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In the pairwise rigid registration problem, we need to find a rigid transformation that

aligns two point clouds. The classical and most common solution is the Iterative Closest
Point (ICP) algorithm. However, the ICP and many of its variants require that the point

clouds are already coarsely aligned. We present in this paper a method named Shape-

based Weighting Covariance Iterative Closest Point (SWC-ICP) which improves the
possibility to correctly align two point clouds, regardless of the initial pose, even when

they are only partially overlapped, or in the presence of noise and outliers. It benefits

from the local geometry of the points, encoded in second-order orientation tensors, to
provide a second correspondences set to the ICP. The cross-covariance matrix computed

from this set is combined with the usual cross-covariance matrix, following a heuristic

strategy. In order to compare our method with some recent approaches, we present a
detailed evaluation protocol to rigid registration. Results show that the SWC-ICP is

among the best compared methods, with a better performance in situations of wide
angular displacement of noisy point clouds.

Keywords: Rigid Registration; Iterative Closest Point; Orientation Tensor; Shape Dis-

similarity; Computational Geometry.

1. Introduction

Surface registration is a problem found in many areas, such as shape acquisition,

medical images support, simultaneous localization and mapping (SLAM), quality

inspection, and others. In this paper we focus on pairwise rigid registration, a sub-

problem where a rigid transformation is sought to align two point clouds.

The classical solution to rigid registration is the Iterative Closest Point (ICP)1.

Issues like only partially overlapped scans, point clouds corrupted by noise and out-

liers, or incomplete models, due to self-occlusion or scan range limitation, restrain

its applicability. Many variants2 of the ICP tackle these issues. Like the original ICP
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they have an additional limitation that imposes that the point clouds are already

coarsely aligned, i.e., the angular displacement between them is low, whether by

the result of an algorithm or manually positioning them. Since there is not a defini-

tive solution to rigid registration and this is a primary step for other applications,

algorithms that achieve smaller residual errors in a broader range of situations are

needed.

We propose a method called Shape-based Weighting Covariance ICP (SWC-

ICP), an improvement over the original Iterative Closest Point (ICP) algorithm1.

The local geometric information of the points is encoded in second-order orien-

tation tensors. We use two cross-covariance matrices: one is computed from the

correspondences of similar tensors, and the other is computed from the usual Eu-

clidean correspondences. These two matrices are combined following a heuristic

weighting strategy. Our method, unlike most variants of the classical approach, is

able to improve the possibility to successfully align point clouds with wide angular

displacement, even when corrupted by noise and outliers.

Several tests are performed using a proposed quantitative evaluation protocol,

in order to give some statistical relevance to our results, when compared to recent

approaches. This protocol includes the description of the generation process of

the synthetic outliers, additive noise and partially overlapped point clouds. It also

presents a scoring system to compare the results of each algorithm. We use a dataset

composed by four point clouds with different topologies and geometries, high and

low curvature points, holes and some degree of symmetry. This dataset is available

at www.gcg.ufjf.br/datasets/icp-models.zip.

Our results show that the SWC-ICP is among the best methods evaluated in

all point clouds tested, even in situations of noise and outliers. The main feature

of our method is the consistency of the results, regardless of the initial angular

displacement of the point clouds.

The main contributions of this work are twofold: a method that improves the

possibility of correct convergence of the ICP in cases with wide angular displace-

ment, and a detailed comparison protocol for rigid registration.

1.1. Related works

The survey written by Salvi et al.3, proposes a taxonomy for rigid registration

methods, classifying them in coarse and fine registration, highlighting the strengths

and weaknesses of each. Coarse registration methods aim to give a good initial guess

of the rigid transformation between two point sets. These methods usually try to be

more robust to noise, outliers and wide initial displacement, at the cost of a lower

accuracy. The survey of Diez et al.4 further classify coarse methods according to

a proposed pipeline, composed by three optimization stages: keypoints detection,

description and search strategy.

Fine methods, on the other hand, assume that the point clouds are already

coarsely aligned and aim to find the most accurate result as possible. Most of fine

www.gcg.ufjf.br/datasets/icp-models.zip
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methods are based on modifications of the ICP algorithm. Sharp et al.5,6 pro-

pose the use of invariant features like second order moment, curvature or spherical

harmonics to define a hybrid distance measure between points, weighted by a fac-

tor α, fixed or updated with the Mean Squared Error (MSE) on each iteration

of the algorithm. Some authors attach local covariance matrices to the points, so

that the local geometry is considered. The Generalized-ICP7 and Multi-Channel

Generalized-ICP8 are some examples, with the latter using additional channels

other than the position of the points to improve the ICP. The A-ICP9 accounts the

anisotropic localization error into a covariance matrix, representing a local zero-

mean Gaussian distribution that is used in the ICP. The method also allows the

use of different covariance matrices, according to the specifics of the problem.

Another line of improvements adopts the use of non-linear optimization strate-

gies. Bouaziz et al.10 use sparsity-inducing lp-norms with an Alternating Direction

Method of Multipliers (ADMM) optimizer. The norm parameter p controls the ro-

bustness to outliers, but has a computational time trade-off. As p gets closer to 0

the method becomes more robust to noise and outliers, however the time required

is unfeasible. Mavridis et al.11 relieves this problem adapting a Simulated Anneal-

ing process before the ADMM optimization. Yang et al.12 propose the Globally

Optimal ICP, the first method to achieve the global optimum under the norm l2,

according to the authors. The method uses a Branch-and-Bound scheme to search

the 3D motion space SE3 for the best transformation.

Reyes et al.13 presented a different approach, using geometric algebra to solve

the rigid registration problem, that is not based on the ICP. Their method uses

a tensor voting framework to find a plane representing the affine motion in the

geometric algebra space. Tensor voting is a strong tool to find coplanar structures,

thus allowing the authors to find these planes. Also, thanks to tensor voting, their

method can cope with high amounts of outliers.

Even though the fine registration literature lists papers over twenty years old, the

comparison protocol has not matured enough. There are many authors that do not

fully present the behavior of their methods under different situations. The absence of

benchmarks also makes hard the comparison between the methods. Noise, outliers,

occlusion and partially overlapped point clouds are usual issues addressed. While

these are valid scenarios to show their potential improvements, these papers lack

a deeper statistical analysis. Time, residual error and number of iterations are the

common metrics, but the relevance of the proposed method can not be guaranteed

with just few examples that might be biased by the initial transformation applied.

We understand that quantitative analyses are computationally expensive, specially

with huge point clouds. To run several trials, with different parameters and compare

with other algorithms requires too much computational time, even with current

parallelism technologies.

