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Abstract—Pairwise rigid registration aims to find the rigid
transformation that best registers two surfaces represented by
point clouds. This work presents a comparison between seven
algorithms, with different strategies to tackle rigid registration
tasks. We focus on the frame-to-frame problem, in which the
point clouds are extracted from a video sequence with depth
information generating partial overlapping 3D data. We use
both point clouds and RGB-D video streams in the experimental
results. The former is considered under different viewpoints with
the addition of a case-study simulating missing data. Since the
ground truth rotation is provided, we discuss four different
metrics to measure the rotation error in this case. Among
the seven considered techniques, the Sparse ICP and Sparse
ICP-CTSF outperform the other five ones in the point cloud
registration experiments without considering incomplete data.
However, the evaluation facing missing data indicates sensitivity
for these methods against this problem and favors ICP-CTSF
in such situations. In the tests with video sequences, the depth
information is segmented in the first step, to get the target region.
Next, the registration algorithms are applied and the average
root mean squared error, rotation and translation errors are
computed. Besides, we analyze the robustness of the algorithms
against spatial and temporal sampling rates. We conclude from
the experiments using a depth video sequences that ICP-CTSF
is the best technique for frame-to-frame registration.

Index Terms—Rigid registration; Iterative Closest Point;
Frame-to-Frame Registration, Depth Images, Rotation Error
Metric, Gaussian Mixture, Tensor Shape Descriptors.

I. INTRODUCTION

Surface registration is a common computer vision problem,
with applications in computer graphics, robotics, quality in-
spection, photogrammetry, augmented reality, pose estimation,
among others [1]. Rigid registration is a sub-problem, dealing
only with sets that differ by a rigid motion. In this problem,
given two point clouds, named source set P = {pi|pi =
(pix, piy, piz)} and target set Q = {qj |qj = (qjx, qjy, qjz)},
we need to find a motion transformation ψ, composed by a
rotation R and a translation t, that applied to P best aligns
both clouds (ψ(P ) ≈ Q), according to a distance metric.

The classical and most cited algorithm in the literature
to rigid registration is the Iterative Closest Point (ICP) [2].

This algorithm takes as input the point clouds P and Q, and
consists of the iteration of two major steps: matching between
the point clouds and transformation estimation. The matching
searches the closest point in P for every point in Q. This set
of correspondences is used to estimate a rigid transformation.
These two steps are iterated until a termination criterion is
satisfied.

Although simple in concept, ICP assumes that there is a
correct correspondence between the points of both clouds. This
assumption easily fails on real applications because, in general,
the acquired data is noisy and we need to scan the object from
multiple directions, due to self-occlusion as well as limited
sensor range, producing only partially overlapped point clouds.
Another issue of ICP and some variants is that they expect that
the point clouds are already coarsely aligned.

The mentioned issues have been more or less addressed by
more recent methods that have been produced by researchers
in computer graphics, computational geometry and computer
vision communities, as we can see in related surveys [3]–[5].
The large variety of such techniques poses a problem to decide
a specific technique for a specific application.

In this paper, our goal is to compare the convergence
characteristics of surface registration methods in the frame-to-
frame problem, where the frames are obtained from a video
stream of range images. The video sequence is processed
to extract the point clouds that represent sample sets of the
target object surface. The objective is to register point clouds
in consecutive frames. In this application, we observe the
following problems: partial overlapping point clouds, noise,
outliers, scale variation, and missing data.

In order to limit the scope of the problem, and avoid a
combinatorial explosion in the number of possibilities to test,
we focus on rigid transformation techniques that fulfill at
least one of the following requirements: (a) Incorporate local
geometric features to enhance the quality of the matching
step; (b) Estimate the transformation using a distance different
from the Euclidean one; (c) Perform registration without
correspondence.



The former is motivated by the fact that ICP, and many other
registration techniques, use just the criterion of minimizing
point-to-point Euclidean distances between the sets P and
Q to compute the matching between the point clouds. This
approach might not be efficient in cases of partial overlapping,
because only a subset of each point cloud has a correct
correspondent instead of all the points. We are also supposing
that the video is acquired by simply waving the capture
device at the scene following smooth and slow motion paths.
Therefore we can discard scale changes when registering two
consecutive frames, since they should be very small, which
justifies only contemplate rigid transformations. Moreover, the
characteristics of the solution to the rigid registration problem
depends on the used notion of distance in the environment
space. Usually, registration techniques apply the Euclidean
distance that is derived from the L2 norm. However, when
using the L2 norm, we get an optimization problem in the
least-squares sense, imposing a fundamental assumption that
the error residuals assume a normal distribution, where inliers
are typical events whereas outliers rarely happen. Another
paradigm, that motivates requirement (b), would be to use a
norm that maximizes the number of zero distances between
correspondences. Besides, the requirement (c) comes because
we would like to test a method that attempts to align the
given two point sets without establishing the explicit point
correspondence. A trick in this case is to model each of the
two point sets by a probability distribution, in order to get
a procedure less sensitive to missing correspondences and
outliers. Obviously, we must consider the ICP in order to
obtain a relative measure about how efficient each chosen
methodology is against the difficulties of the frame-to-frame
registration problem.

Based on the aforementioned requirements, we choose
the classical ICP, a combination between the ICP and the
Comparative Tensor Shape Factor (ICP-CTSF), Shape-based
Weighting Covariance ICP (SWC-ICP), Gaussian mixture
model (GMM), Sparse ICP, Super 4PCS (S4PCS), and Sparse
ICP combined with CTSF (Sparse ICP CTSF) [2], [6]–[10].

To evaluate each algorithm in the target application, we
firstly consider point clouds acquired through a Cyberware
3030 MS scanner [11] available in the Stanford 3D scanning
repository [12]. The Bunny model was chosen for the tests
and the corresponding point clouds captured considering four
viewpoints of it. In this case, the ground truth rotation is
available and, as a consequence, we could evaluate four
different metrics to measure the rotation error (Section IV).
Results show better performance for Sparse ICP and Sparse
ICP CTSF in these experiments in the inner product of unit
quaternions metric. Besides the original data, a case-study is
generated to simulate missing data. Visual results are shown
in order to link the error measurements with the results of the
methods on the chosen examples. However, when simulating
missing data with the Bunny model, we notice a decrease
in the registration precision of Sparse ICP and Sparse ICP
CTSF. In this case, the ICP-CTSF obtain outstanding results.
Moreover, we present the CPU time spent on the executions,

in order to highlight the computational complexity of each
technique.

