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Dense trajectories have been shown as a very promising method in the human action
recognition field. In this paper, we propose a new kind of video descriptor, generated

from the relationship between the trajectory’s optical flow with the gradient field in its

neighborhood. Orientation tensors are used to accumulate relevant information over the
video, representing the tendency of direction in the descriptor space for that kind of

movement. Furthermore, a method to cluster trajectories using their shape is proposed.
This method allows us to accumulate different motion patterns in different tensors and

easier distinguish trajectories that are created by real movements from the trajectories

created by the camera’s movement. The proposed method is capable to achieve the best
known recognition rates for methods based on the self-descriptor constraint in popular

datasets — Hollywood2 (up to 46%) and KTH (up to 94%).

Keywords: Dense Trajectory Clustering; Orientation tensor; Video Self-descriptor; Hu-
man action recognition.

1. Introduction

The human action recognition is a challenging problem in computer vision, which

aims to automatically label which action is being performed by a human in a given
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video. Due to the wideness of its potential applications, this task has been drawing

a lot of attention over the last two decades.

Most of the main methods to address this problem is focused in extracting

several small “visual words” (also called features) from the video and merging all

the information together using machine learning. This approach is inherited from

the image classification problem. Even some of the most common features extractor

methods can be seen as an extension of the image case 1,2,3,4. This kind of descriptor

generalizes the problem of finding interesting features in the space to the space-time

coordinates.

Among other space-time strategies, dense trajectories 5 and its related works
6,7,8 have shown the greatest recognition rates in the area, therefore being one of the

most promising methods to address this problem. The dense trajectories method

works by extracting stable points of each frame and tracking them in the subse-

quent frames, using an optical flow algorithm. A trajectory is created by connecting

each one of these displacement vectors. Many features like the histogram of oriented

gradients (HOG)9, histogram of optical flow (HOF) 10 and motion boundaries his-

togram (MBH) 11 are extracted along the trajectory.

Although the process of gathering several small visual words using machine

learning seems to achieve a very good recognition rate in most works, we believe

this is not a requirement to achieve a successful recognition rate. In such a sce-

nario, the final descriptor, computed for each video, is based on information that

is assembled using all features from all videos in the training database. We believe

it is possible to achieve good recognition rates using only the information provided

by the video itself — namely self-descriptor. Self-descriptor is a constraint intro-

duced by Figueiredo et al. 12 about how the final descriptor is generated for the

video. As opposed to dictionary-based algorithms for human action recognition,

a self-descriptor of a video is the final descriptor computed using exclusively the

information provided by the video itself. No outside information can be used in

the process of calculating the video’s descriptor. A comparison between those two

methods is shown in Figure 1.

This kind of approach might be good in many different situations. For example,

when there are not enough videos to represent a particular action in the training

database or the videos available for those actions does not generalize enough the

action performed. Methods that are not based in the self-descriptor approach might

overfit the training data in such situations. Additionally, methods using BoF and

similar approaches do not admit well the insertion of new videos. In such case, all

descriptors from all videos must be recalculated to admit the new video.

Another advantage of using the self-descriptor approach is that it requires much

less space in both primary and secondary memory. This memory problem in the

BoF often happens because all visual words from all the videos must to be stored

before the clustering. A giant amount of space might be necessary. There is no such

problem for the self-descriptor approach as the only space required is the one used

by the final descriptor.
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Figure 1. Comparison between Self-descriptor methods and conventional dictionary-based meth-

ods.

Our method has two main contributions. The first one is a method for combining

trajectories, which represent interframe long-range motion, with gradients, which

capture local brightness variation. This is achieved by a cross product between the

local trajectory displacement vector and all the gradients vectors in a surrounding

window. The resulting vectors are used to compute a local Histogram of Trajectory-

Gradient Cross product (HTGC). The HTGC is capable of encoding both motion

and shape information in a single representation. The second main contribution is

a strategy to cluster trajectories based on their shape. We create a vector for each

trajectory that represents its shape regardless its direction. By applying k-means

to cluster those vectors, we aggregate trajectories that represent the same type of

movement in the same cluster. Later, the proposed descriptor is used to address

the human action recognition problem.

