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This work aims to enhance a classic method for rigid registration, the Iterative Closest
Point (ICP), modifying the closest point search in order to consider approximated infor-

mation of local geometry combined to the Euclidean distance, originally used. For this, a
preprocessing stage is applied, in which the local geometry is encoded in second-order ori-

entation tensors. We define the CTSF, a similarity factor between tensors. Our method

uses a strategy of weight variation between the CTSF and the Euclidean distance, in
order to establish correspondences. Quantitative tests were made in point clouds with

different geometric features, with variable levels of additive noise and outliers and in par-

tial overlapping situations. Results show that the proposed modification increases the
convergence probability of the method for higher angles, making the method comparable

to state-of-art techniques.

Keywords: Rigid registration; iterative closest point; orientation tensor; shape dissimi-
larity; coarse-to-fine alignment.

1. Introduction

Surface registration is the alignment of 3D surfaces into a common coordinate

system. It is an important process on computer geometry applications, inserted into

the processing pipeline of geometry acquisition for robot vision and many medical

image applications. Rigid registration is a common sub-problem, constraining the

solution into a rotation and translation that best align two surfaces, consisting of
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a six degrees of freedom problem.

The first successful solution for the rigid registration problem was Besl and

McKay’s Iterative Closest Point (ICP) 1. This method takes as input two point

sets, named M and D, and is executed in two steps: matching and transformation

estimation. In the matching step, each point of M is associated to its closest point

on D, generating a list of correspondences. The transformation estimation uses the

covariance between M and the correspondences set to estimate the transformation

which minimizes the L2 residual error between M and D. These two steps are

repeated until a local optima or a minimal error threshold is reached.

The original ICP method is able to retrieve optimal alignment when both sets

represent completely the same object and there is a small rotation and translation

between them. In practice, when used in surface reconstruction applications, the

point sets are mostly partially overlapped and subject to the presence of outliers and

additive noise on the scanner raw data. Notably, these are non-optimal scenarios

in terms of minimizing the L2 error, and the original ICP tends to perform poorly.

The ICP algorithm also assumes that the angular displacement between Model and

Data point sets is small, since it is designed for fine alignment. If this assumption

is not accomplished, the method is not guaranteed to yield good results.

In this work, we use a 3D mathematical morphology method based on the work

of Vieira 2 to estimate a second-order tensor which describes the local covariance of

point dispositions on a mesh. We suggest some optimizations to the tensor estima-

tion process in order to achieve higher precision on the normals and consequently

on the quality of the estimated tensor. We define a Comparative Tensor Shape Fac-

tor (CTSF) capable of representing the shape similarity between two second-order

tensors, i.e. between two distinct local planar continuity inferences. The CTSF is

invariant to rigid transformations making it suitable for rigid registration. We mod-

ify the matching step of the ICP in order to use a linear combination of the CTSF

and the euclidean distance to achieve more precise correspondences on the closest

point search. We also propose an heuristic optimization of the ICP, varying the

relative weight between the CTSF and the euclidean distance when a local optima

is reached. This works like a coarse-to-fine strategy and enhances the convergence

rate of the alignment between two point sets. Our method is evaluated in situations

of large angle displacements, additive noise, outliers and with partial overlapping

sets, comparing the results obtained to the original ICP and the recent approach

proposed by Bouaziz et al. 3. We statistically show that our method is capable to

reach convergence for wide angles and tolerates a reasonable amount of outliers and

additive noise.

The main contributions of this work are: 1) the CTSF to compare the shape

of two tensors representing local geometry, and 2) the strategy to vary the rela-

tive weight of the CTSF and the euclidean distance, to guide the computation of

successive rigid transformations that improves the chance of global convergence.

Our proposals greatly enhance the registration of point clouds mismatched by wide

angle rotations. The secondary but important contributions include: a method for
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finding smooth normals given a k-neighborhood, a clearly stated comparison pro-

tocol to evaluate registration methods, a point cloud database composed by a large

amount of events that can be used for future quantitative comparisons with our

method.

1.1. Related Works

Since the introduction of the ICP, many approaches have been proposed addressing

issues for the rigid registration problem. Due to the large variety of applications, the

notation and the evaluation procedures used are not standardized, which highlights

the importance of surveys and benchmarks.

Among these surveys, Rusinkiewicz4 addresses variations on six possible stages

of the ICP. Following their taxonomy, our method modifies the matching stage.

Salvi5 proposes a taxonomy for rigid registration methods, classifying them into

coarse and fine. The recent work of Tam6 formulates the registration problem as

data fitting, presenting methods for rigid and non-rigid registration.

In this work, we will follow the taxonomy of Salvi5, and summarize the state-

of-art methods on coarse and fine registration separately. While coarse registration

aims to compute an initial estimation of the rigid transformation, fine registration

assumes that the point clouds are pre-aligned and seek a more accurate solution.

Coarse methods are usually based on the matching of reliable correspondences.

Thus, this problem is closely related to keypoint detection and description on 3D

point clouds, and good keypoint approaches 7 8 9 10 tend to yield good results

on coarse registration. The literature presents benchmarks for keypoint detection11

that can be used for coarse registration. An alternative to keypoints is the use of

local shape descriptors, such as Spin Images 12 and the Hybrid Dimensionality-

Reduction Shape Descriptor 13, that performs an angle-preserving parametrization

in order to represent each point with a 2D Harmonic Map. Usually, coarse meth-

ods use different search strategies to find the transformation, like RANSAC-based

methods14. Among them, the most successful solution is the 4PCS method15, based

on finding small congruent 4-point subsets, which achieves good results even in

the presence of a high amount of outliers and additive noise. Although originally

designed for coarse registration, 4PCS reaches results comparable to fine registra-

tion methods. More recently, a method named Super-4PCS16 was proposed. This

method enhances the 4PCS in terms of speed, achieving linear complexity by the

use of an efficient data indexing, and keeping the alignment quality even in cases of

low overlap. More details on coarse registration methods can be found in the recent

survey of Diez17, which proposes a pipelined classification and presents the current

state-of-art coarse methods.

On fine registration methods, the general effort of the literature is in optimiza-

tions of the ICP method, aiming to enhance its performance in terms of speed,

robustness and accuracy. The survey of Rusinkiewicz and Levoy 4 identifies six

possible stages of the algorithm in which optimizations can be made: selecting a
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subset of points 4, 18, 19, changing the closest point criterion 20, 21, 22, weighting

the correspondences 4, 20, rejecting pairs 23, 24, assigning an error metric 3, 25, 26, 27

and minimizing this error metric 3, 26, 28, 29. Taking into account their taxonomy,

our method only modifies the closest point criterion by combining the CTSF and

the euclidean distance.

In this aspect, we propose a novel successive approximation strategy that dy-

namically changes the closest point criterion, varying the relative weight of the

shape factor and the euclidean distance. The weights are altered every time the

algorithm reaches a local optimum point, increasing the euclidean distance influ-

ence. This strategy guides the algorithm from a coarse alignment, based on tensor

similarity, to a fine alignment, computed from the euclidean distance.

Many works propose modifications on the closest point criterion, using other

information, such as color 20, 21 or geometric compatibility 22, to enhance the quality

of the correspondences. Godin 20 proposes a method called Iterative Compatible

Closest Point that alters the distance metric to consider also similarity by color,

also extensible to other intensity invariants. Sharp et al.’s ICP-IF 22 introduces

the use of geometric invariant features such as curvature, moment invariants and

spherical harmonics invariants on the ICP, altering the closest point criterion to

a linear combination of euclidean distance and feature compatibility. The features

are weighted by a factor α2, whose value is set at each iteration as the mean

squared euclidean distance from the data points to their closest points. This scheme

implicitly reduces the weight of the invariant feature factor as the transformation

bring both point clouds closer to each other. However, this work has as limitation

the need of a point grid to compute the invariant features, which makes it only

applicable on range image alignment. Our work uses a highly similar approach,

considering a linear combination between the factors, but we use a different strategy

of variation of the weight. Also, the CTSF is computed from a k-neighborhood that

can be obtained from raw point data, which extends the application of our method

to point clouds in general.

Discarding bad correspondences is a common strategy to deal with outliers and

missing data. One of the methods that use it is the Trimmed ICP 23, which consists

on discarding the ε% correspondences that have worse euclidean distance values. An

alternative is to discard correspondences according to a distance threshold instead

of a percentage of the mesh. Due to its simplicity, the Trimmed ICP is used as

a standard strategy to deal with partial overlapping, and some works adapt it to

discard correspondences with different distance metrics 27 24.