Next, we evaluate the alignment techniques for frame-to-
frame registration using three video sequences with depth
information. We perform the segmentation of each frame of
the sequence through a simple depth threshold operation. The
obtained result generates a point cloud which we must register
with the previous one. We use the average root mean squared
error, average rotation and translation errors as measures to
analyze the results. The tests show that ICP-CTSF is more
reliable for this application.

This work is an extended version of the material published
in [13]. In the current version we have improved the introduc-
tion and we add a related works section. Besides, the Section
III (Registration Algorithms) is augmented with a description
of each target technique to make the material self-contained.
Also, in Section III, we offer details about tensor elements
behind ICT-CTSF and SWC-ICP, with a complete derivation
of the latter based on fundamental results in point clouds
registration in R3. In the Experimental Results (Section V)
we include one more case in the point clouds experiments,
incorporate more details about the CPU time and the influence
of trimming parameter. We substitute the scenario generated
using noise and outliers used in [13] to new example involving
missing points. With this, we can complete the results pre-
sented in [13] having tested the registration techniques against
noise, outliers and missing data, that are common problems
in frame-to-frame registration. Moreover, we have added new
experiments to evaluate the techniques using two benchmark
videos of the database available in the web site [14], that are
accompanied with the ground truth for the rigid registration.
Differently from the work [13], which was not conclusive in
this point, the frame-to-frame registration results presented in
Sections V-B and V-C, show that ICP-CTSF is the best method
to register point clouds extracted from depth sequences.

The remainder of this paper is organized as follows. The
Section II describes related works dealing with comparisons
and qualitative analysis of rigid surface registration methods.
Then, in Section III, we summarize the considered methods.
Next, Section IV describes four different metrics to measure
the rotation error. The Section V shows the experimental
results obtained by applying the registration methods to point
clouds and to depth video sequence. Section VI presents the
conclusions and future researches.

II. RELATED WORKS

The survey of Sabata and Aggarwal [15] was one of the first
works to list methods to compute 3D rigid motions between
two sets, whether they are points, lines or surfaces. Points are
the most common representation drawing attention from most
papers of the rigid registration literature. They also classify
the solution found by the methods in iterative or closed form.
However, the listed methods are not compared. Eggert et al.
[16] compare quantitatively four closed solution for estimating
rigid transformations using controlled synthetic experiments:
singular value decomposition [17], unit quaternion [18], dual



quaternion [19], and orthonormal matrices [20]. No significant
differences were observed in the accuracy and robustness
of the algorithms for non-degenerate 3-D point sets with
various levels of noise. In terms of stability, for non-degenerate
cases, the unit quaternions and singular value decomposition
methods were superior than the other methods, with the latter
marginally more stable than the former.

Some variants of the ICP were surveyed by Rusinkiewicz
and Levoy [21], that classified them in six stages where
optimizations could be made: selection of points, matching,
weighting correspondences, rejection of pairs, error metric
and minimization of error metric. They compare the variants
regarding the RMS error, number of iterations and the time
until correct convergence, in order to propose a high-speed
ICP, using the best strategy in each stage, to address real time
registration.

Dalley and Flynn [22] presented a quantitative analysis of
two methods to reject pairs of matched points, on partially
overlapping range images. In these cases, there is an expected
number of points without homologous correspondence, justi-
fying the need of such methods.

Salvi et al. [3] proposed a classification of methods in fine
registration and coarse registration. In fine registration, the
methods try to find the most accurate solution as possible,
refining an already computed initial guess. The latter is a
class of algorithms that aim to find an initial estimation of
the correct alignment between point sets. These methods tend
to be more robust to noise once make no assumptions about the
relative position of the point sets. However, in general, their
solutions must be improved by a fine registration technique,
that takes the coarse transformation as an initial estimation of
the motion (a guess), and iterate until convergence to a more
accurate solution. This way, new methodologies are gener-
ated through the combination of coarse and fine registration
techniques, called coarse-to-fine schemes [7]. After reviewing
some methods of each class, Salvi et al. [3] compare them
measuring root mean squared error (RMS), rotation error,
translation error and computational time.

Moreover, considering the specific point of rotation error,
Huynh [23] presents a detailed analysis of six known functions
for measuring distance between 3D rotations considering met-
ric and group concepts (SO(3); the group of orthogonal matri-
ces with determinant +1). The conclusions favor quaternions
for 3D rotations representation. Besides, according to Besl
and McKay [2], for two and three dimensions, the quaternion-
based method is preferred, since reflections are not desired.

In this paper, we show how some recent approaches to rigid
registration perform in frame-to-frame application cases. To
the best of our knowledge, it is the first work to address
this kind of comparison. Besides the chosen techniques, we
must take into account other recent works that could be
also used in the target application. In [24] it is described an
algorithm, based on a probabilistic model, for joint registration
of multiple point clouds (JR-MPC). The technique shares with
the GMM (Gaussian Mixture Model) [9] the idea of using
Gaussian mixtures to represent point sets. However, differently

from GMM, the JR-MPC assumes that all the point sets
are generated from the same Gaussian mixture model, that
includes also an uniform distribution parameterized by the
volume of the convex hull encompassing the clouds. In our
application we have a video stream V with |V | frames, each
one defining a point cloud in R3. The application of JR-MPC
to jointly register these point sets is impractical. Besides, the
assumption that such point clouds could be jointly registered
could be false in such application due to scene changes along
the frames.

Still in the scenario of probabilistic mixture models, the
technique presented in [25] proposes a joint distribution as-
sociated to the observations that allow to incorporate color
information associated with each 3D point. Despite of its
theoretical generality, in practice this strategy cannot be di-
rectly employed for high dimensional 3D shape features due
to complexity problems. Thus, in [26] the authors proposes
an adaptation in the spirit of the bag-of-words paradigm in
order to build a computationally efficient mixture model for
the common joint distribution that originates the 3D points
as well as the corresponding features. All these probabilistic
mixture models suffer from both computational and memory
cost issues for large point sets (tens of thousands or millions
of points) due to the increase in the number of mixture
components. The deterministic model [27] also associates
RGB information and depth measurements through a four
dimensional approach that allows to design an ICP version
in RGB-D space without the computational complexity of
mixture approaches.