Although this kind of analysis is rare, we highlight some examples found in

the literature. Sharp et al.5 ran 100 random transformations and presented a table
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with the convergence rate to a location near the ground truth. Reyes et al.13 did

a similar experiment, but only with 20 trials, measuring the success rate. In their

work an experiment is deemed a success when at least 50% of the correspondences

were correctly identified. Jian et al.14 measured the convergence range angles for 2D

rigid registrations, and also success rates for 3D partially overlapped range images,

with 30 different transformations. The random nature of the transformations used

reflects better the performance of the methods in real scenarios.

This work is closely related to the ICP-CTSF15, that enhances the matching step

of the ICP using a strategy very similar to Sharp et al.6, however, it implements

a different invariant feature and the weighting factor is updated only when a local

optimal solution is reached, rather than in each iteration. Our method use the same

weighting strategy, but we modify the transformation estimation step instead.

The remaining part of this paper is structured as follows: Section 2 presents the

original ICP, the classical solution for rigid registration that we propose to modify.

Section 3 gives an overview of the algorithm used to encode the local geometry in

second-order orientation tensors. The Section 4 presents our previous work, with

the tensor dissimilarity factor in Section 4.1 and the base weighting strategy of

the ICP-CTSF in Section 4.2. We present our method in Section 5. The Section

6 contains the description of the evaluation protocol, the experimental results and

comparisons of our method with recent approaches. Finally, Section 7 concludes

with a discussion about the proposed method.

2. Iterative closest point

The original ICP1 requires only two point clouds, named the Model set M =

{mi | mi = (mix,miy,miz)} and the Data set D = {dj | dj = (djx, djy, djz)}.
Two major steps compose the ICP. The first step is the matching, which builds

a correspondences set E = {ej | ej = NE(dj ,M)}, where NE(dj ,M) is defined as

the Euclidean closest point operator, that returns for each point dj , the point mi

which minimizes ||dj −mi||l2 . The correspondences set and the Data set are passed

to the next step.

In the second step, called the transformation estimation, the method tries to

find the rotation R and the translation ~t that best align the two sets received. The

usual objective function is:

min
R,~t

( |D|∑
i=1

||ei −R · di −~t||2
)
. (1)

The original ICP estimates transformations in R3 using the method of Unit

Quaternions, a closed-form solution developed by Horn16. So in order to find the

rotation that minimizes Eq. 1, the Unit Quaternions method needs to find a quater-
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nion instead. First, the centroids of each set are calculated:

µD =
1

|D|

|D|∑
i=1

di, µE =
1

|E|

|E|∑
i=1

ei. (2)

The cross-covariance ΣDE between the Data set and the correspondences set is

used to build the matrix L, that encodes the relationship between both sets. The

cross-covariance matrix is given by:

ΣDE =
1

|D|

|D|∑
i=1

[die
T
i ]− µDµTE . (3)

L =

Σ11 + Σ22 + Σ33 Σ32 − Σ23 Σ13 − Σ31 Σ21 − Σ12

Σ32 − Σ23 Σ11 − Σ22 − Σ33 Σ12 + Σ21 Σ31 + Σ13

Σ13 − Σ31 Σ12 + Σ21 −Σ11 + Σ22 − Σ33 Σ23 + Σ32

Σ21 − Σ12 Σ31 + Σ13 Σ23 + Σ32 −Σ11 − Σ22 + Σ33

 . (4)

The eigenvector associated to the greatest eigenvalue of L represents the direc-

tion of maximum correlation. This eigenvector is chosen as the optimal quaternion,

whose associated rotation R minimizes Eq. 1. The optimal translation ~t is obtained

as the difference vector between the centroid of the correspondences set and the

centroid of the rotated Data set:

~t = µE −R · µD. (5)

With R and ~t computed, the transformation is applied to all points in the Data

set. These two major steps are iterated until a stopping criterion is satisfied. An

error threshold or number of iterations are the usual choices.

Besl and McKay assume that initially both Model and Data point clouds are

coarsely aligned. As the matching and transformation estimation steps are iterated,

the number of correct correspondences increases, leading to a correct alignment.

However, this assumption is too strong for most cases, especially in the real world

scenarios. If the method assigns too many wrong correspondences in the matching

step, it is unable to estimate a relative pose better than the previous, which results

in a failure case.

3. Local geometry estimation

The method we use to estimate the local geometry, presented by Cejnog15, is very

similar to the Tensor Voting framework17,18. The geometric disposition of the neigh-

borhood of each point is encoded in tensors. Each point casts its influence on the

neighborhood through a vector voting field. Each vote vector is converted to a ten-

sor and accumulated on the neighbors. Since the local geometry does not change

under rigid transformations, it can be used as an invariant feature, suitable for rigid

registration.

Cejnog15 used in his method two different voting fields: one isotropic followed

by one anisotropic. The first gives an initial approximation of the geometry, based
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solely on the relative position between the points. The second field requires a pre-

vious estimation and must be applied after the isotropic field. It enhances the

approximation of the geometry enforcing coplanar structures. A different distance

metric is used in the second field, based on the distance over an elliptical trajectory.

But unlike Cejnog, we use only the first voting field to give an approximation of

the geometry. For rigid registration, the application of the first voting field by itself

produces better results.

Since we are dealing with point clouds and do not have any previous information

about the vicinity of the points, the neighborhood of a point p is represented by

a list Lk(p) of its k nearest-neighbors sorted by their Euclidean distances. The list

size k is the main parameter of this preprocessing stage. For the following text, k

is used as a percentage of total points in the point cloud.

3.1. Isotropic voting field

The isotropic voting field15 builds for each point p, belonging to a point cloud P , a

second-order tensor Tp, which accumulates the weighted sum of tensors built from

the vote vectors −→pq, for each neighbor q ∈ Lk(p).

The tensors Tpq formed by the product of the normalized p̂q · p̂qT , are accumu-

lated. A Gaussian decay is used, proportional to the Euclidean distance between p

and q with standard deviation σp. This deviation is such that the farthest neighbor

qf has influence 0.01:

σp =

√
||−→pqf ||2
ln 0.01

. (6)

The output are the tensors Tp:

Tp =
∑

q∈Lk(p)

e

−||−→pq||2

σ2
p · p̂q · p̂qT . (7)

Since the method only deals with the relative position of the points, higher

order elements like orientation and curvature sign are not identified. However, the

tensors estimated are distinguishable enough to be used as an invariant feature in

the matching step of the ICP.

