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Abstract—Pairwise surface rigid registration aims to find the
rigid transformation that best register two surfaces represented
by point clouds. This work presents a comparison between
seven algorithms, with different strategies to tackle rigid reg-
istration tasks. We focus on the frame-to-frame problem by
using both point clouds and a RGB-D video stream in the
experimental results. The former, is considered under different
viewpoints, with the addition of outliers and noise. Once the
ground truth rotation is provided, we discuss four different
metrics to measure the rotation error in this case. The video
sequence with depth information is segmented to get the target
object. Next, the registration algorithms are applied and the
average root mean squared error is computed. Since the ground
truth is not available in this case, we develop a superposition
strategy to visually check performance of the algorithms.
Besides, we analyse the robustness of the techniques against
spatial and temporal sampling rates.

Keywords: Rigid Registration, Point Clouds, ICP,
Frame-to-Frame

1. Introduction

Surface registration is a common computer vision
problem, with applications in computer graphics, vir-
tual/augmented reality, robotics, quality inspection, pho-
togrammetry, pose estimation, among others, as we can see
in related surveys [1], [2], [3], [4]. Rigid registration is a
sub-problem, dealing only with sets that differ by a rigid
motion, composed by rotation R and a translation t. The
sets may come from the same or from different kinds of
sensors [5].

The classical and most cited algorithm in the literature
to rigid registration is the Iterative Closest Point (ICP) [6].
This algorithm takes as input two point clouds P and Q,
named source and target sets, respectively, and consists of
the iteration of two major steps: matching between the
point clouds and transformation estimation. The matching
searches the closest point in P for every point in Q. This
set of correspondences is used to estimate a rigid trans-

formation. These two steps are iterated until a termination
criterion is satisfied.

The ICP approach, although breakthrough at its time,
presented several possible optimizations and improvements.
It assumes that there is a correct correspondence between
the points of both clouds which is an assumption that easily
fails on real applications [4]. Another issue of ICP and some
variants is that they expect that the point clouds are already
coarsely aligned [2], [7] .

In this paper, our goal is to compare the convergence
characteristics of surface registration methods in the frame-
to-frame problem, where the point clouds are obtained
from a video stream of range images. In this case, we
observe the following problems: partial overlapping between
point clouds, noise, outliers, scale variation, and missing
data. Based on the corresponding requirements (see [8] for
details), we choose the classical ICP [6], a combination
between the ICP and shape descriptors based on CTSF (ICP-
CTSF) [7], Shape-based Weighting Covariance ICP (SWC-
ICP) [8], Gaussian mixture model (GMM) [9], Sparse ICP
(uses Lp norms) [10] as well as its combination with CTSF
(Sparse ICP CTSF) [7] and Super 4PCS that is robust to
partial overlapping [11].

To evaluate each algorithm in the target application, we
firstly consider point clouds acquired through a Cyberware
3030 MS scanner available in the Stanford 3D scanning
repository [12]. In this case, the ground truth rotation is
available and, as a consequence, we could evaluate four
different metrics, presented in [13], to measure the rotation
error. Results show better performance for Sparse ICP and
Sparse ICP CTSF in these experiments in the inner product
of unit quaternions metric.

Next, we evaluate the registration techniques for frame-
to-frame registration using a video sequence with depth
information. We follow the literature [2], [14], and use the
average root mean squared error (MRMS) as well as a
visual inspection procedure to analyse the results. These
experiments show that the MRMS of Sparse ICP and the
Sparse ICP CTSF are the highest ones, contrasting with
the results of the previous experiments. However, the visual
inspection does not agree with this conclusion demanding



further analysis.
Closely related to our work is the study presented by

Dalley and Flynn [14] that analyses iterative closest point
(ICP) variants in fine registration tasks using partially over-
lapping range image pairs. However, differently from [14],
our study involves an outdoor video, acquired through an
RGB-D sensor, and different rotation error metrics when
the ground truth rotation is available.

The remainder of this paper is organized as follows. In
section 2 we summarize the considered methods. The sec-
tion 3 shows the experimental results obtained by applying
the registration methods to point clouds and as well as a
depth video sequence. Section 4 presents the conclusions
and future researches. An extended version of this material
is available in [8].

2. Registration Algorithms

Along the text, given a set S , the symbol |S| means the
number of elements of S. Besides, Im represents the m×m
identity matrix. Let the source and target point clouds in
Rm represented, respectively, by P = {p1,p2, . . . ,pnP } ⊂
Rm and Q =

{
q1,q2, . . . ,qnQ

}
⊂ Rm. The registration

problem aims at finding a rigid transformation µ : Rm →
Rm that brings set P as close as possible to set Q in terms of
a designated set distance, computed using a suitable metric
d : Rm×Rm → R+, usually the Euclidean one denoted by
d (p,q) = ‖p− q‖2. A rigid transformation µ : Rm → Rm
is given by µ (x) = Rx + t, with R being an element in
the group of rotations in Rm (SO(m) group) and t is the
translation vector.