2. Related Works

2.1. Tensor based approaches

Tensors are extensions of the vector and matrix concept to higher orders. They

have the power to describe relations between vectors, scalars, and other tensors

and they are independent of a coordinate system. A special type of tensor is the

orientation tensor which is a symmetric, positive-definite matrix. A vector ~v may be

represented as an orientation tensor using T = ~v~vᵀ. While vectors keep information
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of one direction, orientation tensors might keep the tendency of many directions.

In Figure 2 we can see graphical representation13 of the different shapes that a

3-dimensional second-order tensor can have. The same idea is extended to higher

dimensions. Tensors are a very powerful and robust tool that have been used in the

last decade in many different works in the pattern recognition domain. This section

presents works that use tensors to gather large amounts of data, storing most of

the relevant information and the relationship between them as well.

Figure 2. Graphical representation of 3-dimensional tensors.

Yuan et al. 14 created a new descriptor based on the covariance matrix of three

concatenated low-level features: the position of the pixel in space and time, the gra-

dient vector and the optical flow vector. These features are extracted on a spatio-

temporal cuboid selected using the method proposed by Dollar et al.15. The authors

argue that covariance matrices do not lie on Euclidean space, thus they apply a

Log-Euclidean Riemann metric to measure the distance between those visual words

and later they are quantized to form an appearance dictionary, as in BoF (Bag-of-

Features) approach. A similarity between this work and ours is that we also use

a covariance matrix to encode our descriptor. However, we not only use it just to

represent the correlation between the coefficients of the original vector, but as a

tensor that accumulates information along the whole video. Another similarity is

that the covariance matrix in their proposed method is generated from a concate-

nation between vectors that holds different source of information. We also use this

idea as we concatenate a histogram with a position point (x, y, t) before generating

the tensor.

Perez et al. 16 proposed a method to address the human action recognition

problem combining HOG3D 2 and orientation tensors. Each frame of the video

is divided into equally sized windows and a tensor is computed for each one of

the windows. After that, the tensor of the frame is computed by the sum of the

normalized tensors of each window. The final descriptor is the sum of all frame’s
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tensor. The method shows a fairly competitive recognition rate, in despite of using

a global approach (no Interest Points involved — all pixels are used to generate the

final descriptor). Just like our method, the final descriptor in his approach is also

calculated using only data provided by the video itself.

Mota et al. 17 also used orientation tensors to encode a descriptor based on

HOG3D. But the author argues that aggregating several tensors naively over the

time could lead to an isotropic tensor, which is a tensor that does not capture any

main orientation and is thus useless for video description. Thus, they propose to

concatenate multiple tensors in order to reduce overall isotropy. In their approach,

the video is split in equally sized blocks and the orientation tensor computed over

the HOG3D is calculated for each block. The final descriptor is the result of the

concatenation of those blocks.

Mota et al. 18 proposed a method to address the human recognition problem

combining what is proposed by Mota et al. 19 and Perez et al. 16. The final descriptor

is the concatenation of the tensors generated by both methods. The author shows

that aggregating different source of information provided by the HOG and the

optical flow descriptors may enhance the recognition rates in most of the popular

databases.

Picard and Gosselin 20 improved the approach presented by Jegou et al. 21 by

representing the descriptors as orientation tensors and aggregating them together

around the same center. Although their work is focused in the content based image

retrieval problem, this is still a good example of how using tensors to accumulate

information can outperform other approaches based on vectors.

2.2. Trajectory based approaches

The dense trajectories proposed by Wang et al. 5 appeared as a good method to

discriminate local motion information in videos and led to a wide collection of

inspired works.