Besides, in the case of cross-source point clouds, the per-
formance of feature-based methods like [26] deteriorates due
to the difficult to reliably extract similar features from point
clouds acquired through different sensors. Such application
motivates the CSGM technique [28], that applies a graph
framework to organize and encode data information, which al-
lows to convert the registration into a graph matching problem.
In [28], the CSGM is also compared with ICP and JR-MPC
for 3D data from the same kinds of sensor, outperforming the
latter and achieving lower rate of error than JR-MPC in some
tests.

In our work we avoid usual problems with RGB information
(sensitivity against illumination conditions and shadows) by
keeping only 3D data and shape features. We focus on
point clouds acquired through a single sensor and apply
shape features only to improve the match between point sets.
Consequently, we consider only the methods already selected,
which are reviewed in the next section.

III. REGISTRATION ALGORITHMS

We compare in this work seven different algorithms to
frame-to-frame rigid registration: the classical ICP [2] and
four variants (the ICP-CTSF [6], SWC-ICP [7], Sparse ICP
[8], and Sparse ICP CTSF [6]), the Super 4PCS [10], and the
GMM framework [9]. In this section, we aim to establish the
necessary notation and the mathematical formulation behind
these techniques.



Hence, the bold uppercase symbols represent tensor ob-
jects, such as T,S; the normal uppercase symbols represent
matrices, data sets and subspaces (P , U , D, Σ, etc.); the
bold lowercase symbols denote vectors (represented by column
arrays) such as x, y. The normal lowercase symbols are used
to represent functions as well as scalar numbers (f , ψ, λ, α,
etc.). Also, given a matrix A ∈ Rm×m and a set S, then
tr (A) = A11 + A22 + . . . + Amm is the trace of A, and |S|
means the number of elements of S. Besides, Im represents
the m×m identity matrix.

Our focus is rigid registration in the frame-to-frame prob-
lem. So, let the source and target point clouds in Rm be
represented, respectively, by P = {p1,p2, . . . ,pnP } ⊂ Rm
and Q =

{
q1,q2, . . . ,qnQ

}
⊂ Rm. A rigid transformation

ψ : Rm → Rm is given by:

ψ (x) = Rx + t, (1)

with R ∈ SO(m) and t ∈ Rm being the rotation matrix and
translation vector, respectively.

The registration problem aims at finding a rigid transforma-
tion ψ : Rm → Rm that brings set P as close as possible to
set Q in terms of a designated set distance, computed using a
suitable metric d : Rm×Rm → R+, usually the Euclidean one
denoted by d (p,q) = ‖p− q‖2. To solve this task, the first
step is to compute the matching relation C (P,Q) ⊂ P × Q
that denotes the set of all correspondence pairs to be used
as input in the procedure to compute the transformation ψ.
Formally, we consider:

C(P,Q) = {(xil ,yil) ∈ P ×Q;

d(xil ,yil) ≤ d(x,yil),∀x ∈ P}
(2)

where P × Q denotes the Cartesian product between sets P
and Q. We can check that |C (P,Q) | = |Q|. However, in the
remaining text we say that |C (P,Q) | = c to simplify the
expressions.

Moreover, in the focused application only partial matches
are expected in general. Therefore, it is desirable a trimmed
approach that discards a percentage of the worst matches
[29]. So, we sort the pairs of the set C (P,Q) such that
d (xi1 ,yi1) ≤ d (xi2 ,yi2) ≤ · · · ≤ d (xic ,yic) and consider a
trimming parameter 0 ≤ τ ≤ 1 and the new correspondence
relation:

C1(P,Q, τ) = {(xi,yi) ∈ C(P,Q);

d (xi,yi) ≤ d
(
xic(1−τ) ,yic(1−τ)

)
},

(3)

which is supposed to have |C1 (P,Q, τ) | = n. We must notice
that C1 (P,Q, τ) = C (P,Q) if τ = 0.

The relationship defined by the expression (3) is based on
the distance function and nearest neighbor computation. We
could also consider shape descriptors computed over each
point cloud. Generally speaking, given a point cloud S, the
shape descriptors can be formulated as a function f : S →
P (R), where P (R) is the set of all subsets of R, named the
power set of R. In this case, besides the distance criterion,
we can also include shape information in the correspondence

computation by applying a boolean correspondence function
f c : P ×Q→ {0, 1} such that [5]:

f c(p,q) =

{
1 if f (p) ≈ f (q)

0 otherwise
. (4)

Also, before building C (P,Q) in expression (2) we could
perform a down-sampling in the two point sets, based on the
selection of key points through the shape function, or through
a naive interlaced sampling over same spatial data structure
[30].

A. Iterative Closest Point

The classical ICP [2], described in the Algorithm 1, receives
the source P and target Q point clouds and each iteration of the
main loop is composed by two major steps: matching between
the point clouds and transformation estimation. The former
is performed by computing the set C1 (Ps+1, Q, τ) through
equation (2). At the end of the matching process we get a base
of the set P , denoted by X = {x1,x2, . . . ,xn} ⊂ P , and a
base of the set Q, denoted by Y = {y1,y2, . . . ,yn} ⊂ Q
such that C1 (P,Q, τ) stands for the set of n correspondence
pairs (xi,yi) ∈ X × Y . This matching relation will be used
to estimate a rigid transformation that aligns the point clouds
P and Q. Specifically, ICP seeks for a rotation matrix R and
a translation t that minimizes the mean squared distance:

e2 (R, t) =
1

n

n∑
i=1

‖yi − (Rxi + t)‖22 , (5)

which is used as a measure of the distance between the
target set Q and the transformed source point cloud ψ (P ) =
{ψ (p1) , ψ (p2) , . . . , ψ (pn)}, with ψ defined by equation (1).
Now, we focus in the specific three-dimensional case (m = 3)
and state the fundamental theorem that steers most of the
solutions for the registration problem in R3.