To solve the registration task, the first step is to compute
the usual ICP matching relation C (P,Q) ⊂ P ×Q, that is
based on the nearest neighbor computation:

C (P,Q) =

{
(xil ,yil) ∈ P ×Q; xil = argmin

x∈P
(d(x,yil))

}
.

(1)
In the remaining text we are assuming that |C (P,Q) | =

c. However, in the focused application only partial matches
are expected in general. Therefore, it is desirable a trimmed
approach that discards a percentage of the worst matches
[15]. So, we sort the pairs of the set C (P,Q) such that
d (xi1 ,yi1) ≤ d (xi2 ,yi2) ≤ · · · ≤ d (xic ,yic) and
consider a trimming parameter 0 ≤ τ ≤ 1 and a trim-
ming boolean function: f trim(p,q, τ) = 1 if d (p,q) ≤
d
(
xic·(1−τ) ,yic·(1−τ)

)
and f trim(p,q, τ) = 0, otherwise.

So, we can build a new correspondence relation as:

C1 (P,Q, τ) =
{
(xi,yi) ∈ C (P,Q) ; f trim(xi,yi, τ) = 1

}
,

(2)
which is supposed to have |C1 (P,Q, τ) | = n. We must

notice that C1 (P,Q, τ) = C (P,Q) if τ = 0.
We could also consider shape descriptors computed over

each point cloud. For instance, given two points p,q such
that p ∈ P and q ∈ Q, we can compare the corresponding
(local) geometries using the comparative tensor shape factor
(CTSF), defined as [7]:

CTSF (p,q) =

m∑
i=1

(
λS1
i (p)− λS2

i (q)
)2
, (3)

where S1 : P → Rm×m and S2 : Q→ Rm×m are second-
order orientation tensors, λS1

i (p) and λS2
i (q) are the i− th

eigenvalues calculated in the points p ∈ P and q ∈ Q,
respectively, using the k nearest-neighbors of each point. In
[7], k is a percentage of the total number of points being
processed (see also [8]).

In this way, besides the correspondence relation
C (P,Q) ⊂ P × Q, defined in (1), we can also use the
correspondence set:

CCTSF (P,Q) = {(si,yi) ∈ P ×Q; si = arg min
p∈P

(CTSF (p,yi))}
(4)

which contains the pairs of points (si,yi) ∈ P ×Q whose
local shapes are the most similar, according to the CTSF
criterion calculated by expression (3). At the end of the
matching processes defined by expressions (1)-(4), we get
two bases of the set P , denoted by X = {x1,x2, . . . ,xn} ⊂
P , and S = {s1, s2, . . . , sn} ⊂ P , as well as one basis of the
set Q, denoted by Y = {y1,y2, . . . ,yn} ⊂ Q. In order to
combine both nearest neighborhood and shape information,
we can consider a parameter ω ∈ R and the mean squared
error:

e2 (R, t, ω) =
1

n

n∑
i=1

‖yi − [R (xi + ωsi) + t]‖22 , (5)

which, for ω = 0, offers the usual measure of the distance
between the target set Q and the transformed source point
cloud µ (P ) = {µ (p1) , µ (p2) , . . . , µ (pn)}, with µ being
the rigid transformation [6].

Considering the definitions above, the ICP-CTSF tech-
nique [7] uses the CTSF side by side with the Euclidean
distance:

dc,ξ(p,q, ξ) = ||p− q||2 + ωξ · CTSF (p,q) , (6)

where CTSF (p,q) is given by equation (3), ξ ∈ N,
ωξ = ω0b

ξ, with b < 1. The parameter ω0 is the initial
weight given to the CTSF and b controls the update size of
the weighting factor. This weighting strategy is responsible
for the coarse-to-fine behavior of ICP-CTSF. Specifically,
the ICP-CTSF procedure (Algorithm 1) calculates the cor-
respondence relation:

C2 (P,Q, ξ) ={(
xil ,yil

)
∈ P ×Q; ∀yik ∈ Q, dc,ξ

(
xil ,yik , ξ

)
≥ dc,ξ

(
xil ,yil , ξ

)}
,

(7)
and uses it to define the set:

C3 (P,Q, τ, ξ) =
{
(xi,yi) ∈ C2 (P,Q, ξ) ; f

trim(xi,yi, τ) = 1
}
,

(8)
which is the correspondence set applied by the ICP-CTSF

technique, summarized in the Algorithm 1.
The classical ICP [6] is a simplified version of the