Jiang et al. 6 used k-means to cluster trajectories using the displacement be-

tween the first and last point of the trajectory. This is performed at each five frames

and the trajectories are grouped into five clusters. The author assumed that the

top three largest clusters are candidates to the dominant motion and use the mean

motion of these to compensate other trajectories. After that, the author uses a

pairwise motion representation to generate a visual codebook to the standard BoF

approach. The similarity between this approach and ours is that we also try to

cluster trajectories to find the dominant motion. However, we do not use the dis-

placement of the trajectory and neither the classical trajectory shape definition to

cluster trajectories, but a vector with the angle between each two subsequent dis-

placement vectors. We believe that we can group more similar trajectories by doing

so and our approach can keep invariability to both scale, translation and rotation

changes at the same time. More details will be given in the Section 3.

Jain et al. 7 improved the dense trajectory approach by decomposing visual
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motion into the residual and dominant motion using an affine model. The dominant

motion is assumed to be due to the camera’s motion, while the residual motion

is assumed to be due to the independent scene motions. With this assumption,

the authors tried to compensate the camera’s movement in the calculation of the

optical flow and reinforce the focus in the action performed. However, the author

also showed that the camera motion could not be thrown away, as it is useful as

complementary information to recognize some action categories. We use a similar

idea in our approach, as we also try to separate the trajectories made by the camera

movement and also keep it as additional information. In his work they proposed a

new descriptor called Divergence-Curl-Shear that computes local kinematic features

of the optical flow along the trajectory. Unlike our approach, the final descriptor is

computed using VLAD21, an extension of the BoF.

A work presented by Wang and Schmid 8 is the current state-of-art in the field.

The authors improved the dense trajectories by estimating the camera’s motion

and correcting it. They used SURF 22 to find feature points and match them in

two consecutive frames. With that information, along the dense trajectories itself,

they are capable of using RANSAC 23 to estimate the homography between those

frames and assume that the transformation is made by the camera motion. To

ensure that the movement done by the human(s) in the action will not interfere

in the above steps, they used a human detector 24 and ignored the information

extracted around those areas. After calculating the camera movement, the optical

flow and, consequently, the trajectories are compensated to minimize the camera’s

movement influence in the extracted features. To extract the features, those areas

around humans previously ignored are now taking into account and the same “visual

words” extracted by Wang et al. 5 are now extracted around those trajectories. The

final descriptor is computed using Fish Vectors 25 and the standard BoF approach.

As we can see, most of the works are focused in eliminating or compensating the

camera’s motion. We apply the same idea in our work, but in a simpler approach; no

complex methods to detect the camera’s motion are applied. Most of these recent

works are also interested in using a BoF approach to form the video’s descriptor.

We want the descriptor of each video to be computed using exclusively its own

information, so any BoF related methods are not applied either.

The presented works with the self-descriptor constraint tends to be simpler and

to our best knowledge, they are all global approaches. Our work is the combination

of both concepts. Although the trajectories are densely extracted, we do not use a

global approach, because some of the points are not considered. Yet, we keep the

self-descriptor restriction. The result of this combination is that our method can

achieve much better results in comparison with other self-descriptor approaches

and a fairly competitive rate against BoF methods.
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3. Proposed method

In this work we use the dense trajectory method proposed by Wang et al. 5 to extract

trajectories. Note that our approach is not bounded to the dense trajectory method

and can be implemented on top of any trajectory method. As dense trajectories have

shown great results in many different works 6,7,8,26, we chose it as our trajectory

extractor.

3.1. The cross product descriptor

Each trajectory Sti extracted using the dense trajectory can be described as a series

of points
{
pt0,i,p

t
1,i, . . . ,p

t
l,i

}
, where i is the index of that trajectory, l is the size

of the trajectory and t the frame of the first point. The trajectory’s displacement

vectors are then determined using the difference between two consecutive points:

∆ptj,i = (ptj+1,i − ptj,i). We refer those displacement vectors as ~vj,i, which means

that this is the j-th vector of the i-th trajectory. For simplification purposes, we

are going to disregard the index t, but every step is done for every initial frame t.