The choice of the error metric and its minimization plays an important role

on the quality of the result. The literature contains approaches that explore other

minimization methods and other error metrics than the L2 norm. The RICP 25 pro-

poses the use of a Least Median Squares regression to enhance the performance in

the presence of outliers and with missing data. The LM-ICP 26 uses the traditional

Levenberg-Marquardt non-linear optimization algorithm on the parameter space,



December 7, 2016 16:56 WSPC/INSTRUCTION FILE output

Wide Angle Rigid Registration using a Comparative Tensor Shape Factor 5

allowing to use robust kernels and other error metrics. The results achieved are

comparable to the original method in precision and speed. The EM-ICP 30 models

the point clouds as Gaussian Mixture Models, adapting the ICP to an Expectation-

Maximization process.

Among the recent approaches, the Sparse ICP 3 uses Lp norms to change the er-

ror metric. The sparsity induced by the use of Lp norms when p ∈ [0, 1] reduces the

influence of outliers on the transformation estimative, but the optimization prob-

lem becomes non-convex and the minimization is made by Augmented Lagrangian

methods. The Generalized ICP 28 associates each point to a covariance matrix,

computed from a principal component analysis on its nearest neighbors, and as-

sumes that the error between each point and its correspondence is drawn from

a Gaussian distribution. The transformation is then estimated using a maximum

likelihood estimation process. This method was later expanded 31 to build a Multi-

Channel kernel descriptor capable of incorporating features of the images, such as

reflectance coefficients and color, to enhance the quality of the correspondences.

The Anisotropic ICP 27 computes a cross-covariance matrix for each point and uses

this information on the closest point computation and on the error minimization,

adapting the problem to deal with anisotropic and inhomogeneous errors.

Our work links to the Generalized ICP and Anisotropic ICP since these works

also express local geometry information of points on covariance matrices. However,

to our knowledge, our method is the first rigid registration approach to treat local

covariance matrices as second-order tensors and use invariant tensor properties to

compute similarity between patches on both sets. There is a previous method 32,

different than the ICP, that uses second-order tensors computed by a voting process

to solve the rigid registration problem, but this work differs from ours on the use

of a complex geometric algebra formulation, while we use simple tensor coefficients

computed directly from its eigenvalues.

Alternative solutions have been explored in some recent approaches, with com-

petitive results. The GoICP 29 achieves globally optimal solutions under the L2

error for any initial position, integrating the ICP minimization with a branch-and-

bound search on a 3D motion space. The Trimmed ICP was later extended to a Lie

Group parametrization formulation, the LieTrICP 24, which improves the accuracy

on partial overlapping situations and select automatically the amount of points

discarded, reformulating the error function to deal with anisotropic errors through

the use of Lie algebra properties. The LieTrICP is able to retrieve anisotropic scale

transformations, besides the rigid transformation. Another recent approach 33 uses

a novel game-theoretical framework on the establishment of robust correspondences,

introducing the Integral Hash coarse descriptor and reaching competitive results ei-

ther for coarse and fine registration, in situations with different levels of occlusion

and noise.

In fine rigid registration literature, in order to highlight the good performance

of the proposed method, most works present only qualitative comparisons, usually

made with a small number of point clouds and on situations predetermined by
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the author. This type of evaluation is generally inconclusive, because the behavior

observed in a single case may not describe the overall performance of the method.

Our work, in contrast, presents an experimental setup for quantitative evaluation.

For this, we generate a large dataset composed of transformations between two point

clouds that include cases with wide angle initialization, additive noise, outliers and

partial overlapping. With this dataset and a well stated error measurement protocol,

we can characterize the behavior of the methods with different parameter values

and on different situations.

2. Proposed Method

To estimate the local geometry of both point sets, a preprocessing stage based on

a tensor voting process is applied, aiming to estimate orientation tensors that rep-

resent the local geometry. The basic assumption is that when two points belonging

to different viewpoints of the same object have the same neighborhood disposition,

they are likely to represent a common region of one object in different views. Thus,

the estimation of those orientation tensors generates additional information, that

can be used on the ICP algorithm.

This preprocessing method has as input the single 3D position of each point,

not requiring any other information. Since the method relies on nearest neighbors

to compute the tensors, we assume that the input point cloud represents a surface.

Volumetric representations would add internal points among the neighbor lists,

which would affect directly the output of the tensor estimation.

2.1. Tensor Voting Framework

The preprocessing stage used in this work computes a second-order tensor for each

point, representing its local geometric disposition. It is based on the method pro-

posed by Vieira et al. 2, and uses a tensor voting framework based on the well

known work of Medioni et. al.34. Tensor voting has many formulations and deals

efficiently with a wide number of problems on computer vision and computer graph-

ics, including surface reconstruction, stereo vision, edge detection, data repairing

and optical flow, and is acknowledged for its robustness to outliers.

The tensor voting algorithm is the accumulation of the influence of the local

neighborhood on a point, which generates a tensor that encodes an estimation

of the local distribution of a feature. For each point, a voting field is generated.

The point propagates its information as a vote to all his neighbors, and uses the

information cast by them in order to generate the tensor.

The general formulation of the tensor voting algorithm is described by:

Tp =
∑

q∈N(p)

fqp ·Tqp,

where N(p) is the neighborhood of the point, fqp is a scalar field that weights the

influence of each neighbor q ∈ N(p), and Tqp is the vote that each neighbor q casts
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on the point p. In our case, the neighborhood of each point is represented by the list

Lk(p) of its k nearest-neighbors sorted by their euclidean distances. Conversely, we

represent as L−1k (p) the list of points that contains p into its k nearest neighbors.

The method assumes that these lists are previously computed.

Our implementation of the tensor voting is composed by two steps. In the first

step, a coarse estimation of the main curvature directions is obtained for each

point. In the second, the previous estimation is enhanced, increasing the influence

of coplanar structures on the neighborhood, and consequently the local planarity

of the tensor.

2.1.1. First pass - Radial structuring element

The first step builds for each point p a second-order tensor Tp, which accumulates

the weighted sum of stick tensors built from the vectors −→pq, for each neighbor

q ∈ Lk(p). The influence function fqp is a Gaussian decay proportional to the

euclidean distance between p and q with standard deviation σp. This deviation is

proportional to the closeness of the neighbors, such that the farthest neighbor qf
has a weak influence ε, which in our case is set as ε = 0.01.

σp =

√
||−→pqf ||2

ln ε
. (1)

The tensors Tqp are stick tensors built from a tensor product of a normalized

vector v̂qp with itself transposed. In this step, the vote direction v̂qp is the normalized

vector p̂q.

The output of the first step is the set of tensors Tp:

Tp =
∑

q∈Lk(p)

fqp · v̂qp · v̂Tqp =
∑

q∈Lk(p)

e

−||−→pq||2

σ2
p · p̂q · p̂qT , (2)

where the Gaussian influence function fqp is proportional to the euclidean distance

between p and q, with standard deviation σp, as in Eq. (1). The Eq. (2) corre-

sponds to the application of a 3D isotropic radial structuring element. The third

main direction of Tp is a rough estimation of the normal on points with planar

neighborhood.

2.1.2. Second pass - Coplanar structuring element

The tensors Tp obtained in the first step are used as input to the second step.

Here, another structuring element is applied on the point set, in order to enforce

the influence of local coplanar structures. Differently from the first step, here each

point p casts a stick vote on its neighbors q , based on a vector v̂pq, and its influence

on the tensor Sq is given by a function fpq, proportional to the coplanarity between

p and q . This function ensures that points aligned to the tangent plane have higher

influence.
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To estimate v̂pq and fpq, we first bring all points to a different coordinate system,

where the axes (x̂, ŷ, ẑ) are respectively aligned with the normalized eigenvectors

(ê1, ê2, ê3) of Tp. The transformation of each neighbor q to this system is obtained

by the application of a rotation matrix Rp built from ê1, ê2 and ê3 on the vector
−→pq, generating a new point denoted q ′. In this system, the correspondent point p′

of the point p is the origin. Note that −→pq is a column vector (3× 1).

q′ =

ê1ê2
ê3

 · (−→pq).
The next step is to express q′ in spherical coordinates:

ρq′ =
√
q′2x + q′2y + q′2z,

θq′ = tan−1
q′y
q′x

,

φq′ = tan−1
q′z√

q′2x + q′2y

.

For each neighbor q′, there is a unique ellipsoid E with eccentricity tanαellip
that is centered over the ẑ′-axis and tangent to p′ and q′. Figure 1 shows ellipses

with different αellip parameters passing through an arbitrary point, in a 2D repre-

sentation.

The coplanarity between p and a neighbor q is proportional to the distance de
between p′ and q′ over this ellipsoid, which is given by:

g = tanαellip

de(p, q) = ρq′ cosφq′

(
1 +

(
2− 1

g2

)
tan2 φq′

) g2

2g2−1

. (3)

To avoid numerical instabilities on the computation of de(p, q), the angle αellip must

be at least tan−1
√
2
2 ≈ 35.26◦. Smaller values of αellip would result in a negative

base and a negative exponent, yielding an invalid operation.