Algorithm 1, obtained by setting ω0 = 0 and using the
matching relation C1 (Ps+1, Q, τ) instead of correspondence
set C3 (Ps+1, Q, τ, ξ). On the other hand, the SWC-ICP
methodology achieves a coarse-to-fine behavior through the
use of the weighting strategy of the ICP-CTSF (ωξ ← ω0b

ξ).
In this case, the set C3 (Ps+1, Q, τ, ξ) is replaced by the
matching relation in expression (2) and the shape corre-
spondence (4). With the obtained sets C1 (Ps+1, Q, τ) and
CCTSF (Ps+1, Q), each iteration of SWC-ICP calculates the



Algorithm 1: ICP-CTSF Procedure

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

;
trimming τ ; b, such that 0 < b < 1; ω0 � 0;

begin
P0 = P , s = 0, ξ = 1.
ε0 =∞.
R0 = I3, t0 = (0, 0, 0)T .
repeat

Apply the transformation to all points of the
source:
Ps+1 = RsPs + ts ≡ {Rsp + ts, p ∈ Ps}.
Compute the matching relation
C3 (Ps+1, Q, τ, ξ) through expression (8).
Take expression (5) and minimize e2 (R, t, 0)
to calculate the rotation Rs+1 and translation
ts+1 .
Compute the error εs+1 = e2 (Rs+1, ts+1, 0),
from (5).
if εs+1 > εs then

ξ ← ξ + 1.
ωξ ← ω0b

ξ.
end if
s← s+ 1.

until εs > εs−1;
return Rs, t.

end

rigid transformation that minimizes e2
(
R, t, ω0b

ξ
)

given by
expression (5). In the three-dimensional case (m = 3), if we
perform the variable change zi ← xi + ωξsi in expression
(5), we can compute the optimum rotation and translation
that best aligns the clouds {yi} and {zi} in the same way
ICP does (see Theorem 1 in [8]). To achieve the final goal,
that is, to register the clouds {yi} and {xi} it is just a matter
to put all these operations together in an iterative scheme
that varies the parameter ω from an initial value to zero (see
Algorithm 3 in [8]).

The Sparse ICP [10] is formulated as recovering a rigid
transformation that maximizes the number of null residuals
bi = Rxi + t − yi, where R is the rotation matrix and
t is a translation vector. The Sparse ICP uses Lp norm,
p ∈ [0, 1], to implement this idea. So, given the nearest
neighbor correspondence set C (P,Q) (expression (1)) and
residual vector b = [||b1||p2, ..., ||bn||

p
2]T , the objective is to

find a large set of inliers, ||bi||p2 ≈ 0, and a small set of
outliers, ||bi||p2 >> 0. This can be written as:

min
R,t,B

n∑
i=1

||bi||p2, such that, δi = 0, (9)

where δi = Rxi + t − yi − bi, and B = (b1,b2, . . . ,bn)
represents a generic point in the residual space. The Al-
gorithm that summarizes the Sparse ICP procedure is just
the ICP one with the optimization problem replaced by
expression (9). In the Sparse ICP CTSF [7], we keep the

Sparse ICP methodology but we replace the nearest neighbor
correspondence set C (P,Q), given in expression (1), by
the set C3 (P,Q, τ, ξ), defined by equation (8). All these
algorithms are described in [8].

The Super 4PCS [11] is an improved version of the
4PCS that runs in linear time, in the number of data points.
Both 4PCS and Super 4PCS follow the same idea of the
RANSAC, but instead of finding triplets of points, they
search for all coplanar 4-points that are approximately con-
gruent. Then, given the target Q, the source P , and a set of
coplanar points B = {p1,p2,p3,p4} ⊂ P , the main step
of 4PCS algorithm is to extract the set U of all 4-points
from Q that are approximately congruent to a set B, up to
an approximation level δ.

The set U defines a set T of rigid transformations that
best aligns B with some 4-points set in U . The solution of
the registration problem is a rigid transformation µ ∈ T that
brings set P as close as possible to set Q.

All the above techniques involve methods that align
two point sets based on some procedure for establishing
the explicit point set correspondence. Probabilistic models,
like the references [9], [16], [17], discard the matching step
and thus may achieve more robustness against the missing
correspondences and outliers. Specifically, in the Gaussian
mixture model (GMM) registration framework described in
[9], each input point set is represented using a GMM model
where the number of Gaussian components is the number
of points.