To compute our descriptor for a trajectory Si we need to find a new vector field

Cj,i of cross products. This is calculated finding, for each point pj,i of the trajectory,

the cross product between the trajectory displacement vector ~vj,i in that point and

each 3D gradient vector in a window around pj,i. As the trajectory displacement

vector is composed by a vector in an optical flow field, it is expected to have two

components (u, v). In order to be able to compute the cross product, we need the

vector to lie in R3. Therefore, we add a third component to it, to represent the

displacement of a trajectory in respect to the time, which is one frame, making it

(u, v, 1).

Thus, the vector field representing the cross product between the trajectory

vector and the gradient around that point can be computed using

Cj,i =
{
~cq |q ∈Mpj,i

,~cq = ~vj,i × ~gq
}
,

where q is a point in the window Mpj,i
around the point pj,i and ~gq is the 3D

gradient in the point q. An overview is presented in Figure 3.

The cross product between two vectors has two main properties. The first one

is that the resulting vector is perpendicular to both vectors. This is an interesting

property in our case because the resulting vector encodes some information about

the original vectors directions at the same time. The second one is that its mag-

nitude is related to the sine of the angle between the original vectors. If they are

parallel, the magnitude is 0 and if they are perpendicular the magnitude is equal to

the product of the vectors magnitudes. This is also a very interesting property in

our case, since it encodes the tendency of the trajectory and the gradient to move

together.

The resulting vector field Cj,i is then quantized into a 3D histogram using a

spherical coordinate system, the same way it is done in the HOG3D approach. We
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Figure 3. Overview of the cross product descriptor calculation. The picture in the left represents

the frame with a trajectory tracked in a point. The picture in the middle represents the 3D gradient
field (green vectors) in a surrounding window around that point and one displacement vector of

the trajectory (red vector). The picture in the right is a representation of how the final vector

field looks after the cross product between the trajectory displacement vector and each one of the
gradients is computed.

denote ~hi,j as a vector corresponding to the histogram of the cross product of the

trajectory i in its j-th displacement vector.

The second step is to sum all histograms along the same trajectory into a single

histogram ~gi of all cross products of the trajectory i:

~gi =

l−1∑
j=0

~hi,j .

The resultant histogram is normalized using the L1-norm and the final vector

of information is created by concatenating the histogram ~gi to the average position

(x̄, ȳ, t) of all points of the trajectory in frame t:

~fi = (~gi, x̄i, ȳi, t).

The next step to generate the descriptor is to transform it to an orientation tensor

form. This is done multiplying the vector by its transpose, given by the formula

Ti = ~fi ~f
ᵀ
i .

Finally, each trajectory i has one tensor Ti created from the histogram of cross

products and the spatio-temporal localization of that trajectory.

3.2. Clustering trajectories by shape

Dealing with camera motion is one of the most frequent problems in the human

action recognition field. To address this problem, we propose a method to cluster

trajectories based on their shape. Our hypothesis is that clustering trajectories by

their shape give us the possibility to separate trajectories that are created by the
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Figure 4. Illustration of how the vector of angles is computed.

camera’s motion. We believe those trajectories may be characterized by having

the highest angle between each connected local displacement vector and they are

not discarded, as they are still source of information 7. Additionally we also expect

that, even when there is no camera movement, separating trajectories with different

shapes might improve the distinguishing power of our descriptor.

In order to distinguish the trajectory by its shape, we create a vector of angles

associated with each one of the trajectories. The angles are calculated between two

consecutive displacement vectors of the trajectory. The vector ~a of the trajectory i

is created using

~ai = (a0,i, a1,i, . . . , al−2,i) ,

where

aj,i = cos−1
(

~vj,i · ~vj+1,i

‖~vj,i‖ . ‖~vj+1,i‖

)
. (1)

The Equation 1 gives us the smallest angle between two connected displacement

vectors in the trajectory. The resulting number is between 0 and 180 and the higher

the number is, straighter is that connection. Figure 4 shows an example of how the

vector is computed for a specific trajectory. After that, we use k-means to cluster

the trajectories using each of its vector of angles. The mean of all angles of each

cluster is then used to sort the cluster and determine how straight that group

is. Classifying the clusters using this metric increase the chance that most of the

camera movement will rely at the first cluster, as it tends to be straighter than

trajectories generated by other movements. Also, trajectories are clustered in the

same range in time. In other words, trajectories that have started at the same frame

t are clustered together, discarding any information about trajectories that started

over other frames. Therefore, the clustering step must be repeated for each frame

of the video, which enforces the need to sort the clusters as a metric to match them

between trajectories that have started at different frames.
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3.3. Calculating the final descriptor

In order to generate the final descriptor, we used both cross product descriptor

and shape-based clustering approaches. An overview of our method is illustrated in

Figure 5.