Theorem 1: Let X = {x1,x2, . . . ,xn} ⊂ R3 and Y =
{y1,y2, . . . ,yn} ⊂ R3, the centers of mass µx, µy for the
respective point sets X and Y , the cross-covariance Σxy , and
the matrices A and M , given by:

µx =
1

n

n∑
i=1

xi, (6)

µy =
1

n

n∑
i=1

yi, (7)

Σxy =
1

n

n∑
i=1

(yi − µy) (xi − µx)
T
. (8)

A =
(
Σxy − ΣTxy

)
, (9)

M (Σxy) =


tr (Σxy) A23 A31 A12

A23

A31 Σxy + ΣTxy − tr (Σxy) I3
A12

 .
(10)



Hence, the optimum rotation R and translation t vector that
minimizes the error in expression (5) are determined uniquely
as follows [18]. The matrix R is computed through the unit
eigenvector v =

(
v0 v1 v2 v3

)T
of M , corresponding

to its maximum eigenvalue:

R =

 1− 2(v21 + v22) 2(v0v1 − v2v3) 2(v0v2 + v1v3)
2(v0v1 + v2v3) 1− (v20 + v22) 2(v1v2 − v0v3)
2(v0v2 − v1v3) 2(v2v2 + v0v3) 1− (v20 + v21)

 ,
(11)

and t is calculated through R and centroids in expressions
(6)-(7) as:

t = µy −Rµx. (12)

�
Based on the above theorem, in the second stage, the ICP

estimates the rigid transformation by computing the rotation
matrix and translation vector using equations (11) and (12).
The matching and transformation estimation are repeated until
the allowed maximum number of iterations is achieved or the
error falls bellow a pre-defined threshold. The ICP technique
is summarized in the Algorithm 1.

Algorithm 1: Iterative Closest Point

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

; trimming τ ;
begin

P0 = P , s = 0.
ε0 =∞.
R0 = I3, t0 = (0, 0, 0)T .
repeat

Apply the transformation to all points of the
source:
Ps+1 = RsPs + ts ≡ {Rsp + ts, p ∈ Ps}.
Compute the matching relation C1 (Ps+1, Q, τ)
through expression (2).
Compute the principal eigenvector v of the
matrix M defined in (10).
Calculate the rotation matrix Rs+1 and translation
vector ts+1 using expressions (11)-(12).
Compute the error between the two point sets:
εs+1 = e2 (Rs+1, ts+1), from (5).
s← s+ 1.

until εs > εs−1;
return R, t.

end

B. ICP-CTSF

The ICP-CTSF [6] implements a matching strategy using a
feature invariant to rigid transformations, based on the shape
of second-order orientation tensors associated to each point.
A voting algorithm is used, divided into an isotropic and an
anisotropic voting field. So, given a cloud point p ∈ P , let

Lk(p) ⊂ P be the set of k% nearest neighbor of p and s ∈
Lk(p). We can define vps = (s− p), v̂ps = vps/||vps||2, as
well as the function:

σ (p) =

√
||sf − p||22

ln 0.01
. (13)

where sf is farthest neighbor of p, which has influence 0.01.
Given these elements, we can compute the second-order tensor
field:

T (p) =
∑

s∈Lk(p)

exp

[
−||vps||22
σ2 (p)

]
·
(
v̂ps · v̂Tps

)
, (14)

which is the isotropic voting field computed through a
weighted sum of tensors v̂ps · v̂Tps, built from the function
(13) and from the vote vectors vps, s ∈ Lk(p).

Let the orthonormal basis generated by the eigenvectors
(e1 (p) , e2 (p) , e3 (p)) of T (p) and the corresponding eigen-
values supposed to satisfy λ3 (p) < λ2 (p) ≤ λ1 (p). In this
case, the local geometry at the point p can be represented by
the Figure 1 where we picture together the following elements:
the coordinate system x̂, ŷ, ẑ oriented through the eigenvectors
(e1 (p) , e2 (p) , e3 (p)), the plane π that contains the point p,
its neighbor s and the axis ẑ. Moreover, Figure 1 shows the
unique ellipse E ⊂ π that is tangent to the x̂, ŷ plane in p,
contains s, and is centered at a point in ẑ. The vector ξ̂s, that
is unitary, parallel to the plane π, and tangent to E at s, gives
a way to build a different structuring element that enhances
coplanar structures in the sense that the angle β ≈ 0 if s is
close to the x̂, ŷ plane. Specifically, if de(p, s) is the length
of the minor arc from p to s along the ellipse E in Figure 1,
we define a new weighting function:

g (p, s) =

exp

[
−de(p, s)
σ2 (p)

]
, tanφs ≤ tanφmax,

0.0 , tanφs > tanφmax,
(15)

where σ2 (p) is calculated by expression (13), φs is the angle
between vps = (s− p) and the x̂, ŷ plane, φmax constrains
the influence of points misaligned to the x̂, ŷ plane, with 45◦

an ideal choice, as a mid term between smoother results and
robustness to outliers [31], [32].

With the above elements in mind, it is defined the tensor
field S (p), that is composed by the weighted sum of the
tensors built from the votes received on the point, with weights
computed by expression (15) for all the points that have p as
a neighbor:

S (p) =
∑

s∈Lk(p)

g (p, s) ·
(
ξ̂s · ξ̂Ts

)
(16)

The tensor field in expression (16) can be seen as a shape
function S : P → R3×3 whose descriptors at a point p ∈ P
are the eigenvalues λSi (p) , i = 1, 2, 3. Therefore, given two
points p,q such that p ∈ P and q ∈ Q, we compare the



Fig. 1: Geometric representation of the angles φs, β and
unitary vector ξ̂s of an arbitrary point s.

corresponding (local) geometries using the comparative tensor
shape factor (CTSF), defined as:

CTSF (p,q) =

3∑
i=1

(
λS1
i (p)− λS2

i (q)
)2
, (17)

where S1 : P → R3×3 and S2 : Q → R3×3 are tensors
computed following expression (16) and λS1

i (p) and λS2
i (q)

are the ith eigenvalues calculated in the points p ∈ P and
q ∈ Q, respectively.

The CTSF is used side by side with the Euclidean distance
to produce a correspondence set that takes into account not
only the nearest point (like in expression (2)) but also the
shape information:

dc,m(p,q,m) = ||p− q||2 + wm · CTSF (p,q) , (18)

where CTSF (p,q) is given by Equation (17), wm = w0b
m,

with b < 1, and 0 < wm < w0.
The parameter w0 is the initial weight given to the CTSF

and b controls the update size of the weighting factor. To avoid
numerical instabilities we set wm = 0, when wm ≈ 0. This
weighting strategy is responsible for its coarse-to-fine behavior
when inserted in the matching step of the ICP algorithm,
given by expression (2). Specifically, the ICP-CTSF procedure
(Algorithm 2) calculates the correspondence relation:

C2(P,Q,m) = {(xil ,yil) ∈ P ×Q;

∀yik ∈ Q,
dc,m(xil ,yik ,m) ≥ dc,m(xil ,yil ,m)},

(19)

and uses it to define the set:

C3(P,Q, τ,m) = {(xi,yi) ∈ C2(P,Q,m);

f trim(xi,yi, τ) = 1},
(20)

which is the correspondence set applied by the ICP-CTSF
technique, which is summarized in the Algorithm 2.