In this context, given source (P ), target (Q) point clouds,
a covariance matrix Ω, and the Gaussian mixture weights
vector w = (w1, w2, . . . , wnX )

T , the problem of point
set registration is reformulated through the minimization
of a statistical discrepancy measure between the corre-
sponding mixtures. In the GMM proposed in [9] authors
apply L2 distance for measuring similarity between two
Gaussian mixtures G (Q,Ω,w) and G

(
µ(P ), RΩRT ,w

)
,

representing the target Q and the rigidly transformed source
µ(P ) = {Rp1 + t, Rp2 + t, . . . , RpnP + t}, respectively.

3. Experimental Results

We evaluate the performance of the methods described
on section 2 using two different setups. In the first one
we compare the methods using point clouds captured in
a controlled scenario. Our model is the Bunny, from the
Stanford 3D Scanning Repository [12]. We use four clouds
given by the views from 0◦, 45◦, 90◦ and 180◦, and align
the consecutive pairs. All point clouds lie in a unit bounding
box. Figure 1 shows the superposition of the clouds 0◦-45◦

(Figure 1a) and 45◦- 90◦ (Figure 1b), where in black we
picture the initial pose (source) and in red the target one.
The size of the original clouds are larger than 40, 000 points
which makes their processing too computational involved.
Therefore, we uniformly sample these point clouds, select-
ing one point at each 10 and discarding the others, in order
to reduce the computational time of each method.

The web documentation in [12] offers the transformation
to align each consecutive pair of views. However, we have



noticed that the precision of the translation vector is not
suitable. Also, the models do not have a ground truth cor-
respondence list. Therefore, we take only the given rotation
and compare it with the ones generated by the focused
techniques. For each method, we measure the computational
time to calculate the alignment and the rotation error ob-
tained using the following metrics described in [13]:

• Norm of the Difference between Quaternions q1 and
q2. Defined by φ1 : SO(3)× SO(3)→ R+, where:

φ1(q1,q2) = min{||q1−q2||2, ||q1 +q2||2}, (10)

with || · ||2 as the Euclidean norm and SO(3) the
group of 3D rotations, represented here through
quaternions.

• Inner Product of Unit Quaternions. Defined by φ2 :
SO(3)× SO(3)→ R+, where:

φ2(q1,q2) = 1− |q1 · q2|, (11)

• Euclidean Difference between Euler Angles. If A1 =
(α1, β1, γ1) and A2 = (α2, β2, γ2) are two sets
of Euler angles, such that α, γ ∈ [−π, π) and
β ∈ [−π/2, π/2), we can define the metric φ3 :
E × E → R+ as:

φ3(A1, A2) =
√
d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2,

(12)
where d(a, b) = min{|a− b|, 2π − |a− b|}.

• Deviation from the Identity Matrix. Given two rota-
tion matrices R1, R2 ∈ SO(3), the metric function
φ4 : SO(3)× SO(3)→ R+ is calculated by:

φ4(R1, R2) = ||I −R1R
T
2 ||F , (13)

where || · ||F denotes the Frobenius norm in matrix
space.

(a) 0◦-45◦. (b) 45◦-90◦.

Figure 1. Two alignment cases tested in the first experiment.

The second type of experiments is performed using a
video sequence with RGB-D information captured using
a PrimeSense Carmine camera. This video belongs to the
Large Dataset of Object Scans, and the sequence used is
the #03118, containing 1489 depth frames. Among others
possibilities [18], this choice was based on how easy it was
to segment the target and discard the background. Figure
2 illustrates the sequence. The frames have resolution of
640 × 480 pixels, yielding a depth image with 307, 200
points. All the experiments were carried out using an Intel
Core i7-4790 CPU with 16GB RAM.

(a) RGB frame 1. (b) Depth frame 1.

Figure 2. Sample from the video sequence #03118, showing the RGB
frame and its respective depth data.

3.1. Point Cloud Registration

In this section we have the following aims: (a) Analyse
the different rotation error metrics (equations (10)-(13))
to decide the best one for the frame-to-frame registration
problem; (b) Use the best error metric to compare the per-
formance of the registration techniques described in section
2, in a controlled setup. In these tests, we consider the
following degrees-of-freedom: (1) Registration technique;
(2) Percentage k of neighbors used to calculate expression
(3); (3) Error metric; (4) Trimming parameter τ .

The others parameters, besides k and τ , are set as
follows. The update size of the weighting factor used in
the ICP-CTSF and SWC-ICP is b = 0.1, w0 = 105 [7],
[8]. The Super 4PCS was set with: δ = 0.005, terminate
threshold 0.8, without filtering by angle, normals, distance
or color [11]. Also, no further sampling of the point cloud is
performed. The Sparse ICP and Sparse ICP CTSF were set
with parameters: p = 0.4, µ = 15.0, α = 1.5, maxµ = 105,
maxicp = 100, maxouter = 100, maxinner = 1, stop =
10−4 [7], [10]. The GMM setup follows the default values
of the GMM implementation [19].