First, trajectories are extracted using the dense trajectory approach. For each

group of trajectories that start at a frame t, we apply the proposed strategy to

cluster based on shape and sort using the mean angle of all trajectories in each

cluster. The trajectories are now separated in k different groups and the tensor of

the histogram of cross product Tt
i is calculated for each trajectory i. The next step

is to sum all trajectories’ tensor that belongs to the same cluster, therefore creating

a new tensor for each cluster, using

Rt
b =

∑
i

Tt
i | g(i) = b,

where Rt
b is the tensor of the cluster b ∈ [0, k− 1] in the frame t and g is a function

that determines which cluster a trajectory i belongs to, after the trajectories are

already clustered by k-means. These tensors are then normalized using the L2-norm

to keep its directions discarding the magnitude. This step is required to ensure

that clusters with higher population will not generate bigger tensors compared to

other clusters. Next, we have k tensors for each frame in the video. Since clusters

are ordered using a metric, we can match tensors from different frames. Thus, all

tensors from the same cluster b from different frames are added up using

Sb =
∑
t

Rt
b.

Finally, we have k tensors for the whole video. Each tensor Sb is again normalized

to keep only its directions and the final descriptor ~d is a vector composed by the

concatenation of all tensors, or

~d = (S0,S1, . . . ,Sk−1) .

4. Experimental Results

To evaluate the applicability of our descriptor in the human action recognition

problem, we chose two of the most used datasets in the area: KTH and Hollywood2.

All clustering steps are done using a sequential k-meansa implementation with the

stopping criterion of 500 iterations or less than 0.01% of change in the cluster

membership from last iteration. We used the default dense trajectory methodb

proposed by Wang et al. 5 to extract trajectories. Our data is classified using a

aAvailable at http://www.ece.northwestern.edu/˜wkliao/Kmeans
bAvailable at http://lear.inrialpes.fr/people/wang/dense trajectories
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Figure 5. Overview of our method. Trajectories that start at the frame t are clustered by their

shape into k clusters. This illustration shows an example for k = 3 clusters.

non-linear support vector machine 27, using Gaussian and Triangle kernel and a

one-against-all strategy for multiclass classification.

All our tests ran under a machine with an Intel rXeon rE5-4607 CPU. The

machine counts with 32 GB of RAM and our method is not optimized for paral-

lelism. For the best results, our descriptors were computed with an average of 0, 343

frames per second for the Hollywood2 dataset, and an average of 1, 38 frames per

second for the KTH dataset. This time includes all steps required to generate the

descriptor, including the dense trajectory extraction and both cross product and

trajectory clustering strategies.

4.0.1. KTH

This database was proposed by Schuldt et al. 28 and is composed of 6 actions: walk-

ing, jogging, running, boxing, hand waving and hand clapping. These actions are

performed several times by 25 people in four different scenarios: outdoors, outdoors

with camera zoom, outdoors with changed clothes and indoors. All sequences are

taken with homogeneous backgrounds and a static camera. The KTH dataset has

a total of 2391 sequences, divided into a training set (8 people), a validation set

(8 people) and a test set (9 people). The classifier is trained with the training set,

the validation set is used to optimize the parameters of the classifier and the final

recognition rate is based on the number of correctly predicted actions for the test

set. Figure 6 shows a sample of the videos from the dataset.
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Figure 6. Illustration of KTH actions.

Figure 7. Illustration of the Hollywood2 actions.