Algorithm 2: ICP-CTSF Procedure

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

; trimming τ ;
b, such that 0 < b < 1; w0 � 0;

begin
P0 = P , s = 0, m = 1.
ε0 =∞.
R0 = I3, t0 = (0, 0, 0)T .
repeat

Apply the transformation to all points of the
source:
Ps+1 = RsPs + ts ≡ {Rsp + ts, p ∈ Ps}.
Compute the matching relation
C3 (Ps+1, Q, τ,m) through expression (20).
Compute the principal eigenvector v of the
matrix M defined in (10).
Calculate the matrix rotation matrix Rs+1 and
translation vector ts+1 using expressions
(11)-(12).
Compute the error between the two point sets:
εs+1 = e2 (Rs+1, ts+1), from (5).
if εs+1 > εs then

m← m+ 1.
wm ← w0b

m.
end if
s← s+ 1.

until εs > εs−1;
return R, t.

end

C. SWC-ICP Technique

In this technique, besides the correspondence relation (2),
we also use the correspondence set:

CCTSF (P,Q) = { (si,yi) ∈ P ×Q;

si = arg min
p∈P

(CTSF (p,yi))}, (21)

which contains the pairs of points (si,yi) ∈ P × Q whose
local shapes are the most similar, according to the CTSF
criterion calculated by expression (17). In order to combine
both correspondence sets, we firstly develop expression (8) to
get:

Σxy =
1

n

n∑
i=1

(
yix

T
i

)
− µyµTx . (22)

So, if we take expression (5) and perform the substitution:

xi ← xi + ωnsi (23)

with ωn ∈ R, we can write the mean squared error (5) as:

e2 (R, t) =
1

n

n∑
i=1

‖yi − [R (xi + ωnsi) + t]‖22 . (24)

Also, by substituting the variable change (23) in expression
(6) we get:



µx+ωns =
1

n

n∑
i=1

(xi + ωnsi)

=

(
1

n

n∑
i=1

xi

)
+ ωn

(
1

n

n∑
i=1

si

)
≡ µx + ωnµs,

(25)
and, consequently:

Σx+ωns,y =
1

n

n∑
i=1

[
yi (xi + ωnsi)

T
]
− µy (µx + ωnµs)

T
,

(26)
where µy is computed by equation (7). We shall notice

that the matrix (26) combines the matching relations (2) and
(21) being fundamental for the SWC-ICP described in [7].
According to the Theorem 1, the optimum rotation matrix
R and translation vector t that minimizes the error in ex-
pression (24) are uniquely determined by equations (11)-(12)
where v = ( v0 v1 v2 v3 )T is the unit eigenvector
of M (Σx+ωns,y) corresponding to the maximum eigenvalue.
However, the SWC-ICP methodology achieves a coarse-to-fine
behavior through the use of the weighting strategy of the ICP-
CTSF. The SWC-ICP technique can be summarized in the
Algorithm 3.

D. Sparse ICP

The Sparse ICP [8] is formulated as recovering a rigid
transformation that maximizes the number of null residuals
zi = Rxi + t − yi, where R is the rotation matrix and
t is a translation vector. The Sparse ICP uses Lp norm,
p ∈ [0, 1], to implement this idea. So, given the correspon-
dence set C1 (P,Q) in expression (2) and the residual vector
z = [||z1||p2, ..., ||zn||

p
2]T , the objective is to find a large set of

inliers, ||zi||p2 ≈ 0, and a small set of outliers, ||zi||p2 >> 0.
This can be written as:

min
R,t,Z

n∑
i=1

||zi||p2, such that, δi = 0, (27)

where δi = Rxi + t − yi − zi, and Z = (z1, z2, . . . , zn)
represents a generic point in the residual space. This con-
strained problem can be solved using an augmented La-
grangian method, which uses the Lagrangian:

LA(R, t, Z,Λ) =

n∑
i=1

(
||zi||p2 + λTi δi +

%

2
||δi||22

)
, (28)

with Lagrange multipliers Λ = {λi ∈ Rm, i = 1...n}, penalty
weight % > 0, and the restriction that R is a rotation matrix.
Equation (28) is optimized using an alternating direction
method of multipliers (ADMM). The Algorithm 4 summarizes
the Sparse ICP procedure.

Algorithm 3: SWC-ICP Technique

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

; trimming τ ;
b, such that 0 < b < 1; w0 � 0;

begin
P0 = P , s = 0, m = 1.
ε0 =∞.
R0 = I3, t0 = (0, 0, 0)T .
Compute the matching relations CCTSF (Pj , Q)
through expression (21).
repeat

Apply the transformation to all points of the
source:
Ps+1 = RsPs + ts ≡ {Rsp + ts, p ∈ Ps}.
Compute the matching relation C1 (Ps+1, Q, τ)
through expression (2).
Build the covariance matrix from (26) using the
shape correspondences (21) and the nearest
neighbors (2).
Compute the matrix M in expression (10) using
(26).
Compute the principal eigenvector v of the
matrix M .
Calculate the rotation matrix Rs+1 and translation
vector ts+1 using expressions (11)-(12).
Compute the error between the two point sets:
εs+1 = e2 (Rs+1, ts+1), from (5).
if εs+1 > εs then

m← m+ 1.
wm ← w0b

m.
end if
s← s+ 1.

until εs > εs−1;
return R, t.

end

E. Super 4PCS

The Super 4PCS [10] is an improved version of the 4PCS
[33] algorithm for global registration, or coarse registration
according to Salvi [3]. Both methods follow the same idea
of the RANSAC [34], [35], but instead of finding triplets of
points, they search for all coplanar 4-points that are approxi-
mately congruent. The key property behind 4PCS is the fact
that, given a set of coplanar points B = {p1,p2,p3,p4} ⊂ P ,
not all collinear, it is always possible to define two lines such
that they cross at an intermediate point e, like in Figure 2.