The SWC-ICP, ICP-CTSF and the Sparse ICP CTSF [7],
[8] use tensors to match points through the computation
of the CCTSF relation given by expression (4). In these
cases, we can evaluate the CTSF criterion using the isotropic
voting field T or the anisotropic voting tensor S, both
described also in [8] . According to [8] better results have
been obtained by applying only the former in the SWC-ICP.
However, the ICP-CTSF and Sparse ICP CTSF use the S
field to compute the CCTSF correspondence set [7].

To perform the task (a) we choose a pair of consecutive
viewpoints of Bunny, compute the error for each registration
method using all the available metrics and visually compare
the best alignment obtained according to each error metric.
The best error metric is considered as the one which assign
the minimum error to the best visual alignment.

The visual inspection of the point clouds in Figure 1
indicates that the case pictured in Figure 1a is suitable as a
case-study for the task (a) because, differently from Figures
1b, it is the easiest one with a large overlapping region and
no discontinuities.

So, considering the degrees-of-freedom listed above, we
set the trimming parameter τ = 0 (no trimming) and
compute the error metric for each registration technique
using k = 1%, 5%, 10%, 25%, 50%, 75%, 100%. Table 1



shows the minimum error according to each metric for
0◦ − 45◦. The Sparse ICP gives the smallest rotation error
when considering all the metrics except φ3 which achieves
the minimum value for the Sparse ICP CTSF with k = 25%.
In special, the smallest error in Table 1 is obtained by the
Sparse ICP with value almost null, given by 9.0× 10−9.

Figure 3 shows the error obtained for the tests in the
case 0◦ − 45◦, excluding k = 1% and k = 100% because,
they do not offer best results and sometimes they generate
too large errors bringing scale problems in the visualization.
The Sparse ICP and Sparse ICP CTSF algorithms presented
the smaller errors, which agree with the results reported in
Table 1. From Figures 3a-3d it is not possible to visualize
the influence of the parameter k in the rotation error, when
considering the change 0◦ − 45◦.

The visualization of Figures 3a-3d indicates that the
ICP, ICP-CTSF and SWC-ICP achieve the second place in
terms of rotation errors. The Table 2 reports the minimum
and maximum error for these methods, according to each
considered metric (expressions (10)-(13)).

In order to check the results reported in Table 1 and
Figure 3a-3d we show in Figures 4a-4b the overlapping of
the source cloud (0◦ view) and the target set (45◦ view) after
the application of the best transformations obtained. The
visual inspection of Figure 4 agrees with the fact that Sparse
ICP and Sparse ICP CTSF with k = 25% offer suitable
alignments. However, the visualization is not precise enough
to decide the best one. However, the Sparse ICP errors were
the smallest ones for three of the four considered metrics.
Also, according to metric φ2, the error of the Sparse ICP
is almost null. These observations indicate that Sparse ICP
performs better than the other technique and favor the choice

TABLE 1. BEST METHOD AND MINIMUM ERROR COMPUTED BY EACH
METRIC FOR THE ALIGNMENT 0◦ − 45◦ .

Metric Best Reg. Method (section 2) k Error

φ1 Sparse ICP - 0.0011129861
φ2 Sparse ICP - 0.0000000090
φ3 Sparse ICP CTSF k = 25% 0.0035294912
φ4 Sparse ICP - 0.0044508013

TABLE 2. PERFORMANCE OF ICP, ICP-CTSF AND SWC-ICP FOR
ALIGNMENT 0◦ − 45◦ .

Min Max
Metric Error k Error k

ICP

φ1 0.0178769966 - 0.0178769966 -
φ2 0.00032 - 0.000319 -
φ3 0.00919 - 0.009194 -
φ4 0.02528 - 0.025280 -

ICP-CTSF

φ1 0.017685 5% 0.017883 75%
φ2 0.000312 5% 0.000319 75%
φ3 0.009197 75% 0.009268 10%
φ4 0.025008 5% 0.025289 75%

SWC-ICP

φ1 0.017669 25% 0.017925 75%
φ2 0.000312 25% 0.000321 75%
φ3 0.009155 50% 0.009262 5%
φ4 0.024987 25% 0.025348 75%

(a)

(b)

(c)

(d)

Figure 3. Rotation error for the registration techniques (Trimming param-
eter τ = 0), for the case 0◦ − 45◦, computed using: (a) φ1. (b) φ2; (c)
φ3; (d) φ4. The unit of φ3 is radians; the other metrics are dimensionless.

of the φ2 to measure the rotation error.
Figure 5 shows the errors obtained in the next exper-