4. Comparative Tensor Shape Factor

4.1. Dissimilarity factor

The Comparative Tensor Shape Factor (shortened CTSF)15 can be used whenever

the shape of two second-order orientation tensors should be compared. Such tensors

can be represented by a hyper-ellipsoid, whose axes are proportional to the eigen-

values of the tensor matrix. Thus, to compare the eigenvalues between two tensors

is equivalent to compare the shapes of the respective hyper-ellipsoids. Since what
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High CTSF

Low CTSF

Fig. 1: Examples of the CTSF Between Two Tensors.

matters is the shape, the tensors used are normalized, i.e.,
√∑N

i=1 λ
2
i = 1. The

CTSF between two tensors S1 and S2 is:

CTSF (S1,S2) =

N∑
k=1

(
λŜ1

k − λ
Ŝ2

k

)2

, (8)

where λŜ1
i and λŜ2

i are the ith eigenvalues of the normalized tensors Ŝ1 and Ŝ2, in

a space with dimension N .

The CTSF is a factor of dissimilarity, with smaller values indicating more similar

tensors. Since the shape of a hyper-ellipsoid is invariant to rigid transformations,

the CTSF can be used to provide approximated correspondences. Figure 1 shows

some examples of low and high CTSF between two tensors. Note that the scale and

main directions of tensors do not affect the CTSF when their shapes are similar.

4.2. Shape-based matching

Following the premise that a better matching scheme leads to a better transfor-

mation, the ICP-CTSF15 implements a matching strategy using the tensor shape

of each point to improve the number of correct correspondences. The CTSF pre-

sented in Section 4.1 is used side by side with the Euclidean distance to produce

the correspondences set.

The ICP-CTSF assumes that the point corresponding to the same region in two

different point clouds will have very similar tensors after the preprocessing stage,

since its surrounding geometry should be the same. Thus, the CTSF between them

should be very low. So no matter how apart a point cloud is from the other, the

shape-based matching tends to correlate points whose vicinity have similar shapes.
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Since the shape of the tensors does not change during rigid registration, the

shape-based correspondences are always the same, and using only them in the

ICP would make it converge to a local optimal solution very fast, often just

coarsely aligned. During the iterative process, however, the Euclidean correspon-

dences change and the match is improved as the point clouds are getting aligned.

The formulation of the matching used in the ICP-CTSF is:

dCTSF (di,mj) =||di −mj ||2 + wn · CTSF
(
Sdi ,Smj

)
,

wn = w0b
n, b < 1 and 0 ≤ wn < w0,

where n is incremented whenever a local optimal solution is reached, the parameter

w0 is the initial weight given to the CTSF and b controls the variation rate of the

weighting factor towards zero. The ICP-CTSF stops when wn ≈ 0 and it is unable

to improve the RMS error between the two point clouds.

The ICP-CTSF combine the correspondences found using the CTSF and the Eu-

clidean matching. In order to align point clouds with large angular displacement,

the shape-based matching must have more relevance in the first iterations, that is,

w0 should be a high value. When a local optimal solution is reached, the current

pose is hopefully better than the initial, and the Euclidean matching should pro-

duce better correspondences. The method then reduces the influence of the CTSF.

Throughout the iterations, the weight of the CTSF tends to zero, and the method

becomes more similar to the original ICP. The first iterations of the method coarsely

align the point clouds, and the latter iterations perform fine alignment.

5. Proposed method

Our method follows the same coarse-to-fine strategy of the ICP-CTSF, that gives

more importance to the shape-based correspondences in the beginning of the reg-

istration, and more importance to the Euclidean correspondences in the end.

We apply this strategy directly in the ICP transformation estimation step, using

two cross-covariance matrices. One established by the Euclidean distance correspon-

dences, as usual, and another by the correspondences of points whose tensor shapes

are similar, i.e, points with low CTSF.

The cross-covariance matrix using Euclidean correspondences is computed ex-

actly in the same way of the original ICP. The second cross-covariance uses a

different correspondences set, defined as S = {si | si = NCTSF (di,M)}, with

NCTSF (di,M) as the operator that returns the point in M whose tensor shape is

the most similar to the tensor shape of di, according to the CTSF of both. Like in

Eq. 2, the centroid of this shape-based correspondences set is:

µS =
1

|S|

|S|∑
i=1

si. (9)

If we minimize only the distance between points whose shapes are similar, the
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cross-covariance matrix would be expressed by:

ΣDS =
1

|D|

|D|∑
i=1

[dis
T
i ]− µDµTS . (10)

Consider the sum of both cross-covariance matrices from Eq. 3 and 10, weighted

by a factor wn:

ΣDES = 1
|D|

|D|∑
i=1

[die
T
i + wndis

T
i ]− [µDµ

T
E + wnµDµ

T
S ]

= 1
|D|

|D|∑
i=1

[di(e
T
i + wns

T
i )]− [µD(µTE + wnµ

T
S )], (11)

where wn = w0b
n, b < 1 and 0 ≤ wn < w0, n is incremented whenever a local

optimal solution is reached. The parameter w0 is the initial weight given to the

shape-based correspondences, and b controls the update size of the weighting factor.

This weighting strategy is the same presented in Section 4.2.

The cross-covariance matrix ΣDE (Eq. 3), represents the multivariate dispersion

of Euclidean points correlated using the nearest neighbors strategy as proposed

originally1. The cross-covariance matrix ΣDS , in its turn, represents the multivari-

ate dispersion of Euclidean points correlated by using the lowest CTSF.

Both matrices are symmetric, positive semi-definite, and thus admit a linear

combination which results in a matrix whose eigensystem represents the contribu-

tions of both dispersions, provided that their independent variables are of the same

kind, i.e., 3D coordinates. This is exactly what is used in tensor voting approaches17.

Therefore, we can further expand Eq. 11 to use more cross-covariance matrices,

each obtained with f different matching operators:

Σ =
1

|D|

|D|∑
i=1

[ di(wn1
eTi + wn2

s1Ti + wn3
s2Ti + · · ·+ wnf+1sf

T
i )]−

[ µD(wn1
µTE + wn2

µTS1 + wn3
µTS2 + · · ·+ wnf+1µ

T
Sf )], (12)

where wno is the relative weight to the n-th local optimal solution of the correspon-

dence of the o-th matching operator, and wno
= w0b

n, b < 1 and 0 ≤ wn < w0.

In our case, f = 2, wn1
= 1 and wn2

is variable. This linear combination of cross-

covariance matrices is one of the main contribution of our work.

