a better rate
than when using 25. This is the main reason why the value of 10 was chosen for
the subsequent tests.

Figure 2(d) shows the influence of the number of bins in the results. 30 and
26 bins both achieved good recognition rates. Although experiments with 30 bins



A Video Self-descriptor based on Sparse Trajectory Clustering 9

(a) (b)

(c) (d)

(e)

Fig. 2. Experiments on KTH dataset with first variation

achieved better results than those with 26 bins for trajectories of size 4, 8 and 10,
we decided to use 26 bins in the subsequent tests, mainly because its result was
better when 6 frames were set as the trajectory size. Small values of bins implies
to larger ranges of angles and, consequently, groupings of vectors with different
information. On the other hand, big values can generate empty bins, increasing
the descriptor size with no information gain. With respect to the number of
clusters used in the k-means algorithm (Figure 2(e)), we use 1 cluster in order to
show that the absence of trajectory clustering results in a worse recognition rate.
If we observe the results for the trajectory size equal to 6, we can see that, as
the number of clusters is incremented, the recognition rate only increases until a
certain point, where it begins to fall. This shows a tendency for the best number
of clusters for this dataset to be 3. As our method uses sparse trajectories, we
achieve better results using a small number of clusters, in contrast to [7], which
uses 5 clusters.



10 A Video Self-descriptor based on Sparse Trajectory Clustering

The tests above resulted in a recognition rate of 91.1% for the KTH database,
using the best parameter combination mentioned earlier. We also performed tests
in UCF11 and Hollywood2 datasets using the best parameters found for KTH.
We achieved 65.8% of recognition rate in UCF11, where simple actions, such as
jumping, diving, riding, have recognition rates above 80%. On the other hand,
more complex actions were mistaken for others, as juggling for jumping, shooting
for tennis, and walking for riding. The average recognition rate was 41.5% in
Hollywood2 tests. Actions with the main movement in small regions, as answer
phone and sit up, present the worst results for this dataset.

4.2 Results for the second variation

In order to perform tests with the second variation using KTH, we varied the
parameters values as in previous experiments. We initialize the tests using 32×32
as the initial block size, smallest block size of 4×4, 26 histograms bins, threshold
of 10 for VSBMA, 3 clusters in K-means algorithm and 2, 4, 6, 8 and 10 frames
for the trajectory size.

Varying the initial block size, the test which achieved the best result was the
(32×32) one, where we obtained 89.9% of recognition rate, using 2 as the trajec-
tory size. Increasing the trajectory size does not improve results when using this
parameter configuration. Testing the smallest block size we have better results
using (4× 4). Its tests shows better results than (8× 8) for all trajectory sizes.
This behavior has already been observed in previous test, shown in Figure 2(b).

In the threshold tests, we achieved our best results by using 20 and 25 as
thresholds, yielding 91.1% and 91.4% of recognition rate for trajectory sizes of 4
and 6, respectively. As the 25 tests shown a better behavior, besides decreasing
computational cost, this value was chosen for subsequent tests. The threshold
value directly influences the number of trajectories: the higher the value, less
trajectories are formed. As this variation form more trajectories than the previ-
ous one, the threshold 25 maintains a reasonable amount of trajectories, despite
being a high value.

The tests for 26 bins present the best results for all trajectory sizes tested.
It achieved 91.4% of recognition rate using a trajectory of size 6. This was also
the best rate obtained for number of clusters tests. These experiments showed
a behaviors similar to the ones observed in the first variation tests, shown in
Figure 2(d) and 2(e). Once again, we observed that 6 is an appropriate value for
the trajectory size in this dataset.

In Table 1, we show the confusion matrix of our best result in KTH. The
main diagonal of this matrix represents the percentage of correctly classified
videos. In this test, we achieved a recognition rate of 91.4% using 32 × 32 as
initial block size, 4× 4 as smallest block size, 25 as threshold, 26 bins, 3 clusters
and 6 as trajectory size. In boxing, clapping, waving and running classes, we
achieved better recognition than using our previous method variations. Our video
descriptor recognized the boxing action in 100% of boxing-videos. However, we
had a small worsening in recognition for jogging and walking classes, comparing



A Video Self-descriptor based on Sparse Trajectory Clustering 11

with first variation results. These are the two more complicated actions of this
dataset.