(a) (b)

Figure 4. Visualization of the best cases reported in Table 1: (a) Sparse
ICP. (b) Sparse ICP CTSF with k = 25%.

iments, for the case 45◦-90◦. Differently from the case
0◦ − 45◦, we observe that only the Sparse ICP CTSF
achieves the smaller rotation errors for all the metrics which
is significantly smaller than the Sparse ICP rotation error.
Moreover, the effect of the parameter k in the rotation error
can be perceived in the plots of Figure 5. For instance, the
Table 3 reports the minimum and maximum errors achieved
by the Sparse ICP CTSF regarding the considered metrics
and the corresponding k values. Likewise in the above case,
the smallest error happens for the metric φ2, as well as the
smallest error interval [Min,Max], but now with k = 5%
and k = 50%.

TABLE 3. SPARSE ICP CTSF ROTATION ERROR FOR ALIGNMENT
45◦ − 90◦ .

Min Max
Metric Error k Error k

Sparse ICP CTSF

φ1 0.019265 5% 0.339323 50%
φ2 0.000370 5% 0.115139 50%
φ3 0.019526 25% 0.220425 50%
φ4 0.02724 5% 0.465857 50%

The Figure 6(a) allows us visually check the alignment
obtained by the Sparse ICP CTSF using k = 5%. Also,
Figure 6(b) allows to compare that result with the Sparse
ICP registration in order to confirm that, different from the
case 0◦ − 45◦, the alignment of the former is really better
than the alignment generated by the latter in this case.

We consider also a third registration test using the Bunny
point clouds obtained by the views from 90◦ and 180◦. It
is the hardest test, since there is a 90◦ variation between
the two point sets. It implies also in a smaller overlapping,
which is a complicating factor in rigid registration. All
methods failed to obtain a correct registration in this case
as we can see in [8].

Figure 7 shows the CPU time (in seconds) for the execu-
tion of each technique in the case 0◦-45◦. We can notice that
Sparse ICP CTSF computational time is much longer. Also,
Sparse ICP CTSF is followed by the Sparse ICP, ICT-CTSF
and SWC-ICP in terms of computational time. So, although
the Sparse ICP CTSF has good performance in case 0◦-45◦,
its computational time is higher. The same is true for the
45◦-90◦ and 90◦-180◦ alignments reported in [8].

The influence of the trimming parameter can be dis-
cussed through Figure 8, when considering the registration
for 45◦-90◦. We calculate the rotation error using function

(a)

(b)

(c)

(d)

Figure 5. Rotation error for the registration techniques (Trimming param-
eter τ = 0), for the case 45◦ − 90◦, computed using metric: (a) φ1.
(b) φ2; (c) φ3; (d) φ4. The unit of φ3 is radians; the other metrics are
dimensionless.

φ2, shown on Figure 8a. We shall observe that the SWC-
ICP with k = 75% undergoes the larger registration im-
provement (0.112109), for trimming τ = 10%, but it also
suffers the larger error increasing if τ = 20%. On the other
hand, the Sparse ICP CTSF with k = 5%, that achieves the
smallest error without trimming, remains almost unchanged



(a) (b)

Figure 6. Case 45◦−90◦: (a) Registration obtained with Sparse ICP CTSF
using k = 5%. (b) Final alignment generated by Sparse ICP.

sec

Figure 7. CPU time in seconds obtained for each method when computing
alignment for 0◦-45◦.

(it gets a difference of −1.411663·10−6 with both τ = 10%
and τ = 20%). However, the SWC-ICP, that gets the second
place in the 45◦-90◦ alignment, increases its efficiency for
trimming 10% and k ∈ {25%, 50%, 75%} but decreases for
all the other cases when incorporating trimming. Therefore
it is not possible to figure out a tendency to the influence
of the trimming procedure in the registration error.

Figure 8. Influence of the trimming parameter in the case 45◦-90◦. Rotation
error according to φ2 (dimensionless).

Noise is simulated adding to each point a vector r =
ν ·ϑ ·u, where u is a random normalized isotropic vector, ϑ
is a Gaussian random variable with null mean and variance

equals to 1.0, and ν denotes a scale factor. Specifically, if x
denotes a generic point in the set P (or Q) then its corrupted
version is x̂, given by: x̂ = x + r. The new point sets,
denoted by Pν and Qν , are composed by the noisy points
so generated.

Outliers are generated using an uniform distribution over
a ball, centered in the centroid of the point cloud, with
diameter equals to the size of the biggest edge of the
bounding box of the cloud (see [8] for details). For instance,
in the case of the set P , given a percentage ζ, we uniformly
sample ζ ·|P | points in the corresponding ball, generating the
set OP (analogous for the ζ · |Q| points in OQ, generated
inside the corresponding ball). Finally, we build two new
point sets named Pζ = P ∪OP and Qζ = Q ∪OQ.