The matrix L of Eq. 4 is computed as usual, using ΣDES , instead of ΣDE from

Eq. 3. The rotation and the translation are also computed exactly in the same way

of the original ICP.

Analyzing the formulation of Eq. 11, we note that instead of using the closest

point or the point whose shape of the tensor is the most similar, we use a linear

combination of both. It means that the considered correspondence is not an exist-

ing point, but after a large number of local optimal solutions, it tends to be the

closest point, since the weighting factor approximates to zero. Results show that



November 22, 2017 21:59 WSPC/INSTRUCTION FILE output

10 F. Yamada, L. Cejnog, M. Vieira, R. da Silva

this approach has a higher rate of convergence to the correct solution than some

recent methods when the point clouds have a wide angular displacement.

6. Experimental results

6.1. 3D model dataset setup

In order to create an experimental setup able to perform a fair comparison of

methods, we define a trial as an execution of rigid registration under a certain

amount of noise, outliers and overlapping, with an angular displacement. These are

common issues found in the literature. Our test suite ensures that the same trial is

performed by the different compared algorithms.

For practical applications the point clouds are assumed to be two distinct repre-

sentations from the same object or complementary views from a scene. However, for

performance analysis and comparisons with other methods synthetic point clouds

are often used, allowing varying degrees of overlapping, noise and outliers. In these

controlled cases, the overlapped regions are identical, and all points within it, have

an exact correspondence.

We use four base point clouds: Bunny and Happy Buddha, provided by Stan-

ford University Computer Graphics Laboratory, Octopus, provided courtesy of IN-

RIA by the AIM@SHAPE-VISIONAIR Shape Repository, and Genus-2, provided

by École Polytechnique Fédérale de Lausanne Computer Graphics and Geometry

Laboratory. The Figure 2 shows the visual representation of the point clouds. They

have different features, such as holes, some degree of symmetry and points with high

and low curvatures. We sampled the point clouds to make possible the execution

of multiple trials in a feasible time. The Bunny model used is the smallest zippered

version available. The other point clouds were sampled using a Poisson-disk sam-

pling algorithm19. All point clouds used are normalized with the greatest edge of

the bounding box scaled to have size 1.

We divide our tests in two groups, total overlapping and partial overlapping,

running 30 trials for each configuration case. In the first group, we experiment

adding different amounts of noise, outliers and both at the same time. In the second

group we evaluate how the size of the overlapping and individual regions affects the

quality of registration.

A rigid transformation is applied in the Data set to simulate the initial state of

the point clouds. The rotation axis is set as a random normalized isotropic vector.

The range of angles used varies from 15◦ to 180◦, sampled each 15◦. Therefore,

twelve angles are used.

Outliers are generated using a uniform distribution over a sphere with radius

twice the size of the greatest edge of the bounding box. We distribute the outliers in

a sphere bounding the Model and Data sets because the constant curvature of their

synthetic external surfaces will not significantly take part in the shape alignment.

Noise is simulated adding to each point pi a random normalized isotropic vector ~r.

The magnitude of this vector is obtained using a Gaussian random variable weighted
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(a) Bunny. (b) Octopus.

(c) Happy Bud-

dha.

(d) Genus-2.

Fig. 2: The base point clouds used on the experiment: (a): Bunny (containing 1889

points). (b): Octopus (3822 points). (c): Happy Buddha (3118 points). (d): Genus-2

(2711 points).

by a scale δ that controls the intensity of the noise:

pi = pi + δ · N (0, 1) · ~r. (13)

Partially overlapped point clouds are generated using a region growing algo-

rithm, using the list of closest neighbors Lk(p). First, the common region is deter-

mined from a random point as initial seed. This region grows until it has a number

of points β. The α remaining points of the unique region of each point cloud are

obtained in the same way, using as initial seed a random point next to the border

of the overlapping region.

The values for noise used are: δ = {0.01, 0.05}. Higher amounts of noise are

not considered because the point cloud loses most of its features and such level

of degradation is an unrealistic case. Outliers are tested with 5%, 20%, 50% of the
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Table 1: Percentage of Points of the Individual Region (α) and of the Overlapping

Region (β) for the Second Group of trials.

α 12.5% 25%

β 75% 50% 25% 50% 37.5% 25%

number of points, a case with a small amount, moderated amount and a very

corrupted point cloud, respectively. The trials with noise and outliers together use

all the combinations of these values.

Each trial use different seeds to avoid biased generation of noise, outliers and

overlapping regions. These seeds are generated by a Mersenne Twister20 pseudo-

random number generator.

In the second group of experiments we evaluate different combinations of over-

lapping (β) and individual region (α) sizes. Table 1 shows the combinations used.

The first case with α = 12.5% and β = 75% means: “Each point cloud has 12.5%

unique original points and they mutually share 75% as common overlapped points.”

Note that the amount of individual region points α is always the same for both point

clouds. In this way, with α = 25% the range of overlapping is shortened, since it

is not possible to have more than 50% of overlapped points and 25% of remaining

points.

6.2. Evaluation protocol

In this work we use the GTRMS error (Ground Truth Root Mean Squared error)15,

the root mean squared distance between all points of the Data set and their ground

truth correspondences in the Model set. This is only possible because we are using

synthetic pairs of point clouds, and we know in advance the correct correspondences.

This error is measured only for inliers and points in the overlapped region, because

only these points have a correct correspondence. We use this variation of error

because we are interested in measuring how close to the correct registration the

methods are, instead of how close one point cloud is to the other. Note that this

error is used only for evaluation purposes, and the error used inside the SWC-ICP

is the usual RMS.

Another measurement we adopted is the Labeled Error15, the number of correct

correspondences found by the original matching function of the ICP. This measure

is also only possible using synthetic pairs of point clouds. It is an indicative of how

close the regions of interest are.

Our previous work15 used a threshold on the GTRMS and Labeled Error to

define a success case. However, the trials frequently have intermediate values, for

registrations that have success on the coarse stage, but failed in the fine stage.

If we take just the mean error with such trials, we might not express the correct

performance of the method, and induce a wrong analysis. The same happens to
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Fig. 3: Example of a 4× 4 bins histogram matrix H and a 4× 4 weighting matrix

W. In this example the Score is: 1
284 ((5× 0.50) + (1× 0.67) + (· · · )) = 0.9698.

the Labeled Error. To overcome this issue, we propose a scoring system combining

these two measurements to compare the performance of the methods.