From the spherical distance defined in Eq. (3) and the standard deviation σp
from Eq. (1), we define the influence fpq, exerted from p on each neighbor q ∈ Lk(p).

Like in previous step, the farthest point in Lk(p), using euclidean distance, has

influence ε.

Points with tanφq′ > tanφmax are discarded to reduce the influence of points

misaligned to the tangent plane.

fpq =

e
−de(p, q)

σ2
p , φq′ ≤ φmax,

0.0 , φq′ > φmax.
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Fig. 1: Left: Family of ellipses (2D representation) passing through the point

(3.0, 1.5) with different values of αellip. Right: 2D geometric representation of the

angles φ, β and vector v̂pq of an arbitrary point q′. Note that v̂pq is normalized.

The vote vector v̂pq requires the computation of the angle βq′ , which is the

angle formed by the x′-axis and the line tangent to E at the point q′. The direction

defined by the angle βq′ is assumed to be an estimation of a vector that belongs to

the tangent plane of q ′. In function of αellip and φq′ , βq′ is:

βq′ = tan−1
2 · tan2 αellip · tanφq′

tan2 αellip − tan2 φq′
.

By the replacement of the angle φq′ for βq′ and the conversion of q ′ back to eu-

clidean coordinates, we obtain a vector v̂′pq = (cos θq′ ·cosβq′ )̂i+(sin θq′ ·cosβq′)ĵ+

(sinβq′)k̂. The vote vector v̂pq is obtained by the application of the inverse rotation

matrix R−1p .

Figure 1 shows a cut of the plan y′ = 0 depicting the vector v̂pq and the angles

φq′ and βq′ for an arbitrary point, in a case where αellip = 30◦.

The vote Spq cast by p on a neighbor q is expressed by:

Spq = fpq · v̂pq · v̂Tpq.

Finally, the resulting tensor Sp for a point p is composed by the weighted sum

of the tensors built from the votes received on the point, cast by all the points that

have p as a neighbor:

Sp =
∑

q∈L−1
k (p)

Sqp =
∑

q∈L−1
k (p)

fqp · v̂qp · v̂Tqp.

2.1.3. Improvements and discussion about the parameters

The differences between the original method 2 and the one proposed and used in

this work are:

(1) We propose an iterative reapplication of the second step, through the recalcu-

lation of the tensors using with Sp as input. With this process, the planarity
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properties of the final tensors are continuously enhanced. The method stops

when the average cp stops improving or a maximum number of iterations is

reached. In all experiments, we use a maximum of 100 iterations.

(2) The original method uses all the points of the cloud as neighborhood and sets

a default value for the standard deviation, equal for all points. We use a k-

neighborhood and set the value of σ proportional to the distance to the k-th

neighbor

(3) The original method uses the normal information for surface reconstruction.

Thus, the computation of the vector v̂pq is set to encode the normal in the

first main direction of the tensor. Our implementation, in turn, encodes the

normal in the third eigenvector, since the region geometry is as important as

the normal itself in our work.

(4) The original approach treats αellip and φmax as the same variable, while we

choose to deattach them.

Figure 2b shows that the method is effective in acquiring better geometry infor-

mation of planar regions even with unrealistic outlier amounts, which is highlighted

on the head of the Octopus. Additive noise is naturally is a hard scenario for the

tensor estimation, since the smoothness of the neighborhood is compromised. How-

ever, with small amounts of additive noise, the method is still capable of encoding

planarity information. In Figure 2c, tensors on the head of the octopus still have

large planarity coefficient values.

(a) Orientation tensors for
the Octopus with k = 25%,

αellip = φmax = 45◦.

(b) Orientation tensors for
the Octopus with 200% of

outliers, k = 25%, αellip =
φmax = 45◦, and 200% of
outliers.

(c) Orientation tensors for
the Octopus with k =

25%, αellip = φmax = 45◦.
In this case, the scale of the
additive noise is up to 1%

of the biggest bounding box

side.

Fig. 2: Different examples for tensor estimation.

The number of neighbors k is an important parameter on the tensor estimation

process. This value affects the scale of the neighborhood and the computation of

σp. Figure 3 shows examples of output tensors of the method for different values
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of k on the Bunny point cloud. If the value of k is very small, the tensor may

have insufficient information of the local geometry, as shown in the result with

k = 1%. In counterpart, for k = 100%, the resulting tensor encodes information on

distant points of the set. This explains the fact that the planarity of the tensors is

generally lower with the increase of k. Larger neighborhoods contain points which

not necessarily are desirable. As example, a point on the back of the bunny consider

neighbors on its ear. However, those points have small influence on the tensor

estimation, and some of them are disconsidered through the φmax angle constraint.

(a) k = 1% = 17 (b) k = 5% = 93 (c) k = 50% = 943 (d) k = 100% = 1888

Fig. 3: (a)-(d): Orientation tensors for the Bunny point cloud, with different values

of k, set as percentuals of the number of points. Tensors highlighted in hotter colors

have higher planarity coefficients. Note that as k gets bigger, the number of red

tensors (i.e. with higher cp) diminish.

Our formulation of considering σp dependent of the k-th nearest neighbor makes

the method sensitive to the density of the point cloud. If this density is not homoge-

neous, σp will have different values on different regions of the point cloud. A decay

based on a distance threshold can produce more uniform results in such cases, but

this would require a parameter calibration for each point cloud, which would be

highly sensitive to its scale. The use of a percentual value of the number of points

makes easier the parameter tuning.

2.2. Comparative Tensor Shape Factor

After the computation of the orientation tensors, we have a local estimative of the

neighborhood distribution for each point of the mesh. Points that have a similar

neighborhood disposition tend to have associated tensors with similar eigenvalues.

Therefore, if we can measure dissimilarity between eigenvalues, we can express

numerically the dissimilarity between the neighborhood distribution of two points,

and this can be used to enhance the quality of correspondences between two meshes.

We define a factor to compare the normalized shapes called Comparative Tensor

Shape Factor (CTSF). A second-order tensor can be geometrically represented as

an ellipsoid, in which the magnitude of its axes is proportional to the eigenvalues of



December 7, 2016 16:56 WSPC/INSTRUCTION FILE output

12 Cejnog et. al.

the covariance matrix. Thus, two ellipsoids have the same shape if the proportion

of their axes, i.e. matrix eigenvalues, is the same.

The tensors Si obtained in the curvature estimation step are normalized using

the L2 matrix norm, obtaining Ŝi. By normalizing the tensors of both Model and

Data point sets, we can compare the local geometry despite the densities involved.

As a consequence, the difference of magnitude of the original tensors is irrelevant

in our method.

The CTSF between two tensors S1 and S2 is given by:

CTSF (S1,S2) =

3∑
k=1

(
λŜ1

k − λ
Ŝ2

k

)2
where λŜm

k is the k-th greatest eigenvalue of the tensor Ŝm. Bigger values of CTSF

indicate tensors with dissimilar shapes.

The eigenvalues of a tensor are invariant to rigid transformations, due to the

isometric nature of these transformations. Therefore, this measure is suitable to

the ICP matching step as a compatibility factor between two points. Table 1 shows

some cases of high and low CTSF between two tensors.

Table 1: Examples of how the CTSF is affected by the geometry of planar tensors.

Note that the CTSF is invariant to the to orientation of the tensors and to their

magnitude, due to the normalization.

Low CTSF High CTSF

2.3. Modified Iterative Closest Point

Assuming that both point sets of the ICP are different visions from the same object

or surface and that the sampling rate of the sets is the same, the geometric neigh-

borhood disposition of a point mi ∈ M is the same of its correspondent dj ∈ D.

Thus, the tensor Smi has the same shape of Sdj , and the CTSF between them tends

to zero.

The modification on the ICP proposed by this work aims to benefit from the

invariance to rigid transformations of the CTSF in order to provide better corre-

spondences on situations where the closest point provided by euclidean distance

can be inaccurate. However, if only shape information is used in the matching step,

the alignment obtained is coarse, and small details on the adjustment of the sets



December 7, 2016 16:56 WSPC/INSTRUCTION FILE output

Wide Angle Rigid Registration using a Comparative Tensor Shape Factor 13

are compromised. Thereby, we consider the distance in the matching step as a com-

bination of the CTSF and the euclidean distance, using a weighting strategy to

control their relative influence.

Our method uses a weighting factor w to combine CTSF and euclidean distance

(ED), and controls the variation of the parameter when the algorithm reaches a

local optimum of the error function. Let i be the number of local optima reached.