Table 1. Confusion matrix of the best result on KTH dataset with third variation.
The average recognition rate is 91.4%.

Box HClap HWav Jog Run Walk
Box 100 0.0 0.0 0.0 0.0 0.0

HClap 5.6 93.1 1.4 0.0 0.0 0.0
HWav 0.7 2.8 96.5 0.0 0.0 0.0

Jog 0.0 0.0 0.0 83.3 5.6 11.1
Run 0.0 0.0 0.0 21.5 76.4 2.1
Walk 0.0 0.0 0.0 0.7 0.0 99.3

Concluding our experiments, we tested our best parameter configuration for
this second variation against UCF11 and Hollywood2 datasets. For the UCF11
dataset, we achieved 65.6% of recognition rate. In the Hollywood2 dataset ex-
periment we were able to achieve a recognition rate of 40.5%. This dataset has
more complex videos than KTH. Hollywood2 videos usually present more than
one person. The movement of these secondary persons cause wrong matchings,
with bad impact in long trajectories.

4.3 Comparison with state-of-the-art

In Table 2, we show a comparison of our best result with state-of-the-art meth-
ods. Although it is clear that our results can not reach the state-of-the-art, that
was not our initial goal. Our focus was on developing a method capable of ob-
taining reasonable results using sparse trajectories, which are computationally
less expensive than dense trajectories.

Table 2. Comparison with state-of-the-art for KTH, UCF11 and Hollywood2 datasets.

KTH UCF11 Hollywood2

Klaser et al. [9] (2008) 91.0 24.7
Perez at al. [3] (2012) 92.0 34
Mota et al. [1](2013) 93.2 72.7 40.3
Wang et al. [6] (2013) 95.3 89.9 59.9

Wang and Schmid [10](2013) 64.3
Figueiredo et al. [4] (2014) 87.7 59.5 34.9

Caetano [7](2014) 94.1 46.5

Our method 91.4 65.8 41.5



12 A Video Self-descriptor based on Sparse Trajectory Clustering

In that matter, we were able to obtain satisfactory results. Even though
we did not achieve recognition rates as high as those of dense trajectories, our
method uses considerably fewer trajectories and, therefore, requires less compu-
tational effort. Despite rates being a bit lower, our results are very close to those
obtained by other self-descriptor methods.

It is important to emphasize that most of these methods shown in Table 2
are not restricted to the self-descriptor constraint. Their video final descriptor
are calculated using information of all videos of the dataset. Our descriptor, on
the other hand, does not have any dependency on other videos. So, comparing
our results with other self-descriptor methods, our results are better than those
of [1] and [3] in the Hollywood2 dataset, which is, as mentioned before, the most
complex set of videos used for testing in several works.

Some state-of-the-art methods shown in Table 2 present rates of 92% and
above in KTH dataset, while our have shown a rate of 91.4%. Their results are
very close to the limit of this dataset. When the recognition rate in a database
reaches that point, it is very difficult to improve it further even by some tenths.
Comparing our results against our first self-descriptor method, presented in [4],
this method yields better results.

We perform some tests in order to estimate the computational effort of our
method. We use a machine with Intel Xeon E5-4607, 2.20GHz, 32 GB of RAM
using only 1 thread. We select 10 videos per dataset to perform this test quickly.
The best parameter configuration previously found was used and our descriptors
were computed with an average of 8.48, 1.66, 0.72 frames per second for the KTH,
UCF11 and Hollywood2 videos, respectively. Tests in the same conditions were
performed using the [7] method, which were computed with an average of 1.57,
0.61 frames per second for the KTH and Hollywood2 videos. This work does not
provide results for the UCF11 database. As our method had higher processing
rate, we can assume that our method requires lower computational cost than
the dense trajectory method presented in [7].