First a 2D Histogram H is computed using the GTRMS and Labeled Error

from all trials of a given parameter combination. We build this histogram with

40 × 40 bins. The error ranges used are [0.0, 0.5] for the GTRMS, and [0, ND] for

the Labeled Error, where ND is the number of points in the overlapped region of

the point clouds tested. The score is a weighted mean of the histogram. We use a

weighting matrix W with the same dimensions of the histogram and it is obtained

assigning larger values for the cells with small GTRMS and high Labeled Error, and

conversely, smaller values for cells with high GTRMS and small Labeled Error. The

remaining cells are filled following a bilinear interpolation. Figure 3 is an example

of score for a trial, showing a 4× 4 bins histogram and its weighting matrix.

Score =

Nbins∑
i=1

Nbins∑
j=1

Hij ×Wij

Nbins∑
i=1

Nbins∑
j=1

Hij

. (14)

The score is normalized in the interval [0, 1]. However, the score is not a success

rate. It is meant to be used to compare two methods in the same configuration of

noise, outliers and overlapping amount. The labeled error is expected to decrease

when noise is applied to the point cloud, since it is based on the number of correct

correspondences found by the original ICP matching function. Therefore, the score

tends to be smaller in such cases, but it does not mean the performance of the

method is worse. Figure 4 summarizes the execution of our evaluation protocol.

6.3. Results

We compare the SWC-ICP with the original ICP and some recent algorithms to

rigid registration:
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Fig. 4: Flow chart of our evaluation protocol.

• The GMM framework14, that represents the point clouds as Gaussian Mix-

ture Models and reduce the rigid registration to the problem of minimize

the statistical discrepancy between two mixtures.

• The Super 4PCS (S4PCS)21, an improvement of the 4PCS, a coarse align-

ment method with good results, comparable to some fine methods. It is
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based on the RANSAC, but uses an improved search strategy to find con-

gruent 4-point bases between the point clouds. To make comparisons with

our method fair, we run the Super 4PCS followed by the GMM, to exem-

plify the behavior of a coarse method followed by a fine method.

• The Sparse ICP10, that uses lp-norms with an Alternating Direction

Method of Multipliers optimizer. The parameter p controls the robustness

to noise and outliers, and is a trade-off between accuracy and computa-

tional time.

• The ICP-CTSF15, our previous method, that uses the CTSF to estimate

the best corresponding neighbors in the matching step of the ICP.

• We also compare with a variation of the Sparse ICP with the CTSF15, that

uses the shape-based matching to find the correspondences and minimizes

using the ADMM, like the original Sparse ICP.

We implemented the original ICP, the ICP-CTSF and the modification of the

Sparse ICP to adequate the CTSF matching, while keeping the core method the

same as the provided Sparse ICP. All other methods used codes made available by

the authors. All codes are written in C/C++.

6.3.1. Results with noise and outliers

We evaluate six different sizes of the neighbors list of the SWC-ICP: 100%, 75%,

50%, 15%, 5%, 1%. The update size of the weighting factor used was b = 0.1. It

is an intermediate value that does not take too many updates, and neither finishes

the update too soon, without proper exploration of the search space. The S4PCS

was set with: δ = 0.005, no filtering by angle, normals, distance or color, and no

further sampling of the point cloud. The Sparse ICP and Sparse ICP with CTSF

were set with parameters: p = 0.4, µ = 10.0, α = 1.2, maxµ = 105, maxicp = 100,

maxouter = 100, maxinner = 1, stop = 10−4. Since the ICP-CTSF and the Sparse

ICP with CTSF use tensors to match points like our method, using only the first

voting field have an effect on their results. Therefore, we present results using only

the isotropic voting field, differently from the results presented by Cejnog15. These

two methods use k = 50%, since it is the neighbors list size that produces the best

results. All the other methods use the best configuration presented by the authors

and the default when not specified.

Tables 2, 3, 4 and 5, present the score obtained by each method combining all

twelve angles with the clean point cloud, with all situations with only outliers, all

situations with only noise, all situations with noise and outliers together, and the

overall score. This overall value is our final score for the methods compared in the

total overlapping test.

Figures 5 and 6 show the score combining the clean point cloud, outliers, noise

and outliers together with noise, this time detailed by angle. The graphics show

the best SWC-ICP, the GMM, the Super 4PCS with GMM, the original ICP, the
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Table 2: Combined score for each method on the Bunny.

Bunny

Method Name Clean Outliers Noise
Noise +
outliers

Overall

SWC-ICP k = 100% 1.0000 0.9340 0.7311 0.6547 0.7660

SWC-ICP k = 75% 1.0000 0.9472 0.7308 0.6709 0.7774

SWC-ICP k = 50% 1.0000 0.9389 0.7293 0.6614 0.7703

SWC-ICP k = 15% 1.0000 0.9165 0.7226 0.6122 0.7390

SWC-ICP k = 5% 1.0000 0.8861 0.6978 0.5173 0.6798

SWC-ICP k = 1% 1.0000 0.9358 0.3295 0.1148 0.4297

GMM 0.5370 0.5261 0.3985 0.3859 0.4356

S4PCS + GMM 1.0000 0.4120 0.6972 0.2832 0.4441

ICP 0.3446 0.2365 0.2346 0.1747 0.2143

ICP-CTSF 1.0000 0.9774 0.7337 0.7002 0.8001

Sparse ICP 0.4610 0.3479 0.3260 0.2554 0.3074

Sparse ICP CTSF 1.0000 0.9898 0.7243 0.7152 0.8091

Table 3: Combined score for each method on the Octopus.

Octopus

Method Name Clean Outliers Noise
Noise +
outliers

Overall

SWC-ICP k = 100% 1.0000 0.7470 0.5767 0.4676 0.6000

SWC-ICP k = 75% 1.0000 0.8476 0.5762 0.5135 0.6480

SWC-ICP k = 50% 1.0000 0.8539 0.5757 0.5152 0.6503

SWC-ICP k = 15% 1.0000 0.8257 0.5731 0.4532 0.6119

SWC-ICP k = 5% 1.0000 0.7538 0.5626 0.3806 0.5559

SWC-ICP k = 1% 1.0000 0.8602 0.3023 0.1731 0.4353

GMM 0.3793 0.3756 0.2519 0.2432 0.2891

S4PCS + GMM 0.9415 0.4903 0.5624 0.3070 0.4483

ICP 0.2817 0.2491 0.1967 0.1881 0.2126

ICP-CTSF 1.0000 0.9047 0.5779 0.4949 0.6533

Sparse ICP 0.3564 0.3232 0.2308 0.2210 0.2595

Sparse ICP CTSF 1.0000 0.9850 0.5352 0.5280 0.6828

ICP-CTSF, the original Sparse ICP and the Sparse ICP with CTSF.