We define the matching function as:

d(p, q) = ED(p, q) + wi · CTSF (Sp,Sq),

wi = w0 · bi, b < 1 and 0 ≤ wi < w0

where the parameter b impacts on the variation of the relative weight between

CTSF and euclidean distance at each ICP loop, and w0 is the initial influence of

the euclidean distance, most likely a small value. In practice, the weight of the

CTSF is divided by b every time a local optimum is reached. The algorithm stops

when wi = ε2, ε2 ≈ 0, so that only euclidean distance is considered on its last

loop. With this process we are able to guide the solution in order to give more

importance to the tensor dissimilarity in the first iterations, coarsely recovering the

transformation for higher angle displacements, and to reach fine alignment when the

sets are close enough, condition in which the matching based on euclidean distance

(original ICP formulation) tends to work better. We set w0 = 10000, ε2 = 10−6 and

b = 0.1 as default values of the parameters, but show results with different values

of b. Our method is summarized on Algorithm 1.

Algorithm 1 Modified Version of the ICP algorithm

Require: M,D, k, a, w0

1: Tensor Estimation of M

2: Tensor Estimation of D

3: i← 0

4: wi ← w0

5: while wi > ε2 do

6: C ← Nearest Neighbors(M , D, wi, 1− wi)
7: T ← Transformation Estimation (D, C)

8: if RMS(T ·D, M) < RMS(D, M) then

9: update T

10: else

11: i← i+ 1

12: wi ← b(loga w0)−i

13: end if

14: end while

15: return T

The CTSF and the euclidean distance are measurements of distinct magnitudes,
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since one of them is a distance factor and the other one is a shape dissimilarity

factor.

In the optimization aspect, each step of the weight variation is an execution

of the ICP algorithm with a different relative weight associated to the CTSF on

the matching of points. The weight variation works as a coarse-to-fine successive

approximation method. Each step of the process is a scale reduction of the CTSF

in comparison to the euclidean distance.

The value of b controls the reduction on the weight factor of each step of the

process. With smaller values, the method perform fewer steps, and in most cases

fewer iterations. For values near 1, the method performs more iterations and pos-

sibly reaches better results, since the landscape of the function is changed more

smoothly. Therefore, an increase on b implies on an increase of the precision of the

transformation estimation and bigger chances of convergence. The downside is that

a linear increase on the value of b implies on an exponential increase on the number

of iterations in this formulation.

Since our algorithm alters the matching step of the Iterative Closest Point, it can

be used alongside any minimization strategy. In our experimental setup, we modify

both the original ICP and the Sparse ICP 3 to use the CTSF in the matching step,

combined with the weight variation strategy.

3. Experimental Setup

In rigid registration, it is not usual to make a quantitative evaluation of the methods,

since too much time is spent on the execution on large point clouds. Instead, the

most common is to validate them through qualitative comparison. This kind of

analysis is generally inconclusive, because the behavior observed may not describe

the general performance. To achieve a level of statistical relevance, we propose an

experimental setup composed by a large base of events capable of quantitatively

expressing the behavior of the methods in a variety of situations.

The dataset used in our work is composed by synthetically generated events that

deal with usual issues on rigid registration. We consider an event as an alignment

situation between two point clouds. Our dataset has two types of events: the first

type contains point clouds with outliers and additive noise and the second deals

with partially overlapped point clouds, also synthetically generated.

The base point clouds used in the generation of the events were sampled ver-

sions of the Bunnya, the Happy Buddhaa, the Octopusb and the Genus-2c. For the

Bunny point set we use the smallest zippered version available. The other sampled

point sets were obtained through a Poisson-disk sampling algorithm 35 available

aProvided by Stanford University Computer Graphics Laboratory on http://graphics.stanford.

edu/data/3Dscanrep/ .
bProvided courtesy of INRIA by the AIM@SHAPE-VISIONAIR Shape Repository.
cProvided by École Polytechnique Fédérale de Lausanne Computer Graphics and Geometry Lab-
oratory on http://lgg.epfl.ch/statues_dataset.php

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://lgg.epfl.ch/statues_dataset.php
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on MeshLabd. This sampling process was necessary due to the large number of

executions performed on the experimental setup.

(a) Bunny. (b) Happy
Buddha.

(c) Octopus. (d) Genus-2.

Fig. 4: The point sets used on the experiment: (a): Bunny (containing 1889 points).

(b): Happy Buddha (3118 points). (c): Octopus (3822 points). (d): Genus-2 (2711

points).

Those point sets were chosen because they have different geometric features: the

majority of points of the Bunny have a smooth neighborhood, except the points on

the ears and on the feet, which are high curvature regions. The Happy Buddha also

have many smooth patches, but presents symmetry on the vertical and horizontal

axes. The Octopus, on the other side, has more high curvature patches in its ten-

tacles. The Genus-2 is a point cloud composed mostly by planar regions, but can

be challenging due to its symmetry axes, increasing the chance of misalignment.

Figure 4 shows the point clouds that compose our dataset.

We scale the point sets to a bounding box whose biggest side is 1.0, keeping the

original aspect ratio. This normalization is the first step of the event generation

and is applied before the rigid transformation, the addition of outliers and additive

noise and the generation of the subsets on the partial overlapping case. This way,

the error measurements for all the point clouds are on a similar order of magnitude.

For wide angle result evaluation, we sample the rotation angle interval [0◦ −
180◦] at each 15◦. The dataset has the same number of events for each angle and

parameter configuration. In each event, an axis-angle rotation is applied in one of

the point clouds, through the generation of a random unit vector ~v following an

isotropic distribution in an unit sphere. One of the meshes is rotated around ~v. The

transformation does not include a translation part. We also consider this a more

challenging scenario for the ICP, since there is a bigger chance of reaching a wrong

local minima, specially on wide angles where the sets are incorrectly prealigned.

Additive noise, outliers and partial overlapping are generated randomly by syn-

thetic processes, with a different seed for each process. All the random variables

dhttp://meshlab.sourceforge.net

http://meshlab.sourceforge.net
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(a) (b) (c) (d)

Fig. 5: Examples of application of additive noise and outliers to the Bunny point

set. (a): original Bunny. (b) Bunny with additive noise (δ = 0.10). (c) Bunny with

20% of Outliers. (d) Bunny with additive noise and outliers combined (δ = 0.10

and 20% of outliers).

are generated by a Mersenne Twister pseudo-random number generator. The next

Subsections detail the synthetic algorithms for generation of events with additive

noise, outliers and partial overlapped point clouds. The dataset guarantees that the

results generated are paired, i.e. the same events are executed for all methods.

3.1. Additive Noise and Outliers

The first type of event of the dataset addresses realistic non-optimal scenarios with

additive noise and outliers. The point sets are fully overlapped, that is, all the

points on the base mesh are used to generate both Model and Data meshes, which

are distinguished by the application of a rigid transformation and the addition of

outliers and additive noise on both.

Outliers are randomly generated by a uniform distribution in a sphere with

radius 2.0, with the biggest side of the normalized bounding box having size 1.0.

For additive noise, we perturb each point ~pi adding a vector ~ri, obtained by an

isotropic distribution over an unit sphere, scaled by a factor δ sampled using a

Gaussian distribution: ~pi = ~pi + δ · N (0, 1) · ~ri.
This scheme of synthetic additive noise generation is used since it is a harder

scenario compared to the addition of a perturbation on the normal direction of

each point. We generate events with a variable amount of outliers, 0%, 5% and 20%

of the number of points on the mesh, and a variable perturbation factor δ for the

additive noise: 0, 0.01 and 0.05. Higher amounts of outliers and additive noise does

not represent realistic situations. For δ values bigger than 0.05, the additive noise

degenerates the mesh such that most of its geometrical information is lost. Figure

5 examples the effect of additive noise and outliers.
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3.2. Partial Overlapping

The second type of event addresses partial overlapping situations, simulating the

process of object reconstruction. For that, we generate subsets of the base meshes

that are continuous in relation to the nearest neighbors list, controlling the per-

centage amount of non-overlapping (α) and overlapping points (β) between those

subsets, relative to the number of points on the base mesh. Table 2 shows the

parameter combinations for α and β.

Table 2: Variation of the parameters for the second type of event: percentage of

points on the overlapping region (α) and on the non-overlapping region (β).

α 12.5% 25%

β 75% 50% 25% 12.5% 50% 37.5% 25% 12.5%

The algorithm for synthetic subset generation is a breadth search on the k-

nearest-neighbors list, initiated on a random point to generate the overlapping

region, then generating the non-overlapping regions through a breadth search on

points on the boundary of the overlapping region until the number of points desired

is reached.

As the rate between the overlapping points and the non-overlapping points of

the meshes diminish, it is expected to be harder for the methods to align the point

sets. Like the first type of event, we also sample the rotation angle interval at each

15◦.

Figure 6 shows examples of partial overlapping events.