We experiment with ν = 5% to generate the noisy clouds
Pν and Qν and ζ = 20% to include outliers for building
Pζ and Qζ . Besides, we generate two point clouds Pν,ζ and
Qν,ζ by firstly adding outliers (ζ = 20%) and, next, applying
noise (ν = 5%).

We run 20 times for each configuration case (trial)
and take the average rotation error to analyse the preci-
sion of each method. The Figure 9 allows to analyse the
performance of the registration techniques against noise
and outliers for the 0◦-45◦ alignment. As expected, all the
techniques loses precision which can be concluded when
comparing the Figures 3b and 9. In the case of noise addition
(Figure 9a), we can notice that the SWC-ICP achieves the
worst performance. Moreover, according to Figure 9b, the
experiment with outliers indicates that the ICP, SWC-ICP,
Sparse ICP and S4PCS are more sensitive to this problem.
The rotation error when combining noise and outliers, re-
ported in Figure 9c, shows that ICP, SWC-ICP, and S4PCS
gets worst performance.

On the other hand, the Table 4 reports the best results
obtained for these experiments. We shall notice that Sparse
ICP CTSF was the best technique for both noise, outliers
as well as noise plus outliers. We must remember that
Sparse ICP performs better than the other technique for
the alignment 0◦-45◦ without noise and outliers (Table 1).
Hence, Sparse ICP performance decreases when the cloud
is corrupted and it is outperformed by the Sparse ICP CTSF.

TABLE 4. BEST METHOD AND MINIMUM ERROR COMPUTED BY φ2
FOR THE ALIGNMENT OF THE CLOUDS WITH NOISE AND OUTLIERS.

Best Method Rotation Error

Noise Sparse ICP CTSF k = 10% 0.000247

Outlier Sparse ICP CTSF k = 10% 0.000002

Noise plus Outlier Sparse ICP CTSF k = 5% 0.000117

3.2. Frame-To-Frame Registration

According to section 3.1, the best methods in the per-
formed experiments are Sparse ICP, and Sparse ICP CTSF.
In this section, we must check the obtained conclusions, but



(a)

(b)

(c)

Figure 9. Rotation error for the case 0◦-45◦ when adding: (a) Noisy points.
(b) Outliers. (c) Outliers and noisy points.

now in the frame-to-frame registration, which composes the
second sequence of experiments. These tests are executed
using the 640× 480 pixels of the frames extracted from the
#03118 video. The image resolution yields a depth array
with 307, 200 elements which increase the computational
cost of the registration algorithms. Therefore, we sample
each frame of the video, with sampling rates r ∈ {8, 16},
to reduce the total number of points, generating new video
sequence V .

The sequence #03118 was chosen because of how easy
it is to segment the target. In this video, the sign is the only
meaningful object in the scene, with respect to the depth

information (see Figure 2). The grass in the background is
too deep to be captured and yields null depth values. Hence,
we take the set Sm = {(i, j, Cm (i, j, 4)) ;Cm (i, j, 4) > 0}
and interpret it as a point cloud in R3. A frequent problem
observed in the point clouds yielded in this processes is
missing data, generated by errors in the depth field segmen-
tation due to uncertainty caused by reflections in the camera
acquisition process. Figure 10 shows a pair of consecutive
clouds, in which the cloud in the frame 50 misses some
points of the previous frame.

(a) Depth 49 Point cloud . (b) Depth 50 point cloud.

Figure 10. A pair of consecutive point clouds with missing data inside blue
circle.

In particular, for the frames located near the end of
the #03118 video sequence there is another complication
because of the low number of points with depth larger
than zero, increasing the chance of a bad alignment. Figure
11 illustrates this case, yielding fewer points than those
of Figure 2b, in comparison. Also, when the assumption
that the camera follows smooth and slow motion paths is
violated, which also happens near the end of the chosen
sequence, scale changes between point clouds may interfere
in the registration results (see Figure 13 of [8]).

(a) (b)

Figure 11. (a) Region with depth larger than zero in the frame 1388. (b)
Respective RGB image.