Results with clean point cloud show that methods using the CTSF and the

Super 4PCS were able to correctly register the point cloud in almost every case.

With only outliers the methods using CTSF were better than the others. The tensor

estimation algorithm is known for its robustness to outliers, confirmed with these

results. Even with high amount of outliers, it was able to find the structure of the

inliers, producing similar tensors on both model and data point clouds.

The scores of the case with only noise are lower than those with only outliers.

This behavior is expected, since noise affects directly the original ICP matching

function, used to count the labeled error. Therefore, this lower score does not mean

that the methods failed more often than in cases with just outliers. The SWC-ICP

with small k had poor results, with k = 1% being the worst result. A neighborhood

with size 1% in the Bunny, for example, have only 19 points, which is too few to
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Table 4: Combined score for each method on the Happy Buddha.

Happy Buddha

Method Name Clean Outliers Noise
Noise +
outliers

Overall

SWC-ICP k = 100% 1.0000 0.8100 0.6253 0.4698 0.6249

SWC-ICP k = 75% 1.0000 0.9342 0.6353 0.5305 0.6880

SWC-ICP k = 50% 1.0000 0.9533 0.6367 0.5631 0.7094

SWC-ICP k = 15% 1.0000 0.9028 0.6097 0.4652 0.6433

SWC-ICP k = 5% 1.0000 0.8797 0.5658 0.3930 0.5940

SWC-ICP k = 1% 1.0000 0.9699 0.3053 0.1896 0.4715

GMM 0.5251 0.5195 0.3454 0.3510 0.4067

S4PCS + GMM 0.9977 0.6128 0.6239 0.3888 0.5353

ICP 0.4752 0.4155 0.3067 0.2953 0.3423

ICP-CTSF 1.0000 0.9512 0.6417 0.5792 0.7177

Sparse ICP 0.5385 0.4726 0.3548 0.3321 0.3882

Sparse ICP CTSF 1.0000 0.9350 0.6174 0.5685 0.7043

Table 5: Combined score for each method on the Genus-2.

Genus-2

Method Name Clean Outliers Noise
Noise +
outliers

Overall

SWC-ICP k = 100% 1.0000 0.6281 0.5960 0.3654 0.5227

SWC-ICP k = 75% 1.0000 0.8368 0.6292 0.4425 0.6189

SWC-ICP k = 50% 1.0000 0.8845 0.6472 0.4864 0.6557

SWC-ICP k = 15% 1.0000 0.8396 0.5891 0.3986 0.5909

SWC-ICP k = 5% 1.0000 0.8473 0.4897 0.3383 0.5460

SWC-ICP k = 1% 1.0000 0.9747 0.2441 0.1411 0.4387

GMM 0.5283 0.5383 0.3643 0.3594 0.4190

S4PCS + GMM 0.9790 0.4651 0.5335 0.2934 0.4335

ICP 0.4124 0.3842 0.2956 0.2677 0.3136

ICP-CTSF 1.0000 0.8686 0.6495 0.5075 0.6626

Sparse ICP 0.5359 0.4389 0.3659 0.3074 0.3691

Sparse ICP CTSF 1.0000 0.7775 0.5144 0.4611 0.5940

estimate a structure when corrupted by noise. In this way, the tensors obtained for a

point tend to be too different between the model and the data point clouds, leading

to bad matches. When noise and outliers are combined the results are similar to

the case with just noise. The SWC-ICP with k = 1% is also the worst method, and

the reason is the same, aggravated by the outliers.

Figures 5 and 6 show that although the SWC-ICP has a slightly smaller score

than the ICP-CTSF, it was the best method in wide angles scenarios, with a very

competitive score in the Bunny. The SWC-ICP basically is not affected by angle

variations, as we can see almost a straight line in the graphics, for all the four point

clouds. A similar behavior is observed in the Super 4PCS, that was designed as a

coarse method, and thus should also not be affected by wide angle displacements.

The scores of the ICP-CTSF and the Sparse ICP with CTSF decay at some point.

What balances their result with the SWC-ICP is that before the decay, they have
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Fig. 5: Overall score per angle in the case with noise and outliers on the Buuny and

Octopus.

a slightly better average score. The GMM framework, the Sparse ICP and the

original ICP are not coarse methods, therefore the range of its good performance

is limited by the angle. We can see in the graphics that these three methods even

have competitive results with low angles, where they were supposed to perform

better. In the Bunny, the Happy and the Genus-2, the GMM framework was the

best fine-only method we experienced, with consistent results until 75◦.

These results show that the SWC-ICP and the ICP-CTSF have different

strengths and weaknesses, each better than the other at some point. The SWC-

ICP is the best method for wider angle situations. The addition of the CTSF to
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Fig. 6: Overall score per angle in the case with noise and outliers on the Happy

Buddha and Genus-2.

the Sparse ICP also proved to have very good results, competitive to both the

SWC-ICP and the ICP-CTSF.

6.3.2. Results with partial overlapping

In partial overlapping tests the Sparse ICP using the CTSF and the ICP-CTSF were

run with k = 1%, since it was the best k-neighborhood reported by Cejnog15. Four

different neighbors list sizes were evaluated, the two greatest and two smallest sizes

of the previous test. All other methods use the same parameters as the previous test.

The SWC-ICP, the original ICP, the ICP-CTSF and both S4PCS use a trimmed
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approach, discarding the 10% worse correspondences. We do not use the overlap

amount of the test because in a real situation this value is unknown.