(a) (b) (c) (d) (e) (f)

Fig. 6: Partial overlapping examples: green points indicate the overlapping region,

and blue and red points indicate the non-overlapping region. (a) and (b): α =

25%, β = 25%, average difficulty. (c) and (d): α = 12.5%, β = 25%, the hardest

parameter setup, since the overlapping region is smaller than the non-overlapping

regions. (e) and (f): α = 12.5%, β = 75%, the easiest parameter setup, since the

overlapping region is big.
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4. Experimental Results

4.1. Error Measurement Protocol

In the fine registration literature, many error measurements are presented, such as

residual errors, convergence regions and rotation and translation error. Since most

works present qualitative results, visual results are shown in order to link these

error measurements with the convergence of the methods on the chosen examples.

Many works also present data on the number of iterations and the time spent on

the execution, in order to highlight their computational efficiency.

In this work, we use two types of error measurements: the ground-truth root

mean squared error (GT-RMS), which is the average euclidean distance between

the points on the first point cloud and their correct correspondences on the second,

and the labeled error, which is the number of correct correspondences between both

clouds.

The GT-RMS error is only measured between inliers, since outliers do not have

correct correspondences. For the same reason, in partial overlapping events, only

points on the overlapping region are considered. As a consequence, this error mea-

surement can only be used with synthetically generated point clouds. It is important

to emphasize the difference between the RMS used on the ICP, measured between

the point and the correspondence estimated by the method, and the GT-RMS, be-

tween the point and its known correct correspondence. The GT-RMS is used only

for error evaluation and cannot be used in the ICP, since it requires a ground-truth

of previously known correspondences.

The labeled error can be used to evaluate cases of exact correspondences, since

there is a guarantee that each point has a correspondent on the other mesh. In

additive noise situations, the exactness of this measurement is lower, because the

original position of the points is modified.

For the quantitative analysis, we have two clear result patterns - success and

failure. If an algorithm fails to reach alignment on an event, it does not matter

whether the final error obtained is big or not. Mean and standard deviation of the

GT-RMS can be affected by the magnitude of the error in failure cases, and this

fact can lead to wrong conclusions about the method performance. Therefore, the

convergence rate can be better analyzed through a success/failure histogram. As

a global success rate, we count the number of successful experiments through a

threshold segmentation on the GT-RMS error and the labeled error, whose limit

values are set based on previous qualitative observations and depend of the amount

of additive noise and outliers.

For events with fully overlapped point clouds, the threshold criterion considered

is simple on situations without additive noise: 95% of the correspondences must be

correct, and the GT-RMS error is at maximum 10−2. Outliers would not alter the

GT-RMS criterion neither the labeled error, so the threshold criterion stands the

same.

As stated before, additive noise can affect the exactness of the error measure-
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ments. The number of correct labeled correspondences tends to decay even on

successful cases, but it is still possible to distinguish success from failure by those

thresholds. In these cases, we define a minimal labeled error of 100 correct corre-

spondences combined with a maximal RMS error of 0.1, so that it is highly unlikely

that a failure event is not identified by those threshold values. However, with high

levels of additive noise, this threshold segmentation becomes harder, and some suc-

cessful events might be classified as a failure. Table 3 shows the threshold values

considered on our evaluation.

Table 3: Threshold values used for events with additive noise and outliers

Situation Max GT-RMS Min labeled
Without additive noise 10−2 Np · 95%

With additive noise 10−1 100 points

On the partial overlapping events, both labeled error and RMS error were calcu-

lated considering only the ground-truth correspondences of the overlapping region.

We consider an event successful when its GT-RMS error is lower than a threshold of

0.05 and it has more than 90% of the points on the overlapping region with correct

labeled correspondences. The list of ground-truth correspondences is computed on

the subset generation algorithm.

4.2. Results with additive noise and outliers

To characterize the behavior of our method with different parameter values, we

separate 15 events of the first type for each value of angle, additive noise and

outliers, performing a preliminary step with 36 combinations of method parameters,

i.e. the size of the nearest neighbor list (k), the ellipsoid angle αellip and the cut angle

φmax. The parameter b is set as 0.1 in this step, since this parameter is independent

from the others, and its behavior is known: bigger values reaches better results

performing more iterations. We use a value that is a midterm between performance

and time spent.

In this preliminary step, the correspondences are always established using the

CTSF-based matching and the transformation is estimated using Horn quaternion

method 36. The difference between the methods is in the information encoded on

tensors that are used as input for the ICP.

Table 4 shows the parameter configurations evaluated on the preliminary step.

Thereupon, we use the parameter values that presented better results and exe-

cute more 30 events to compare the behavior of our method with other approaches.

We raise the value of the parameter b to 0.75 in order to achieve better results,

since the amount of methods to be executed is lower. In this step, we execute the

original ICP and the Sparse ICP 3 (here shortened S ICP), with both matching

functions based on CTSF and euclidean distance.
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Table 4: Combination of parameters αellip and φmax. For each pair, we execute 15

events with different values of k: 1%, 5%, 25%, 50%, 75%, 100%

.
αellip 30◦ 30◦ 45◦ 30◦ 45◦ 60◦

φmax 36◦ 45◦ 45◦ 60◦ 60◦ 60◦

The first step of the experiment is not executed with the Sparse ICP because

it would yield a high computational cost. Yet, since all the parameters evaluated

affect only the tensor estimation, the correspondences provided by the CTSF are

the same. Thus, parameters that yield better results on the Original ICP with the

CTSF should also reach better results on other methods using the CTSF.

For the Sparse ICP, we use the norm parameter p = 0.4, which offers a good

trade-off between performance and robustness, according to its authors. The error

sequence of the Sparse ICP, unlike the original ICP, is not monotonically descent, so

the standard method stops when a fixed number of ICP iterations is made, whose

default value is 100, or when the error reaches below a stopping threshold. In order

to adapt the CTSF weighting scheme to the Sparse ICP method, for each weight

value we execute 100 iterations of the method or until the error is smaller than the

threshold parameter. The decay of the weight parameter is the same as described

in Algorithm 1. The stopping threshold error parameter is set to 10−5. The other

parameters are the default parameters of the source code made available by the

authorse.

4.2.1. First Step - Best parameter search

In the first step of the experimental setup for outliers and additive noise we high-

light the parameter combination with the best overall performance for each point

cloud, and some of the observed tendencies. We perform 15 experiments for each

configuration, although ideally more results should be generated in order to obtain

better statistical backup.

The results are grouped by the presence/absence of outliers and additive noise.

The last row is the overall success rate of the method. Since the experiments are

paired, the same conditions were tested for all the methods. Table 5 shows for each

point cloud and value of k the best average success rate of the combinations in

Table 4.

In general, for all point clouds, higher values of k lead to better results with

outliers. It is intuitive that the influence of an outlier will be attenuated as the

neighborhood gets larger. Although larger neighborhoods include either outliers

and inliers, the coplanarity induced by the second step of the tensor estimation

process makes the tensors encode effectively the surface geometry and attenuates

the influence yielded by neighbors misaligned to the tangent plane. This way, tensors

eAvailable at https://code.google.com/p/sparseicp/

https://code.google.com/p/sparseicp/
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Table 5: Results with additive noise and outliers.

Bunny

k αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

100.00% 60◦ 45◦ 100.00% 100.00% 100.00% 97.78% 99.01%
75.00% 45◦ 45◦ 100.00% 100.00% 100.00% 100.00% 100.00%
50.00% 45◦ 30◦ 100.00% 100.00% 100.00% 99.86% 99.94%
25.00% 60◦ 30◦ 100.00% 100.00% 99.17% 96.94% 98.46%
5.00% 60◦ 45◦ 100.00% 88.89% 69.44% 55.97% 71.17%
1.00% 60◦ 60◦ 100.00% 79.44% 48.61% 35.42% 55.31%

Happy Buddha

k αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

100.00% 60◦ 60◦ 100.00% 99.17% 99.44% 93.61% 96.85%
75.00% 45◦ 30◦ 100.00% 90.83% 98.89% 86.53% 91.73%
50.00% 60◦ 60◦ 100.00% 100.00% 98.61% 87.92% 94.32%
25.00% 60◦ 30◦ 100.00% 87.78% 77.50% 57.08% 73.21%
5.00% 60◦ 30◦ 100.00% 85.28% 48.89% 33.61% 55.86%
1.00% 60◦ 60◦ 100.00% 95.28% 38.89% 29.03% 53.83%

Octopus

k αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

100.00% 60◦ 45◦ 100.00% 90.56% 100.00% 93.33% 94.94%
75.00% 60◦ 45◦ 100.00% 94.17% 99.44% 90.00% 94.14%
50.00% 60◦ 30◦ 100.00% 90.83% 88.89% 76.39% 85.00%
25.00% 60◦ 30◦ 100.00% 90.83% 83.06% 68.89% 80.37%
5.00% 60◦ 60◦ 100.00% 93.61% 58.89% 52.36% 68.27%
1.00% 60◦ 60◦ 100.00% 95.28% 39.72% 32.27% 55.44%

Genus-2

k αellip φmax Clean Noise Outliers
Noise +
outliers

Overall

100.00% 60◦ 60◦ 100.00% 91.67% 86.11% 73.06% 83.09%
75.00% 60◦ 30◦ 100.00% 93.06% 83.89% 69.58% 81.36%
50.00% 60◦ 60◦ 100.00% 91.11% 82.50% 65.14% 78.64%
25.00% 60◦ 60◦ 100.00% 95.56% 72.22% 59.72% 74.94%
5.00% 60◦ 45◦ 100.00% 81.39% 49.72% 45.00% 60.25%
1.00% 60◦ 60◦ 100.00% 87.22% 47.50% 40.42% 59.01%

with higher values of k are more robust to the presence of outliers, and conversely

achieve better results on the experiment.