5 Conclusion

This work presented a method for generating video descriptors based on sparse
trajectories. Our descriptor is considered a self-descriptor, since it depends solely
on the input video. It is computed by extracting and accumulating information
from each frame of the video. Basically, the frame is divided into blocks and
their displacement vectors are computed. These vectors are represented by a
histogram, which is represented by a tensor.

We presented two variants of our method in this work. The first one uses
only the first two frames of a sequence to perform the block division. After this
division, the size of each block remains the same for the other frames of a se-
quence. This first variation achieved 91.1%, 65.8% and 41.5% of recognition rate
in KTH, UCF11 and Hollywood2 datasets, respectively. In our second variation
the block division was allowed in all frames of the sequence. Our best result in
KTH dataset was achieved using this method variation, producing a recognition



A Video Self-descriptor based on Sparse Trajectory Clustering 13

rate of 91.4%. In UCF11 and Hollywood2 datasets we achieved 65.6% and 40.5%
of recognition rate.

This work shows that it is possible to achieve good recognition rates using
sparse trajectories. We use a smaller number of trajectories compared to the
method of dense trajectories. Due to this characteristic, our data storing needs
are reduced. It is important to note, though, that this amount of data is enough
to represent the motion of the video.

References

1. Mota, Virginia F and Souza, Jéssica IC and Araújo, Arnaldo de A and Vieira,
Marcelo Bernardes.: Combining Orientation Tensors for Human Action Recog-
nition. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 328–
333, IEEE, (2013)

2. Sad, Dhiego and Mota, Virginia Fernandes and Maciel, Luiz Mauŕılio and Vieira,
Marcelo Bernardes and Araújo, Arnaldo de A.:A Tensor Motion Descriptor
Based on Multiple Gradient Estimators. In:Conference on Graphics, Patterns
and Images (SIBGRAPI), pp. 70–74, IEEE, (2013)

3. Perez, Eder de Almeida and Mota, Virǵınia Fernandes and Maciel, Luiz Mauŕılio
and Sad, Dhiego and Vieira, Marcelo Bernardes.: Combining Gradient His-
tograms Using Orientation Tensors for Human Action Recognition. In:21st In-
ternational Conference on Pattern Recognition (ICPR), pp. 3460–3463, IEEE,
(2012)

4. Figueiredo, Ana MO and Maia, Helena A and Oliveira, Fábio LM and Mota,
Virǵınia F and Vieira, Marcelo Bernardes.: A Video Tensor Self-descriptor Based
on Block Matching. In:Computational Science and Its Applications–ICCSA
2014, pp. 401–414, Springer, (2014)

5. Jain, Mihir and Jégou, Hervé and Bouthemy, Patrick.: Better exploiting mo-
tion for better action recognition. In: Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pp. 2555–2562, IEEE, (2013)

6. Wang, Heng and Schmid, Cordelia and others.: Action recognition with improved
trajectories. In: International Conference on Computer Vision, (2013)

7. Felipe Andrade Caetano.: A Video Descriptor using Orientation Tensors and
Shape-based Trajectory Clustering. In: UNIVERSIDADE FEDERAL DE JUIZ
DE FORA, (2014)

8. Schuldt, Christian and Laptev, Ivan and Caputo, Barbara.:Recognizing Human
Actions: a Local SVM Approach. In: Proceedings of the 17th International Con-
ference on Pattern Recognition (ICPR), pp. 32–36, IEEE, (2004)

9. Alexander Kläser and Marcin Marsza lek and Cordelia Schmid.: A Spatio-
Temporal Descriptor Based on 3D-Gradients. In: British Machine Vision Con-
ference (BMVC), pp. 995–1004, (2008)

10. Wang, Chunyu and Wang, Yizhou and Yuille, Alan L.:An approach to pose-based
action recognition. In:Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pp. 915–922, IEEE, (2013)