The intersection point e can be computed considering the
lines s (t1) = p1+t1 (p2 − p1) and s (t2) = p3+t2 (p4 − p3)
and the solution of the linear system defined by the equation
s (t1) = s (t2). If t1 = t̂1 and t2 = t̂2 are the obtained solu-
tions, then e = p1 + t̂1 (p2 − p1) and e = p3 + t̂2 (p4 − p3)
and, consequently, we can compute the two corresponding



Algorithm 4: Sparse ICP Method

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

; trimming τ ;
begin

P0 = P , s = 0.
ε0 =∞.
R0 = I3, t0 = (0, 0, 0)T .
repeat

Apply the transformation to all points of the
source:
Ps+1 = RsPs + ts ≡ {Rsp + ts, p ∈ Ps}.
Compute the matching relation C1 (Ps+1, Q, τ)
through expression (2).
Solve the problem in (27).
Compute the error between the two point sets:
εs+1 = e2 (Rs+1, ts+1), from (5).
s← s+ 1.

until εs > εs−1;
return R, t.

end

Fig. 2: Four coplanar intersecting in e and affine invariant
ratios r1and r2 (source [33]).

ratios: ∣∣t̂1∣∣ ≡ r1 = ||e−p1||
||p2−p1|| , (29)∣∣t̂2∣∣ ≡ r2 = ||e−p3||
||p4−p3|| ,

which are affine invariant because, given an affine trans-
formation ψ (p) = Ap + t, with det (A) 6= 0, we can
write ψ (e) = Ae + t = A

(
p1 + t̂1 (p2 − p1)

)
+ t and

ψ (e) = Ae+t = A
(
p3 + t̂2 (p4 − p3)

)
+t, and perform the

same algebra behind the demonstration of expressions (29) to
get:

r1 = ||Ae−Ap1||/||Ap2 −Ap1||, (30)
r2 = ||Ae−Ap3||/||Ap4 −Ap3||,

which proofs that the ratios r1 and r2 are invariants under
affine transformations.

Then, given the target Q, the main step of 4PCS algorithm
is to extract the set U of all 4-points from Q that are
approximately congruent to B, up to an approximation level
δ. This search is performed by noticing that, for each pair

of points q1,q2 ∈ Q, two intermediate points are computed
using the affine invariants (29):

e1 = q1 + r1(q2 − q1),

e2 = q1 + r2(q2 − q1),

Whenever we have e1 ' e2, for any two pairs of points,
then probably {q1,q2} ⊂ Q belongs to a 4-points set that is
an affine transformed copy of B. The set U defines a set T
of rigid transformations ψi (x) = Rix + ti that best aligns B
with some 4-points set in U . The solution of the registration
problem is a rigid transformation ψ ∈ T that brings set P
as close as possible to set Q, in the sense defined by the
Algorithm 5 that is found in [33].

Algorithm 5: 4PCS Procedure.

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

, δ > 0;
begin

h← 0.
for i = 1 to L do

B ← SelectCoplanarBase(P ).
U ← FindCongruent(B,Q, δ).
forall the 4-points coplanar sets Ui ∈ U do

ψi ← best rigid transformation that aligns B
to Ui in the least square sense (minimize (5)).
Find Si ⊆ P , such that
d(ψi(Si), Q) = e2 (Ri, ti) ≤ δ.

end forall
k ← arg max

i
|Si|.

if |Si| > h then
h← |Sk|.
ψopt ← ψk.

end if
end for
return ψopt.”

end

Although the results of the 4PCS are satisfactory, it has
a quadratic time complexity, limiting its applicability. The
Super 4PCS [10] solves two of the 4PCS main bottlenecks:
finding all points in a given distance threshold in a point
set, and removing the redundant 4-points that arise due to
affine invariants. These two improvements reduce the time
complexity to run in linear time, in the number of data points.

F. GMM Framework

All the previous techniques involve methods that align
two point sets based on some procedure for establishing the
explicit point set correspondence. The Gaussian mixture model
framework (GMM) discards the matching step and thus may
achieve more robustness against the missing correspondences
and outliers. In this registration framework each input point
set is represented using a Gaussian mixture model where



the number of Gaussian components is the number of points
[9]. Besides, the mean vectors of the components are given
by the position of the points and all components share the
same spherical covariance matrix. Formally, given a point set
X = {x1,x2, . . . ,xnX} ⊂ Rm, the mixture of Gaussians used
in GMM model is computed by:

G (x, X,Ω,w) =

nX∑
i=1

wiφ (x|xi,Ω) , (31)

where:

φ (x|xi,Ω) =
1√

(2π)
m
det (Ω)

exp

(
−1

2
(x− xi)

T
Ω−1 (x− xi)

)
,

(32)

w = (w1, w2, . . . , wnX )
T is the vector of weights and Ω is

the covariance matrix of the model. Without prior knowledge,
all mixture components are weighted equally (w1 = w2 =
. . . = wnX ) and Ω = diag

(
σ σ . . . σ

)
, with σ > 0

being the scale (or variance) of the model.
In this context, given source (P ) and target (Q) point

clouds, the problem of point set registration is reformu-
lated through the minimization of a statistical discrepancy
measure between the corresponding mixtures, given by ex-
pression (31). In the GMM proposed in [9] authors apply
L2 distance for measuring similarity between two Gaussian
mixtures G (x, Q,Ω,w) and G

(
x, ψ(P ), RΩRT ,w

)
, repre-

senting the target Q and the transformed source ψ(P ) =
{Rp1 + t, Rp2 + t, . . . , RpnP + t}, respectively, where ψ is
the rigid transformation in expression (1), defined by the
rotation R and translation t. So:

d
(
G (x, Q,Ω,w) , G

(
x, ψ(P ), RΩRT ,w

))
=∫ (

G (x, Q,Ω,w)−G
(
x, ψ(P ), RΩRT ,w

))2
dx =∫

(G (x, Q,Ω,w))
2
dx−

2

∫
G (x, Q,Ω,w)G

(
x, ψ(P ), RΩRT ,w

)
dx+∫ (

G
(
x, ψ(P ), RΩRT ,w

))2
dx

The equation (33) becomes a function f : R2m → R+

of the transformation parameters that can be grouped in a
vector θ = (α1, α2, . . . , αm; t1, t2, . . . , tm) where αi, ti give
the parametrization of the rotation matrix R and the translation
vector t, respectively. Hence, the registration becomes an
optimization problem, where the objective function is f (θ) =
d(G (x, Q,Ω,w) , G

(
x, ψ(P ), RΩRT ,w

)
). In practice, this

cost function can be expressed by a discrete Gauss transform
[36], [37] and the minimization of f could be achieved
through traditional gradient-based methods. However, there
are no guaranties of convexity for f in the θ domain. To
overcome this problem, it is recommended in [9] to start with

a relatively large scale σ and a default initial setting of pa-
rameters in θ and then performing the numerical optimization
to estimate the rigid transformation ψ. Then, we compute the
correspondence set C(P,ψ(P )), defined by expression (2). If
|C(P,ψ(P ))| is less than a threshold value repeat the process
by randomly chosen another initialization for θ. Besides, a
multiscale approach can be applied by decreasing the valuer
of σ in a coarse to fine strategy. The optimization process stops
until a sufficient number of correspondences are obtained.
The Algorithm 6 describes the GMM procedure [9]. In this
algorithm we follow the original GMM description [9] and
summarize the optimization approach as an ‘annealing step’ .