Additive noise affects directly the structure of the surface. Therefore, tensors are

likely to lose their planarity and the precision of their estimation becomes lower,

regardless of the size of the neighborhood. In most cases, the performance was

similar for all values of k, and even smaller values like k = 1% reached consistent

results in cases with only additive noise. However, since those values are sensitive to

outliers, the overall performance is worse, and bigger values of k are recommended

for more robustness.

The angle parameters αellip and φmax had only a slight influence on the re-

sults, such that there is no dominant parameter combination. The method is more

sensitive to variations on the parameter k, especially for higher angle displacements.

The predominance of low-curvature regions and the absence of symmetry of the

Bunny improve the accuracy of the correspondences generated by the CTSF, yield-

ing better results than the other point clouds tested, with an overall performance
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above 90% with k ≥ 25%. More specifically, k = 75% obtained better results and

the overall performance of small values of k was negatively impacted by outliers.

The chosen parameter combination for the second step was k = 75%, αellip = 60◦,

φmax = 60◦, that yielded success in 100% of the events.

On the Happy Budha point cloud, high convergence rates were reached for

k ≥ 50%. The performance in cases with only additive noise was not impacted, but

lower values of k had problems dealing with outliers. The parameter combination

chosen was k = 100%, αellip = 60◦, φmax = 60◦, with an overall convergence rate

of 96.85%.

On the Octopus, the differences of performance between the values of k were

more distinguishable in cases with outliers, in which bigger values of k reached bet-

ter results. For cases with only additive noise, the performance was similar between

the different parameters. The combination chosen was k = 100%, αellip = 60◦,

φmax = 45◦, with overall performance of 94.94%.

The Genus-2 was the hardest point cloud of the dataset. The performance was

strongly affected by outliers, impacting negatively the overall success rates. The

best overall success rate was 83.09%, with k = 100%, αellip = 60◦, φmax = 60◦.

This combination of parameters performed particularly well with outliers, reaching

86.11% with only outliers and 73.09% with both outliers and noise, smaller rates if

compared to the results on the other point clouds.

4.2.2. Second Step - Best result search

In this step, we used the best parameters obtained on the first step for more 30

executions on each point cloud. The methods evaluated were the Original ICP and

the Sparse ICP, with matching functions based on the CTSF and euclidean distance.

The value of b was raised to 0.75, in order to enhance the results of the method.

This also increases the execution time of the method, and the time spent on most

executions of the Sparse ICP combined with the CTSF was very high, if compared

to other methods.

For this step, we detail the success rate for each level of outlier and additive

noise. The Tables 6, 7, 8 and 9 show the better performance of the CTSF methods,

and Figures 7, 8, 9 and 10 show that the performance difference is bigger on high

angles. This was expected, since such results are similar to the ones obtained on the

first step for this parameter combination, and fine methods were not designed to

cope with bad initialization situations. However, with small angles (up to 30◦) the

convergence rates are reasonable for the original methods with euclidean distance-

based matching. This way, the results obtained are coherent, and with the proper

coarse initialization the methods should be able to reach better convergence rates.
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Table 6: Success per noise and

outlier level - Bunny

ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 29.44% 29.44% 21.11% 26.67%

σ = 0.01 16.94% 21.94% 14.17% 17.69%

σ = 0.05 16.67% 18.61% 13.06% 16.11%

Overall 21.02% 23.33% 16.11% 20.15%

S ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 44.44% 45.56% 40.56% 43.52%

σ = 0.01 41.11% 40.28% 35.28% 38.89%

σ = 0.05 32.78% 33.61% 28.89% 31.76%

Overall 39.44% 39.81% 34.91% 38.06%

ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.72% 100.00% 99.91%

σ = 0.01 100.00% 100.00% 100.00% 100.00%

σ = 0.05 100.00% 100.00% 100.00% 100.00%

Overall 100.00% 99.91% 100.00% 99.97%

S ICP
CTSF

0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 95.00% 100.00% 98.33%

σ = 0.01 100.00% 100.00% 100.00% 100.00%

σ = 0.05 100.00% 100.00% 98.33% 99.44%

Overall 100.00% 98.33% 99.44% 99.26%
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Fig. 7: Success per angle - Bunny

Table 7: Success per noise and

outlier level - Happy

ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 40.00% 40.56% 33.06% 37.87%

σ = 0.01 22.50% 30.00% 21.39% 24.63%

σ = 0.05 33.61% 36.39% 31.39% 33.80%

Overall 32.04% 35.65% 28.61% 32.10%

S ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 48.06% 49.17% 33.33% 43.52%

σ = 0.01 47.22% 47.22% 33.61% 42.69%

σ = 0.05 41.39% 43.06% 36.11% 40.19%

Overall 45.56% 46.48% 34.35% 42.13%

ICP-CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 100.00% 100.00% 100.00%

σ = 0.01 100.00% 100.00% 95.28% 98.43%

σ = 0.05 99.44% 98.61% 92.50% 96.85%

Overall 99.81% 99.54% 95.93% 98.43%

S ICP
CTSF

0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 86.94% 75.00% 87.31%

σ = 0.01 100.00% 98.89% 76.67% 91.85%

σ = 0.05 91.11% 87.22% 73.33% 83.89%

Overall 97.04% 91.02% 75.00% 87.69%
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Fig. 8: Success per angle - Happy
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Table 8: Success per noise and

outlier level - Octopus

ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 14.44% 16.94% 8.89% 13.43%

σ = 0.01 11.39% 14.72% 6.11% 10.74%

σ = 0.05 9.72% 14.17% 6.11% 10.00%

Overall 11.85% 15.28% 7.04% 11.39%

S ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 26.39% 28.33% 29.44% 28.06%

σ = 0.01 26.11% 23.06% 26.39% 25.19%

σ = 0.05 20.00% 24.44% 25.28% 23.24%

Overall 24.17% 25.28% 27.04% 25.49%

ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 100.00% 100.00% 100.00%

σ = 0.01 96.94% 100.00% 100.00% 98.98%

σ = 0.05 90.56% 98.32% 94.66% 94.50%

Overall 95.83% 99.44% 98.23% 97.83%

S ICP
CTSF

0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.17% 95.28% 98.15%

σ = 0.01 100.00% 98.61% 92.44% 97.03%

σ = 0.05 94.17% 91.94% 89.66% 91.93%

Overall 98.06% 96.57% 92.47% 95.70%
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Fig. 9: Success per angle - Octopus

Table 9: Success per noise and

outlier level - Genus-2

ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 36.94% 36.11% 34.72% 35.93%

σ = 0.01 30.56% 32.50% 23.89% 28.98%

σ = 0.05 31.01% 29.72% 31.94% 30.89%

Overall 32.84% 32.78% 30.19% 31.93%

S ICP 0.00% 5.00% 20.00% Overall

σ = 0.00 50.83% 51.94% 50.28% 51.02%

σ = 0.01 45.83% 48.06% 49.17% 47.69%

σ = 0.05 39.44% 39.44% 43.06% 40.65%

Overall 45.37% 46.48% 47.50% 46.45%

ICP CTSF 0.00% 5.00% 20.00% Overall

σ = 0.00 100.00% 99.17% 82.78% 93.98%

σ = 0.01 99.44% 95.83% 76.67% 90.65%

σ = 0.05 90.25% 81.11% 65.28% 78.87%

Overall 96.57% 92.04% 74.91% 87.84%

S ICP
CTSF

0.00% 5.00% 20.00% Overall

σ = 0.00 99.17% 63.31% 56.39% 72.98%

σ = 0.01 71.39% 63.33% 58.31% 64.37%

σ = 0.05 65.27% 61.11% 55.83% 60.72%

Overall 78.64% 62.58% 56.84% 66.03%
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Fig. 10: Success per angle - Genus-2

The Sparse ICP with the CTSF obtained poor convergence rates on the Genus-2

point cloud, which was pointed out in the first step as the hardest point cloud of

the dataset. The graphic shows that the Sparse ICP was affected by high angles,

probably because of the number of a local optima easily reachable from angles

bigger than 90◦.