We need a robust methodology to analyse the target tech-
niques against these problems. Firstly, a temporal sampling
was made, selecting one frame at each ς consecutive frames.
This approach pushes the difficulty of the registration, as a
simulated larger camera movement. Hence, we set P = Sς·i,
Q = Sς·(i+1) as the pair source/target in the frame-to-frame
registration that generates the transformation pair (Rς·i, tς·i)
that best aligns the source cloud Sς·i with the target one
Sς·(i+1). Secondly, following the literature [2], [14], we
consider the average root mean squared error, denoted by
MRMS, to quantify the precision of the registration of the
cloud pairs Sς·i and Sς·(i+1), in the whole video stream:

MRMS (ς, V ) =

(
1
|V |
ς

) |V |
ς −1∑
i=0

√
e2 (Rς·i, tς·i, 0), (14)



(a) ς = 1

(b) ς = 2

(c) ς = 4

Figure 12. Variation of the temporal sampling. All the three cases have
video sampling rates r = 8.

where e2 (Rς·i, tς·i, 0) is calculated through expression (5).
Moreover, since the choice of parameter k of the ICP-CTSF,
SWC-ICP and Sparse ICP CTSF impacts on the results, we
show how they change with k = 75%, k = 50%, k = 25%,
k = 10% and k = 5%, like in section 3.1. All methods were
set with the same parameters of the experiments in section
3.1.

Figure 12 shows the MRMS obtained for each method
when varying the temporal sampling parameter ς and fixing
the spacial sampling r = 8. We notice that the MRMS
errors of the Sparse ICP and the Sparse ICP CTSF are the
highest ones, contrasting with the results of the previous
experiments. The variation of the parameter k also do not
have much effect, except for a small trend on the SWC-ICP,
where smaller values of k yields higher MRMS errors.

Figure 13 shows the MRMS of the methods when an

image sampling rate r = 16 is used. In this case we fixed the
temporal sampling as ς = 1, i.e., every frame i is registered
with its consecutive i + 1. When comparing Figures 12a
and 13 we notice that all methods almost doubled the error.
However, this result is expected, as with a higher image
sampling, the pixels (and corresponding points) are farther
from each other. Points without an exact correspondent,
then, will increase the error value.

Figure 13. MRMS of all methods (in pixel unities) using video sample
r = 16, with ς = 1.

Since the MRMS values presented some inconsisten-
cies with the previous experiments regarding the Sparse ICP
and Sparse ICP CTSF, we used a visual inspection to check
if the results showed using the MRMS correctly indicate
the best methods. In this process, we simulate an attempt
to reconstruct the objects using frames 1 to 4 from the
sequence #03118. The resulting registration of the pairs
(1,2), (1,3) and (1,4) were overlapped and visualized in red.
It is expected that the density of red points would be higher
in worst registrations. Figure 14 shows the obtained result.
The Sparse ICP CTSF with k ∈ {5%, 10%} produces an
image lighter than other methods, like the darkest red image
produced from the ICP-CTSF with k = 50%. In Figure 15
we highlight the fact that the result obtained by Sparse ICP
CTSF with k = 5% is much better then the ICP-CTSF with
k = 50%, as the points are completely overlapped in the
former (Figures 15a and 15b), differently from the latter
(Figures 15c and 15d).

Hence, although the ICP-CTSF yields smaller MRMS
errors than the Sparse ICP CTSF, the visual inspection
shows the opposite result. Further works should be un-
dertaken to find out the cause of the disparity between
MRMS values and visual inspection. Without a proper way
to measure the distance of the ground truth correspondences,
this kind of experiment needs a visual inspection to define
which method is the most suitable one.

4. Conclusion and Future Works

In this paper we consider the frame-to-frame registration
problem, in which the point clouds are extracted from a
video sequence with depth information. We compare seven
techniques, named by the acronyms ICP, ICP-CTSF, SWC-
ICP, GMM, Sparse ICP, Sparse ICP CTSF and Super 4PCS
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Figure 14. Overlapping of the registered frames 1-4 by different algorithms.
(a) Original ICP. (b) ICP-CTSF k = 50%. (c) Sparse ICP CTSF k = 5%.
(d) Sparse ICP CTSF k = 10%. (e) Sparse ICP CTSF k = 75%.

(a) (b)

(c) (d)

Figure 15. (a) Sparse ICP CTSF k = 5%. (b) Selected region in detail. (c)
ICP-CTSF k = 50%. (d) Zoom-in the selected region.

(section 2). We use both point clouds and a RGB-D video
stream in the experimental results. In the former, the ground
truth rotation is provided which allows to analyse four
different metrics, to measure the rotation error in this case.
The results show better performance for Sparse ICP and
Sparse ICP CTSF using the inner product of unit quaternions
metric. In the second class of experiments, a video sequence
with depth information is segmented and the registration
algorithms are applied. The results show an inconsistency
between the MRMS and the visual inspection of the results
demanding further analysis to understand the limitations of
MRMS as a metric error to tackle the analysis of frame-to-
frame registration tasks. Moreover, scalability issues related
to the focused methods must be considered in future works.
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