Table 6: Partial Overlapping Results on the Bunny

Bunny

α 12.5% 25.0%
Overall

β 25.0% 50.0% 75.0% 25.0% 37.5% 50.0%

SWC-ICP k = 100% 0.1719 0.2858 0.6557 0.0679 0.0784 0.1797 0.2399

SWC-ICP k = 75% 0.2353 0.3612 0.1074 0.0938 0.1365 0.1964 0.1884

SWC-ICP k = 5% 0.4043 0.5115 0.8158 0.3356 0.4153 0.4928 0.5008

SWC-ICP k = 1% 0.4067 0.5160 0.8162 0.3506 0.4217 0.4906 0.5003

GMM 0.2203 0.3349 0.4566 0.1297 0.1803 0.2611 0.2638

S4PCS + GMM 0.3420 0.6420 0.8689 0.1446 0.3191 0.5278 0.4741

ICP 0.1906 0.2223 0.2509 0.1512 0.1578 0.1778 0.1918

ICP-CTSF 0.4149 0.5340 0.8486 0.3459 0.4197 0.5004 0.5105

Sparse ICP 0.2550 0.3032 0.3692 0.2031 0.2490 0.2912 0.2784

Sparse ICP CTSF 0.5780 0.7564 0.8846 0.5498 0.6775 0.7493 0.6993

Table 7: Partial Overlapping Results on the Octopus

Octopus

α 12.5% 25.0%
Overall

β 25.0% 50.0% 75.0% 25.0% 37.5% 50.0%

SWC-ICP k = 100% 0.2992 0.2603 0.3086 0.2240 0.2231 0.2056 0.2535

SWC-ICP k = 75% 0.3188 0.3653 0.4457 0.2434 0.2241 0.2166 0.3023

SWC-ICP k = 5% 0.4230 0.4548 0.5026 0.3389 0.3434 0.3874 0.4084

SWC-ICP k = 1% 0.4320 0.4669 0.5006 0.3556 0.3637 0.4213 0.4234

GMM 0.3164 0.3397 0.3471 0.2721 0.2885 0.2719 0.3060

S4PCS + GMM 0.3993 0.4146 0.5831 0.2701 0.2637 0.2943 0.3783

ICP 0.2870 0.2934 0.2864 0.2504 0.2540 0.2438 0.2692

ICP-CTSF 0.4279 0.4632 0.5009 0.3487 0.3649 0.4204 0.4210

Sparse ICP 0.2658 0.3504 0.3393 0.2892 0.3370 0.3087 0.3151

Sparse ICP CTSF 0.4023 0.6796 0.8791 0.5001 0.6334 0.7052 0.6332

The Tables 6, 7, 8 and 9 show the scores detailed for all combinations of overlap-

ping and individual regions presented on Table 1, combining the scores of all twelve

rotation angles. The amount of overlap β and the amount of individual region α

impact directly on the performance of all methods. The greater the overlapping

and the smaller the individual region, the better are the scores. This behavior is

expected, since the number of points with correct correspondences is larger.

The parameter k of the SWC-ICP have the opposite overall performance of the

cases with noise and outliers. In this test the small values have better scores on all

point clouds. With larger values of k, the tensors close to the edge of the overlapping

region of the model point cloud get too different from the homologous tensors on

the data point cloud, because the neighborhood in these cases may include points

outside the overlapping region, exclusive to only one of the point clouds. Figure 7
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Table 8: Partial Overlapping Results on the Happy Buddha

Happy Buddha

α 12.5% 25.0%
Overall

β 25.0% 50.0% 75.0% 25.0% 37.5% 50.0%

SWC-ICP k = 100% 0.2959 0.3179 0.6900 0.2161 0.2598 0.3281 0.3513

SWC-ICP k = 75% 0.2917 0.3731 0.7071 0.2309 0.2021 0.2742 0.3465

SWC-ICP k = 5% 0.4104 0.4745 0.7121 0.3177 0.3855 0.4724 0.4621

SWC-ICP k = 1% 0.4142 0.4793 0.7155 0.3359 0.3880 0.4722 0.4675

GMM 0.3122 0.2977 0.3489 0.2604 0.2848 0.2906 0.2993

S4PCS + GMM 0.3677 0.3968 0.5612 0.2789 0.2829 0.3568 0.3741

ICP 0.3003 0.3206 0.3489 0.2206 0.2393 0.2649 0.2824

ICP-CTSF 0.4189 0.4786 0.7498 0.3352 0.3882 0.4746 0.4742

Sparse ICP 0.3198 0.3955 0.4719 0.2567 0.3174 0.3725 0.3556

Sparse ICP CTSF 0.5014 0.7466 0.8748 0.5148 0.6488 0.7384 0.6708

Table 9: Partial Overlapping Results on the Genus-2

Genus-2

α 12.5% 25.0%
Overall

β 25.0% 50.0% 75.0% 25.0% 37.5% 50.0%

SWC-ICP k = 100% 0.2449 0.3353 0.3374 0.2020 0.2395 0.1372 0.2494

SWC-ICP k = 75% 0.2458 0.4096 0.4822 0.1798 0.2044 0.1361 0.2763

SWC-ICP k = 5% 0.4333 0.5202 0.5672 0.3873 0.3880 0.4374 0.4556

SWC-ICP k = 1% 0.4423 0.5223 0.5808 0.3903 0.3903 0.4381 0.4607

GMM 0.2985 0.3458 0.4238 0.2527 0.2787 0.2951 0.3158

S4PCS + GMM 0.3433 0.4313 0.5581 0.2506 0.2708 0.3336 0.3646

ICP 0.2937 0.3262 0.3472 0.2409 0.2320 0.2496 0.2816

ICP-CTSF 0.4426 0.5322 0.6729 0.3832 0.3706 0.4194 0.4702

Sparse ICP 0.3247 0.3999 0.4694 0.2933 0.3400 0.3975 0.3708

Sparse ICP CTSF 0.5177 0.7419 0.8318 0.5431 0.6667 0.7144 0.6693

shows an example of how the neighborhood gets different in points close to the edge

of the overlapping region, as the number of neighbors increase.

In this way, k = 1% is the best neighborhood size for the SWC-ICP with partial

overlapping point clouds. Some overlapping combinations are hard scenarios for all

the methods, with scores frequently below 0.7. With a small overlapping region like

25%, the scores were even lower than 0.5. It happens because the methods failed

in most cases to correctly align the point clouds, and in cases of failure the score is

expected to be low.

The use of the CTSF on the Sparse ICP is very good for partial overlapping,

achieving the best overall scores in all point clouds. The formulation of the Sparse

ICP allows the method to succeed in partial overlapping scenarios, boosted by the

better matching scheme using the CTSF.

In general, the SWC-ICP proved to be competitive in most cases, extending the

range of convergence and achieving results as good as the best methods evaluated,

with a superior performance in cases of wide angular displacement.
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(a) 5 neighbors. (b) 10 neighbors. (c) 15 neighbors.

Fig. 7: Examples of nearest neighbors for a given point in a case of partial over-

lapping. Blue points are inside the overlapping region, while red and green are in

the unique region of each point cloud. Note that as the number of neighbors in-

crease, the neighborhood considers points outside the overlapping region, which

yields different tensors.