4.3. Results with partial overlapping

In this type of event, we evaluate 30 events for each parameter configuration of angle

and overlapping/non-overlapping amount. The methods chosen were the Sparse ICP

method, the original ICP, and its trimmed version, using match functions based

on the euclidean distance and on the CTSF. As stated before, it is known that

the original ICP formulation is not proper for partially overlapped point clouds,

therefore its performance tends to be poor.
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In this case, we chose not to do the preliminary step and use the values of

αellip = 45◦ and φmax = 45◦, due to the high computational time that would be

spent.

Specifically on partially overlapped point clouds, only correspondences between

points over the common region are considered correct. The effectiveness of the CTSF

is possibly lower, because the neighborhood of the points on the overlapping region

can include points outside of this region, generating different tensors for each point

cloud. As the value of k increases, the difference between the regions represented by

the tensors would also increase, since points outside of the overlapping region have

a bigger chance of being used in the computation of the tensor. Conversely, smaller

values of k have a tendency to provide similar tensors between correspondences on

the overlapping region, since the number of neighbors outside this region tends to

be smaller and limited to a boundary of the region. If the size of the neighborhood

is too small, however, the information cast on the tensors can be insufficient to

represent the local geometry. We test four values of k: 15%, 10%, 5% and 1% of the

points.

The Trimmed ICP was included on the evaluation of this type of event since it is

a classical strategy to deal with partial overlapping point sets. For this method, we

fixed the amount of discarded points in 10% of the number of points of the mesh,

although ideally the amount should be proportional to the overlapping percentage.

In practical situations, the amount of overlapping between the point sets usually is

unknown. Therefore, this value is set as an intermediate value.

Table 10 shows the percentual convergence rate per overlapping and non-

overlapping amount.

In this experiment, it is clear that the CTSF enhances the convergence of the

ICP also in partial overlapping situations. In the large majority of situations, the

CTSF-based methods obtained better results than the original methods. However,

the success rates were nowhere near the ones obtained on full overlap events, and

there is a substantial decay as the proportion between the number points over the

overlapping region and over the non-overlapping region gets smaller.

The Sparse ICP with the CTSF presented the best overall performance with

partial overlapping. All the CTSF-based methods presented a slight variation with

relation to the rotation angle, which indicates that the CTSF is effective for high

angle displacements even in partial overlapping situations, yielding approximately

the same convergence probability for all angle values. However, most of the param-

eter combinations for partial overlapping had proven themselves as hard scenarios,

with very low convergence rates. The Sparse ICP had an advantage in comparison

to the Trimmed ICP in this aspect, reaching much better rates particularly in cases

where α = 25%, for which the Trimmed ICP was hardly successful. The original

ICP method combined with the CTSF achieved good results for α = 12.5% and

β = 75% on the Bunny and Happy Budha, but in general performed poorly.

As expected, smaller values of k presented slightly better results, with the excep-

tion of the Bunny. This tendency is more easily observed on cases with a low over-
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Table 10: Partial Overlapping results

Bunny

α 12.5% 25.0%
Overall

β 75.0% 50.0% 25.0% 12.5% 50.0% 37.5% 25.0% 12.5%

ICP-CTSF k = 15% 91.39% 95.00% 16.39% 00.00% 45.83% 04.72% 00.28% 00.00% 31.70%

ICP-CTSF k = 10% 95.00% 95.83% 16.39% 00.00% 50.28% 05.28% 00.28% 00.00% 32.88%

ICP-CTSF k = 5% 93.89% 89.44% 19.72% 00.28% 50.00% 05.56% 00.00% 00.00% 32.36%

ICP-CTSF k = 1% 75.83% 78.06% 21.94% 00.28% 44.44% 08.06% 00.00% 00.00% 28.58%

ICP 18.61% 16.67% 01.67% 00.00% 06.39% 01.39% 00.00% 00.00% 05.59%

S ICP-CTSF k = 15% 93.89% 94.72% 72.22% 26.11% 84.12% 73.06% 50.70% 00.00% 61.85%

S ICP-CTSF k = 10% 95.56% 96.94% 73.33% 27.50% 87.19% 80.78% 56.55% 00.00% 64.72%

S ICP-CTSF k = 5% 95.56% 93.33% 75.56% 33.89% 89.69% 78.33% 55.00% 00.00% 65.16%

S ICP-CTSF k = 1% 93.33% 93.89% 71.31% 32.22% 89.94% 75.21% 58.89% 00.00% 64.33%

S ICP 41.67% 29.44% 13.65% 06.11% 29.05% 17.83% 09.44% 00.00% 18.39%

Happy

α 12.5% 25.0%
Overall

β 75.0% 50.0% 25.0% 12.5% 50.0% 37.5% 25.0% 12.5%

ICP-CTSF k = 15% 76.39% 80.00% 07.50% 00.00% 06.67% 00.28% 00.00% 00.00% 21.35%

ICP-CTSF k = 10% 93.06% 85.00% 07.78% 00.00% 06.39% 00.00% 00.00% 00.00% 24.03%

ICP-CTSF k = 5% 95.28% 88.33% 11.39% 00.00% 08.33% 00.28% 00.00% 00.00% 25.45%

ICP-CTSF k = 1% 99.17% 93.33% 15.83% 00.00% 09.72% 00.28% 00.00% 00.00% 27.29%

ICP 31.11% 20.28% 01.39% 00.00% 01.67% 00.00% 00.00% 00.00% 06.81%

S ICP-CTSF k = 15% 78.21% 82.45% 48.75% 01.39% 73.45% 53.61% 21.39% 00.00% 44.81%

S ICP-CTSF k = 10% 89.89% 88.02% 53.20% 02.50% 77.12% 56.67% 27.78% 00.00% 49.27%

S ICP-CTSF k = 5% 92.66% 91.34% 57.38% 06.94% 89.17% 64.72% 32.22% 00.00% 54.09%

S ICP-CTSF k = 1% 94.25% 94.40% 55.99% 09.44% 91.27% 71.94% 39.17% 00.00% 56.80%

S ICP 46.57% 34.73% 10.86% 01.67% 33.61% 20.28% 07.22% 00.00% 19.26%

Octopus

α 12.5% 25.0%
Overall

β 75.0% 50.0% 25.0% 12.5% 50.0% 37.5% 25.0% 12.5%

ICP-CTSF k = 15% 81.11% 58.06% 02.22% 00.00% 04.44% 00.00% 00.00% 00.00% 18.23%

ICP-CTSF k = 10% 87.78% 57.78% 02.22% 00.00% 04.44% 00.00% 00.00% 00.00% 19.03%

ICP-CTSF k = 5% 90.28% 63.61% 02.50% 00.00% 03.89% 00.00% 00.00% 00.00% 20.03%

ICP-CTSF k = 1% 92.78% 75.28% 03.89% 00.00% 03.61% 00.00% 00.00% 00.00% 21.94%

ICP 14.17% 8.33% 00.56% 00.00% 00.28% 00.00% 00.00% 00.00% 02.92%

S ICP-CTSF k = 15% 98.33% 74.72% 25.83% 02.50% 62.78% 42.50% 19.72% 00.00% 40.80%

S ICP-CTSF k = 10% 99.17% 72.50% 23.89% 03.06% 73.61% 43.61% 21.94% 00.00% 42.22%

S ICP-CTSF k = 5% 99.44% 75.56% 31.67% 02.22% 72.50% 49.44% 24.15% 00.00% 44.43%

S ICP-CTSF k = 1% 99.72% 79.17% 28.61% 03.06% 83.33% 76.39% 36.54% 00.00% 50.89%

S ICP 26.67% 23.33% 10.28% 00.83% 20.56% 20.00% 10.83% 00.00% 14.06%

Genus-2

α 12.5% 25.0%
Overall

β 75.0% 50.0% 25.0% 12.5% 50.0% 37.5% 25.0% 12.5%

ICP-CTSF k = 15% 77.22% 77.78% 15.56% 00.28% 12.50% 00.28% 00.00% 00.00% 22.95%

ICP-CTSF k = 10% 82.50% 81.67% 18.33% 00.28% 15.00% 00.00% 00.00% 00.00% 24.72%

ICP-CTSF k = 5% 83.06% 84.17% 22.50% 00.28% 15.28% 00.00% 00.00% 00.00% 25.66%

ICP-CTSF k = 1% 83.89% 83.61% 25.56% 00.28% 17.22% 00.00% 00.00% 00.00% 26.32%

ICP 27.22% 19.17% 03.06% 00.00% 05.28% 00.00% 00.00% 00.00% 06.84%

S ICP-CTSF k = 15% 75.83% 76.94% 52.50% 02.50% 71.11% 66.94% 26.11% 00.00% 46.49%

S ICP-CTSF k = 10% 85.56% 83.61% 56.11% 03.06% 79.72% 75.28% 34.72% 00.00% 52.26%

S ICP-CTSF k = 5% 90.28% 88.06% 61.11% 07.78% 86.11% 83.89% 43.06% 00.00% 57.53%

S ICP-CTSF k = 1% 91.67% 83.89% 61.67% 13.33% 88.89% 82.78% 53.33% 00.00% 59.44%

S ICP 47.50% 38.06% 19.17% 03.89% 38.06% 28.89% 11.67% 00.00% 23.40%
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lapping amount. The reduction of the number of points on the overlapping region

significantly impacted both Sparse ICP-CTSF and Trimmed ICP-CTSF methods.