4.0.2. Hollywood 2

The Hollywood2 dataset was proposed by Marszaleket al. 29 and is composed by

12 actions: answering phone, driving car, eating, fighting, getting out of car, hand

shaking, hugging, kissing, running, sitting down, sitting up, and standing up. The

sequences are made by video clips extracted from 69 different Hollywood movies and

many challenges like camera movement, illumination conditions and background

clutter are applied. There are a total of 1707 sequences in the dataset, which are

divided in a training set with 823 samples and a test set with 884 samples. The

classifier is trained with the training set and the final recognition performance is

measured by the mean average precision (mAP), which is the mean of the percentage

of correctly predicted actions of the test set for each class. An example of the

sequences is shown in Figure 7.

4.1. Parameters

There are some parameters of our method that should be considered. For instance:
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• Number of clusters: k represents the number of clusters the trajectories are

grouped to. When k = 1, our approach to cluster trajectories is not applied

and a single tensor is computed for all trajectories and, consequently, for the

whole frame and for the entire video. There is a trade-off between increasing and

decreasing the value of k. Lower values for k may lead to different movement types

grouped in the same cluster. Higher values for k, not just increase linearly the

size of the final descriptor but there is also a chance to cluster similar movements

into different clusters;

• Histogram bins: bin represents the number of subdivisions in the histogram of

cross product. Lower values of bin do not acquire the information we need and

lead to a histogram that is not able to capture the cross product field tendency of

direction. Higher values for bin does not summarize well the information and does

not match well cross product fields that are similar but slightly different. Also,

increasing the value of bin increases quadratically the size of the final descriptor

so, higher numbers should be avoided;

• Window size: M ×M is the size of the window around each point of the trajec-

tory where the cross product is calculated. A small window size may not capture

important features along the trajectory. On the other hand, a big window size

may overlap between nearby trajectories and acquire redundant or excess of in-

formation that otherwise would be discarded.

• Sampling stride: w defines the space between points that compose the sampling

grid for new trajectory points. In other words, points that are candidates to start a

trajectory are sampled in a grid spaced by w pixels in both x and y dimensions. A

lower number for stride increases the coverage of the method, because more points

are being sampled. The downside is that more trajectories are extracted and more

computation power is required to process that information. Also, sampling a lot

of points does not necessarily increase the amount of meaningful information, as

the trajectory windows tend to overlap. Unless otherwise stated, the value for

the stride is 5, as stated in the original dense trajectory work 5;

• Cornerness of the point: the parameter q defines the minimum value for the

maximum eigenvalue of a point so it can start a trajectory. A higher q increases

the pressure to the candidate points, so the cornerness measure should be higher

and more corner-like points are selected. In opposition, a lower q allows more

points to be tracked, but increases the chance of getting points that rely in flat

or edge regions and are less reliable. Our default value for q is 0.001 as stated in

the original dense trajectory work 5;

• Maximum scale depth: dense trajectories are extracted in multiple scales indi-

vidually to achieve some scale invariance. Increasing the maximum scale grants

a better coverage of the method but also increases its computational complexity.

The default value for the maximum scale depth in our methods is 5. The factor

of each scale is f =1 /√2, which means that each new scale has half the area of

the previous scale;

• Trajectory size: l defines for how many frames the initial point will be tracked to
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compose the trajectory. Lower values for l will generate short trajectories that

does not encode properly the executed motion. Higher values for the trajectory

size lead to longer trajectories that are more likely to drift from the original

tracked point and therefore are less reliable;

• Power normalization: power normalization is a technique to equalize descriptors

in order to lower high peaks on it. Peaks that are too high tend to cover infor-

mation in the lower coefficients of the descriptor. To address this problem, all

coefficients of the descriptor are powered by a number α ∈ ]0, 1[. This is the same

of taking the 1/α-th root of each coefficient. By using this technique, coefficients

that carry too much energy are reduced and the low energy coefficients are en-

hanced. Nevertheless, they do not lose their relationship and coefficients that are

greater than others before the power normalization are still greater after it. In

our experiments we used {0.30, 0.27, 0.25, 0.20, 0.15, 0.10} for α;

• SVM kernel: we used both Triangle and Gaussian kernel on the SVM classifier

in our experiments.