7. Conclusion

We presented in this work the SWC-ICP, an improvement of the Iterative Closest

Point algorithm. It benefits from the local geometry surrounding the points, encoded

in second-order orientation tensors. The method improves the performance of the

ICP, even in the presence of noise, outliers and partial overlapping, regardless of

the initial pose. The main parameter is the size of the list of neighbors k, used

to estimate the tensors. A suitable choice of k can filter out either local or global

symmetries that can lead to mismatches. Similarly as occurs in multiresolution

processes, a higher number of neighbors tend to reduce the influence of more ”local

details” whereas a smaller k would conversely augment their weight throughout the

alignment. Our experiments show that with partially overlapping point clouds a

small list yields better results, while a list containing about 50% of total points is

the better choice when both point clouds are the same.

We also presented a generalization of the weighting strategy (Eq. 12), that allows

the use of multiple matching operators, each producing a multivariate dispersion

of Euclidean points, represented by a cross-covariance matrix. The combination of

these matrices represents the contributions of each dispersion.

In the proposed scoring system our method was within the best methods in all

four point cloud tested, being competitive with the ICP-CTSF and the Sparse ICP

with CTSF, both also using the dissimilarity factor between tensors to improve the

matching.

As the initial angular displacements between both point clouds get wider, most
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of the methods compared have their performance degraded. That does not happen

with the SWC-ICP, as the method is invariant to the initial relative pose. Noise

and outliers does not alter this behavior, despite the additional difficulty.

A drawback of our method is the necessity of a preprocessing stage to compute

the tensors, that might be computationally expensive if the point cloud is too large,

although parallelism techniques in this step are possible. The second drawback is

the performance with small overlapping regions of the point clouds. The SWC-ICP

requires over 50% of overlapping and less than 25% as individual region to show a

reasonable result.

As future works, we believe that better algorithms to estimate the tensors in

cases of partial overlapping may improve the scores of the SWC-ICP, as more cor-

rect correspondences yield better results. The CTSF does not consider relative

orientation or curvature, for example. Additional voting fields can be used instead

or after the isotropic field, to estimate tensors with such geometric features. Other

matching operators might be included in our generalization using other invariant

features, like second-order moments, curvature or spherical harmonics, as proposed

by Sharp et al.6. Our evaluation protocol can be expanded with more challenging

scenarios to the compared methods. Real range images and point clouds with differ-

ent sampling rates are some examples found in the literature, but not yet unified in

a quantitative evaluation protocol. Additional measurements might be interesting

in specific applications, like computational time. We believe that advances towards

a benchmark for rigid registration could be useful to upcoming researches.
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4. Y. Dı́ez, F. Roure, X. Lladó, and J. Salvi, “A qualitative review on 3d coarse registration
methods,” ACM Computing Surveys (CSUR), 47(3), 45 (2015).

5. G. C. Sharp, S. W. Lee, and D. K. Wehe, “Invariant features and the registration of
rigid bodies,” in Proc. IEEE Int. Conf. Robotics and Automation, 1999, IEEE Robotics
and Automation Society, 2, 932–937 (1999).

6. G. C. Sharp, S. W. Lee, and D. K. Wehe, “Icp registration using invariant features,”
IEEE Trans. Pattern Anal. Mach. Intell, 24(1), 90–102 (2002).

7. A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Proc. Robotics: Science and
Systems, The MIT Press, 5 (2009).

8. J. Servos and S. L. Waslander, “Multi channel generalized-icp,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), IEEE, 3644–3649 (2014).



November 22, 2017 21:59 WSPC/INSTRUCTION FILE output

24 F. Yamada, L. Cejnog, M. Vieira, R. da Silva

9. L. Maier-Hein, A. M. Franz, T. R. dos Santos, M. Schmidt, M. Fangerau, H. Meinzer,
and J. M. Fitzpatrick, “Convergent iterative closest-point algorithm to accomodate
anisotropic and inhomogenous localization error,” IEEE Trans. Pattern Anal. Mach.
Intell, 34(8), 1520–1532 (2012).

10. S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest point,” Comput.
Graph. Forum, 32(5), 113–123 (2013).

11. P. Mavridis, A. Andreadis, and G. Papaioannou, “Efficient sparse icp,” Comput. Aided
Geom. Des., 35, 16–26 (2015).

12. J. Yang, H. Li, and Y. Jia, “Go-icp: Solving 3d registration efficiently and globally
optimally,” IEEE Int. Conf. Computer Vision (ICCV). IEEE Comp. Soc., 1457–1464
(2013).

13. L. Reyes, G. Medioni, and E. Bayro, “Registration of 3d points using geometric algebra
and tensor voting,” Int. Journal of Comput. Vis.,75(3), 351–369 (2007).

14. B. Jian and B. C. Vemuri, “Robust point set registration using gaussian mixture
models,” IEEE Trans. Pattern Anal. Mach. Intell, 33(8), 633–1645 (2011).

15. L. W. X. Cejnog, “Rigid registration based on local geometric dissimilarity,” Master’s
thesis, Post-Graduation Program on Computer Science, Federal University of Juiz de
Fora, Juiz de Fora, MG, Brazil, 2015.

16. B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,”
JOSA A, 4(4), 629–642 (1987).

17. G. Medioni, C.-K. Tang, and M.-S. Lee, “Tensor voting: Theory and applications,”
Proc. of Reconnaissance des Formes et Intelligence Artificielle, Paris, France, 3 (2000).

18. P. Mordohai and G. Medioni, Tensor Voting:A Perceptual Organization Approach to
Computer Vision and Machine Learning. Morgan & Claypool, 2(1), 1–136 (2006).

19. M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible sampling with blue
noise properties of triangular meshes,” IEEE Trans. Vis. Comput. Grphics, 18(6),
914–924 (2012).

20. M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator,” ACM Trans. Model. Comput.
Simul. (TOMACS), 8(1), 3–30 (1998).

21. N. Mellado, D. Aiger, and N. J. Mitra, “Super 4pcs fast global pointcloud registration
via smart indexing,” in Comput. Graph. Forum, 33(5), 205–215 (2014).



November 22, 2017 21:59 WSPC/INSTRUCTION FILE output

A Shape-based Weighting Strategy Applied to the Covariance Estimation on ICP 25

Photo and Bibliography

Fernando Yamada has a graduate degree in Computer Science

from Universidade Federal de Juiz de Fora (2014) and M.Sc.

degree in Computer Science from Universidade Federal de Juiz

de Fora in 2016.

Luciano Cejnog obtained his bachellor degree in Computer

Science from Universidade Federal de Juiz de Fora in 2013, and

M.Sc. degree in Computer Science from Universidade Federal de

Juiz de Fora in 2015.

Marcelo Bernardes Vieira obtained a graduate degree in

Computer Science from Pontif́ıcia Universidade Católica de Mi-
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