On Table 10, we observe that the convergence rates were particularly lower when

β = 12.5%, and null in cases where β = 12.5% and α = 25%. Besides the natural

difficulty of events with small overlapping regions, the CTSF also loses part of its

accuracy in these cases, because the neighborhood used for the tensor estimation

is hardly similar on points on both meshes.

Figure 11 shows a successful case of partial overlapping alignment for the Genus-

2.

(a) Iteration 1

RMS = 0,522

GT-RMS = 0,450

(b) Iteration 7

RMS = 0,330

GT-RMS = 0,270

(c) Iteration 20

RMS = 0,113

GT-RMS = 0,165

(d) Iteration 40

RMS = 0,060

GT-RMS = 0,099

(e) Iteration 92

RMS = 0,006

GT-RMS = 0,001

Fig. 11: Convergence for the Genus-2, partial overlapping with α = 75%, β =

12.5%, rotation of 105◦. Method: Trimmed ICP+CTSF, with k = 1%, αellip = 60◦,

φmax = 45◦. Green points indicate correct correspondences.

5. Conclusion

This work presents a new method for rigid registration, based on tensor eigenval-

ues. This is the first rigid registration approach that treats covariance matrices as

second-order tensors. The tensors are estimated by a two-step voting process us-

ing 3D tensor structuring elements, aiming to infer how likely their neighborhood

form a surface. In order to use of the tensor information on the ICP, we define the

CTSF, a similarity factor based on tensor invariant features. This factor is used

on the ICP matching step in order to enhance the quality of correspondences. An

heuristic weighting strategy between the euclidean Distance and the CTSF is pro-

posed to guide the solution from a coarse alignment, based on tensor dissimilarity,

to fine, based on euclidean distance. This enhances the convergence probability,

specially on wider initial angle situations. Since only the matching step is modified,

our approach can be used alongside many minimization methods. The major draw-

back is the preprocessing time needed for the tensor estimation, specially on large

point sets.
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The analysis made on our dataset is quantitative and considers only the success

or failure of each event. On that sense, our experiments reveal that the convergence

rate of the CTSF methods is enhanced in situations of wider angles, additive noise

and outliers when compared to their respective non-CTSF versions. On partial

overlapping situations, the CTSF was capable of enhancing the convergence of the

Trimmed ICP and the Bouaziz’s method in general. The wide angle registration of

partial overlapping surfaces makes easier the task of 3D object reconstruction, thus

the importance of such results.

The main parameter added to the ICP is the size k of the neighborhood of each

point, which defines the extent of the structuring elements in the tensor estimation.

It is important to note that no input point is discarded at any time during the pro-

cess. Our method takes into account the information of all input points regardless

they are inliers or outliers.

As future works, the CTSF can be used as a dissimilarity factor between any

second-order tensors and applied in tasks other than rigid registration. Since our

heuristic weights euclidean distance and dissimilarity between tensors, any covari-

ance matrix that represents locally the surface can be used instead of ours. Other

variants of the ICP can also be adapted to use the CTSF to enhance the alignment.

Our tensor estimation step can be optimized in terms of speed, by computing the

nearest neighbors list faster. It is also possible to determine a value of k that adapts

better for each region of the mesh.

For more detailed results and discussions about the parameters of the method,

we recommend refer to 37. The dataset used on the experiment can be found at

www.gcg.ufjf.br/datasets/icpctsf.zip.

Acknowledgment

We would like to thank CAPES and FAPEMIG for financial support.

References

1. P. J. Besl, N.D. McKay. ”A method for registration of 3-D shapes”. Pattern analysis
and machine intelligence, IEEE Transactions on 14.2 (1992), p. 239-256.

2. M. B. Vieira, P. Martins, A. Araujo, M. Cord, S. Philipp-Foliguet, ”Smooth surface re-
construction using tensor fields as structuring elements”. Computer Graphics Forum,
Vol. 23, Wiley Online Library, 2004, p. 813–823.

3. S. Bouaziz, A. Tagliasacchi, M. Pauly, ”Sparse iterative closest point”, Computer
Graphics Forum, Vol. 32 (5), Wiley Online Library, 2013, pp. 113-123. doi:10.1111/
cgf.12178.

4. S. Rusinkiewicz, M. Levoy, ”Efficient variants of the icp algorithm”, in: 3-D Digital
Imaging and Modeling, 2001. Proceedings. Third International Conference on, IEEE,
2001, p. 145–152.

5. J. Salvi, C. Matabosch, D. Fofi, J. Forest, ”A review of recent range image registration
methods with accuracy evaluation”, Image and Vision Computing 25 (5), Elsevier,
2007, p. 578–596.

6. G. Tam, Z.-Q. Cheng, Y.-K. Lai, F. Langbein, Y. Liu, D. Marshall, R. Martin, X.-F.

www.gcg.ufjf.br/datasets/icpctsf.zip
http://dx.doi.org/10.1111/cBouazizgf.12178
http://dx.doi.org/10.1111/cgf.12178
http://dx.doi.org/10.1111/cgf.12178


December 7, 2016 16:56 WSPC/INSTRUCTION FILE output

Wide Angle Rigid Registration using a Comparative Tensor Shape Factor 29

Sun, P. Rosin, ”Registration of 3d point clouds and meshes: A survey from rigid to
nonrigid”, Visualization and Computer Graphics, IEEE Transactions on 19 (7, 2013,
p. 1199–1217. doi:10.1109/TVCG.2012.310.

7. D. Michael, H. Bischof. ”3D segmentation by maximally stable volumes (MSVs).”
,18th International Conference on Pattern Recognition (ICPR’06). Vol. 1. IEEE, 2006.
p.63-66

8. J. Sun, M. Ovsjanikov, L. Guibas, ”A concise and provably informative multi-scale
signature based on heat diffusion”, in: Computer graphics forum, Vol. 28, Wiley Online
Library, 2009, pp. 1383–1392.

9. Y. Zhong, ”Intrinsic shape signatures: A shape descriptor for 3d object recognition”,
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Con-
ference on, IEEE, 2009, p. 689–696.

10. H. Pottmann, J. Wallner, Q.-X. Huang, Y.-L. Yang, ”Integral invariants for robust
geometry processing”, Computer Aided Geometric Design 26 (1), Elsevier, 2009, p.
37–60.

11. E. Boyer, A. M. Bronstein, M. M. Bronstein, B. Bustos, T. Darom, R. Horaud, I. Hotz,
Y. Keller, J. Keustermans, A. Kovnatsky, et al., ”Shrec 2011: robust feature detec-
tion and description benchmark”, 3DOR2011-Eurographics Workshop on 3D Object
Retrieval, 2011, pp. 71–78.

12. A. E. Johnson, M. Hebert, ”Using spin images for efficient object recognition in clut-
tered 3d scenes”, Pattern Analysis and Machine Intelligence, IEEE Transactions on
21 (5), 1999, p. 433–449.

13. W.-l. Li, Z.-p. Yin, Y.-a. Huang, Y.-l. Xiong, ”Automatic registration for 3d shapes us-
ing hybrid dimensionality-reduction shape descriptions”, Pattern Recognition 44 (12),
IEEE, 2011, pp. 2926–2943.

14. C.-S. Chen, Y.-P. Hung, J.-B. Cheng, ”Ransac-based darces: A new approach to fast
automatic registration of partially overlapping range images”, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 21 (11), IEEE, 1999, pp. 1229–1234.

15. D. Aiger, N. J. Mitra, D. Cohen-Or, ”4-points congruent sets for robust pairwise
surface registration”, in: ACM Transactions on Graphics (TOG), Vol. 27, ACM, 2008,
p. 85.

16. N. Mellado, D. Aiger, N. J. Mitra, ”Super 4pcs fast global pointcloud registration via
smart indexing”, in: Computer Graphics Forum, Vol. 33, Wiley Online Library, 2014,
pp. 205–215.
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