Algorithm 6: GMM Framework.

Data: P =
{
pi ∈ R3;pi = (pi1 , pi2 , pi3)

T
}

,

Q =
{
qi ∈ R3;qi = (qi1 , qi2 , qi3)

T
}

;
begin

Estimate and initial scale σ from the input point sets.
Specify an initial parameter θ, e.g., from the identity
transform.
repeat

Set up the objective function f , using expression
(33).
Optimize the objective function f with θ as the
initial parameter.
Update the parameter θ ← arg min

θ
f .

Decrease the scale σ accordingly to an annealing
step.

until Until some stopping criterion is satisfied;
return The transformation parameter θ.

end

IV. ROTATION ERROR METRICS

We use four different metrics to measure the rotation error
when a ground truth rotation is provided. The metrics are based
on the norm of difference between quaternions [38], inner
product of unit quaternions [39], Euclidean distance between
the Euler angles [40] and deviation from the identity matrix
[41]. The paper from Huynh [23] provides more details and
comparisons between them. In what follows, we restrict the
discussions to rotations in 3D, that are represented by unit
quaternions or matrices in SO(3).

A. Norm of the Difference between Quaternions

The first is obtained by using the norm of the difference
between unit quaternions q1 and q2 representing the provided
ground truth and the obtained rotation, respectively:

φ1 : S3 × S3 → R+,

φ1(q1,q2) = min{||q1 − q2||2, ||q1 + q2||2}, (33)

with ||·||2 as the Euclidean norm and S3 = {q ∈ R4 | ||q||22 =
1}. We can show that 0 ≤ φ1 ≤

√
2 [23]. As pointed out by

Huynh [23], φ1 is a pseudo-metric in S3, since φ1(q,−q) =



0 6⇒ q = −q, but in SO(3), the group of 3D rotations, φ1 is
a metric.

B. Inner Product of Unit Quaternions

Similarly to the metric given by expression (33), the second
metric also uses quaternions as follows:

φ2 : S3 × S3 → R+, (34)

φ2(q1,q2) = min{cos−1(q1 · q2), π − cos−1(q1 · q2)},
(35)

with q1 and q2 also representing the provided ground truth and
the obtained rotation, respectively, and · is the inner product.
Huynh [23] rewrites this function to be more computationally
efficient as:

φ3(q1,q2) = 1− |q1 · q2|. (36)

This function is also a pseudo-metric in S3, but it is a metric
in SO(3). Once we consider unit quaternions in expression
(36) it is straightforward that φ2, φ3 ∈ [0, 1].

C. Euclidean Difference between Euler Angles

The difference between two rotations can also be measured
in function of their Euler angles [42]. Let (α1, β1, γ1) and
(α2, β2, γ2) be two sets of Euler angles,

φ4 : E × E → R+,

φ4((α1, β1, γ1), (α2, β2, γ2))

= (d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2)1/2, (37)

where d(a, b) = min{|a− b|, 2π − |a− b|}, and E ⊂ R is
an appropriate domain for the three Euler angles. In order to
turn φ4 into a metric in SO(3), avoiding ambiguities in the
representation, the Euler angles must be constrained α, γ ∈
[−π, π) and β ∈ [−π/2, π/2), so that range of values of φ4
is [0, π/3].

D. Deviation from the Identity Matrix

In this case, ground truth and the computed rotations are
represented by matrices R1, R2 ∈ SO(3), respectively, and
the metric function is calculated by [41]:

φ5 : SO(3)× SO(3)→ R+, (38)
φ5(R1, R2) = ||I −R1R

T
2 ||F , (39)

where ||·||F denotes the Frobenius norm of the matrix. We can
prove that φ5 is in fact a metric on SO(3) and that expression
(39) gives values in the range

[
0, 2
√

2
]

[23].

V. EXPERIMENTAL RESULTS

We evaluate the performance of the methods described
on Section III using two different setups. In the first one
we compare the methods using point clouds captured in a
controlled scenario. Our model is the Bunny, from the Stanford
3D Scanning Repository [12]. We use four clouds given by the
views from 0◦, 45◦, 90◦ and 180◦, and align the consecutive
pairs. All point clouds lie in a unit bounding box. Figure 3
shows the three cases used, where in black we picture the
initial pose (source) and in red the target one. The size of
the original clouds are larger than 40000 points, which makes
their processing too computational involved. Therefore, we
uniformly sample these point clouds, selecting one point at
each 10 and discarding the others, in order to reduce the
computational time of each method.

(a) 0◦-45◦. (b) 45◦-90◦. (c) 90◦-180◦.

Fig. 3: The three alignment cases tested in the first experiment.

The web documentation [12] offers the transformation to
align the pairs of clouds shown in Figure 3. However, we
have noticed that the precision of the translation vector is
not suitable to perform a specific evaluation of the translation
computed by the registration methods. Also, the models do
not have a ground truth correspondence list. Hence, we firstly
take the rotation given and compare it with the ones generated
by the focused methods. Then, we take the 0◦ Bunny model
configuration and build a case-study for registration under
missing data. Furthermore, for each method, we measure the
computational time to calculate the alignment and the rotation
error obtained using the metrics described on Section IV.

The second experiments are performed using video se-
quences with RGB-D information. The first case-study is
frame sequence captured using a PrimeSense Carmine camera
[43]. This video belongs to the Large Dataset of Object Scans
[44], and the sequence used is the #03118, containing 1489
depth frames. The choice was based on how easy it was to
segment the background. Figure 4 illustrates the sequence.
The next tests are implemented using two videos, named
‘freiburg2 xyz’ and ‘freiburg2 rpy’, from database available
in [14] that, differently from the sequence #03118, provides
information for debugging translations and rotations, which
motivates their choices. Kinect is the acquisition hardware and
frames have resolution of 640 × 480 pixels, yielding a depth
image with 307200 points. All the experiments were carried
out using an Intel Core i7-4790 CPU with 16GB RAM.