4.2. Experiments

4.2.1. KTH Dataset

For the KTH dataset we tested the following range of parameters: l ∈ {5, 10, 20},
bin ∈ {(6× 3), (10× 5), (16× 8), (18× 9), (22× 11), (24× 12)}, k ∈ {1, 2, 3, 5, 10},
w ∈ {2, 5}.

Table 1 shows our best result. The parameters are k = 5, bin = 24× 12, l = 10,

w = 2, α = 0.27 using a triangle kernel. The overall recognition rate is 94.1%. In

the confusion matrix we can see the classes Boxing, Hand Clapping, Hand Waving

and Walking achieved a very good recognition rate. Most of the wrong predictions

are concentrated mutually between Running and Jogging and between Walking

and Jogging. This is expected because in the KTH dataset, those movements are

very similar and, for as much as we want the descriptor to be able to complete

differentiate them, sometimes there is an intersection in the actions performed that

are very hard to distinguish.

Table 1. Confusion matrix for our best result for the KTH dataset.

Box HClap HWav Jog Run Walk

Box 98.6% 1.4% 0% 0% 0% 0%

HClap 1.4% 98.6% 0% 0% 0% 0%
HWav 1.4% 1.4% 97.2% 0% 0% 0%

Jog 0% 1.4% 0% 87.5% 6.9% 4.2%
Run 0% 0% 0% 16.7% 83.3% 0%
Walk 0% 0% 0% 0.7% 0% 99.3%

In Figure 8 we analyze the impact of modifying each parameter in our best

result. In every case, the default values for our best configuration are kept, changing
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only the parameter we are evaluating. In Figure 8(a) we can see that increasing k

improved the recognition rate until k = 5 and dropped for k = 10. In Figure

8(b) we vary the values for bin. In general, there is a tendency to improve the

recognition rate as bin increases but, even for small values our method still has

a fair performance. The trajectory size l is evaluated in Figure 8(c) and l = 10

showed the best result, approximately 0.5% higher recognition rate than l = 5 and

l = 20. In Figure 8(d) we can see the impact of changing the stride parameter. For

the best result, changing w showed a great difference. The value w = 2 is about

1% higher in the recognition rate than w = 5. We can see in Figure 8(e) that the

kernel chosen to classify the data had a very significant impact in our best result.

The triangle kernel showed an approximately 1.5% greater result than the Gaussian

kernel.Figure 8(f) shows the impact of changing the power normalization coefficient.

The value α = 0.27 showed the best result overall but α = 0.25 has a comparable

recognition rate. At last, Figure 8(g) shows that changing the window size from its

default value does not lead to great changes in the recognition rate.

4.2.2. Hollywood2 Dataset

For the Hollywood2 dataset we tested the following range of parameters: l ∈
{5, 10, 15}, bin ∈ {(6 × 3), (10 × 5), (16 × 8), (22 × 11), (24 × 12), (26 × 13)},
k ∈ {1, 2, 3, 5, 10}.

Table 2 shows the best recognition rate achieved by our method. The results

were obtained by using k = 5, bin = 26 × 13, l = 5, w = 5, α = 0.20 and the

triangle kernel.

Table 2. Average precision for each class of Hollywood2 for our best config-

uration.

Action APhone DCar Eat FPerson GetOutCar HShake
AP(%) 26.5 85.2 59 58 29.8 32.3

Action HPerson Kiss Run SDown SUp StandUp

AP(%) 24.3 48.3 66.1 54.3 19.6 52.8

In Figure 9 we can see the impact of changing the parameters for our best result.

Changing the value for k in igure 9(a) shows that when k = 1 and our strategy

to cluster trajectories is not applied the recognition rate decreases for a reasonable

amount. The best result was achieved with k = 5 but, other values for k still reaches

a good performance. The Figure 9(b) shows that increasing the number of bins in

the histogram has a positive effect in the final recognition rate, although it tends

to stabilize after bin = 22× 11. The trajectory size is evaluated in Figure 9(c) and

l = 5 shows the best result over others. We can see in Figure 9(d) that the chosen

kernel also had a very significant impact in our best result. The triangle kernel

has an approximately 1.25% greater result than the Gaussian kernel. The Figure
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. Impact of parameters variation in the best result for the KTH dataset.

8(e) shows the impact of changing the power normalization coefficient. The value

α = 0.2 showed the best result overall. The Figure 9(f) shows the recognition rate
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Impact of parameters variation in the best result for the Hollywood2 dataset.

in function of the window size. Note that using a window of 12× 12 improved the

best result by 0.2%, which is a significant improvement.

4.3. Comparison with previous works

In this subsection we compare our best results with the state-of-the-art in literature.

To compare our results, we need to take into account that most of the methods

are not restricted to the self-descriptor constraint and use approaches similar to

the BoF. It means that their final descriptor for each video is calculated using

the information of all videos merged together. The Table 3 presents a comparison

between our best results and these works.

We can see that among self-descriptor works, our method achieved the best
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Table 3. Comparison with state-of-the-art for

KTH and Hollywood2 datasets.

KTH Hollywood2

Dictionary-based Methods

Wang et al. 5 94.2 58.2

Kobayashi and Otsu 30 95.6 47.7

Wang et al. 26 95.3 59.9
Jain et al. 7 62.5

Wang and Schmid 8 64.3

Self-descriptor Methods

Perez et al. 16 92.0 34.0

Mota et al. 17 92.5 40.3
Sad et al. 31 93.3 41.9

Mota et al. 18 93.2 40.3

Figueiredo et al. 12 87.7 34.9

Our method 94.1 46.3

performance for both KTH and Hollywood2 datasets. For the KTH, we achieve

recognition 0.8% better than the previous best result for self-descriptor methods

and a comparable result against dictionary-based methods. For the Hollywood2, we

improved the best result for self-descriptor methods by 4.4%. We believe this great

improvement comes from the fact that the Hollywood2 is a challenging dataset as it

contains several camera movement and many different scenarios. In this particular

situation, our method to cluster trajectories can separate those movements quite

well, which is not done in the previous self-descriptor works. The same impact

cannot be seen in the KTH dataset because it does not contain much camera

movement and the background is very homogeneous. Although we had a great

improvement for the Hollywood2, it is possible to see that our method is still not

able to reach the current state-of-start methods that are based on a dictionary of

visual words.

5. Conclusion

In this work, we proposed a method to calculate a descriptor for videos, based on

the histogram of the cross products between trajectories and 3D gradients. We also

propose a strategy to cluster trajectories based on their shape. Both contributions

have improved the recognition rate in two known datasets, achieving, to our best

knowledge, the highest recognition rate among self-descriptor methods and a fairly

recognition rate compared with dictionary-based methods.

Our results showed that for the Hollywood dataset, the best setup can achieve

46.3% in the mean average precision, using 10 trajectory’s clusters, trajectories

with 5 frames long and 26× 13 subdivisions in the histogram of cross product. For

the KTH dataset, the best setup can achieve 94.1% using 5 trajectory’s clusters,
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trajectories with 10 frames long, 24 × 12 subdivisions in the histogram of cross

product and sampling trajectories in a 2 pixel spaced grid.

One suggestion for future works is to cluster all trajectories from the whole video

just one time. This is different from the strategy to cluster trajectories applied in

this work, where we cluster trajectories that start at the same frame. This suggestion

might be a good idea because our strategy to match clusters from different frames

using the mean of its angles may not always work. For example, consecutive frames

with very different motion patterns will end up to be summed in the same tensor.

In our tests we noticed that very low values for the power normalization

showed the best results. This might be an effect of dealing with tensors in the

Euclidean space, instead of the Log-Euclidean space. Thus, further studies using

Log-Euclidean, as done by Yuan et al. 14 are recommended.
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