(a) RGB frame 1. (b) RGB frame 150. (c) RGB frame 300.

(d) Depth frame 1. (e) Depth frame 150. (f) Depth frame 300.

Fig. 4: (a)-(d) Sample from the sequence #03118, showing
the RGB frame and its respective depth data (source [44]). (b)-
(e) RGB and depth fields for frame sequence ‘freiburg2 xyz’
(source [14]). (c)-(f) RGB and depth information for video
‘freiburg2 rpy’ (source [14]).

A. Point Cloud Registration

In this section we have the following aims: (a) Analyze
the different rotation error metrics (Section IV) to decide
the best one(s) for the frame-to-frame registration problem;
(b) Use the best error metric to compare the performance
of the registration techniques described in Section III. In
these tests, we consider the following degrees-of-freedom:
(1) Registration technique; (2) Percentage k of neighbors; (3)
Error metric; (4) Trimming parameter τ . Moreover, we wish to
compare techniques using RMS criterion in a controlled setup
with missing data.

The other parameters, besides k and τ , are set as follows.
The update size of the weighting factor used in the ICP-
CTSF and SWC-ICP is b = 0.1, w0 = 105. It is an
intermediate value that does not take too many updates, and
neither finishes the update too soon, without proper exploration
of the search space. The Super 4PCS was set with: δ = 0.005,
terminate threshold 0.8, without filtering by angle, normals,
distance or color. Also, no further sampling of the point cloud
is performed. The Sparse ICP and Sparse ICP with CTSF
were set with parameters the same parameters used in [13].
The GMM setup follows the default values of the GMM
implementation [45].

The SWC-ICP, ICP-CTSF and the Sparse ICP CTSF use
tensors to match points through the computation of the CCTSF
relation given by expression (21). In these cases, we can
evaluate the CTSF criterion using the isotropic voting field
T or the anisotropic voting tensor S. According to [7] better
results have been obtained by applying the former in the SWC-
ICP. However, the ICP-CTSF and Sparse ICP CTSF use the
S field to compute the CCTSF correspondence set [6].

To perform the task (a) we choose a pair of consecutive
viewpoints, compute the error for each registration method
using all the available metrics and visually compare the
best alignment obtained according to each error metric. The

best error metric is considered as the one which assigns the
minimum error to the best visual alignment.

The visual inspection of the point clouds in Figure 3
indicates that the case pictured in Figure 3a is suitable as a
case-study for the task (a) because, differently from Figures
3b and 3c, it is the easiest one with a large overlapping region
and no discontinuities.

So, considering the degrees-of-freedom listed above, we
set the trimming parameter τ = 0 (no trimming) and com-
pute the error metric for each registration technique using
k = 1%, 5%, 10%, 25%, 50%, 75%, 100%. In order to allow
a fair comparison between the metrics we report the relative
error, obtained by dividing the absolute error by the maximum
value in the range of the focused rotation metric IV. We shall
notice that φ3 ∈ [0, 1], consequently the absolute and relative
errors are the same in this case. Table I shows the minimum
relative error according to each metric for 0◦−45◦. The Sparse
ICP gives the smaller rotation error when considering all the
metrics except φ4 which achieves the minimum value for the
Sparse ICP CTSF with k = 25%. In special, the smallest error
in Table I is obtained by the Sparse ICP with value almost null,
given by 9.0× 10−9.

Figure 5 shows the absolute error obtained for the tests in
the case 0◦ − 45◦, excluding k = 1% and k = 100% because
they do not offer best results and sometimes they generate
too large errors bringing scale problems in the visualization of
smaller bars. The Sparse ICP and Sparse ICP CTSF algorithms
presented the smaller errors, which agree with the results
reported in Table I.

The visualization of Figures 5a-5d indicates that the ICP,
ICP-CTSF and SWC-ICP achieve the second place in terms
of rotation errors. Table II reports the minimum and maximum
errors for these methods, according to each metric of Section
IV. We can notice that, when considering the change 0◦ −
45◦, the variation of the parameter k did not influenced in the
rotation error measured.

In order to check the results reported in Table I and Figure
5a-5d we show in Figures 6a-6b the overlapping of the
source cloud (0◦ view) and the target set (45◦ view) after the
application of the best transformations obtained. The visual
inspection of Figure 6 agrees with the fact that Sparse ICP
and Sparse ICP CTSF with k = 25% offer suitable alignments.
However, the visualization is not precise enough to decide the
best one. However, the Sparse ICP errors were the smallest
ones for three of the four considered metrics. Also, according
to metric φ3, the error of the Sparse ICP is almost null. These
observations indicate that Sparse ICP performs better than the

TABLE I: Best method and minimum relative error computed
by each metric (Section IV) for the alignment 0◦ − 45◦.

Metric Best Reg. Method k Relative Error
φ1 Sparse ICP - 0.000787
φ3 Sparse ICP - 0.0000000090
φ4 Sparse ICP CTSF k = 25% 0.0033704
φ5 Sparse ICP - 0.0015736



(a)

(b)

(c)

(d)

Fig. 5: Rotation error for the registration techniques (Trimming
parameter τ = 0), for the case 0◦ − 45◦, computed using: (a)
φ1. (b) φ3; (c) φ4; (d) φ5.

other techniques and favor the choice of the φ3 to measure
the rotation error.

Figure 7 shows the errors obtained in the next experiments,

TABLE II: Performance of ICP, ICP-CTSF and SWC-ICP for
alignment 0◦ − 45◦.

Method Metric Min Max
Error k Error k

ICP

φ1 0.0178769966 - 0.0178769966 -
φ3 0.0003192528 - 0.0003192528 -
φ4 0.0091941769 - 0.0091941769 -
φ5 0.0252800561 - 0.0252800561 -

ICP-CTSF

φ1 0.0176847562 5% 0.0178832039 75%
φ3 0.0003124164 5% 0.0003194748 75%
φ4 0.0091972439 75% 0.0092677951 10%
φ5 0.0250082513 5% 0.0252888326 75%

SWC-ICP

φ1 0.0176695492 25% 0.0179247959 75%
φ3 0.0003118788 25% 0.0003209641 75%
φ4 0.0091550806 50% 0.0092616098 5%
φ5 0.0249867506 25% 0.0253476385 75%

(a) (b)

Fig. 6: Visualization of the best cases reported in Table I: (a)
Sparse ICP. (b) Sparse ICP CTSF with k = 25%.

for the case 45◦-90◦. Differently from the case 0◦ − 45◦,
we observe that the Sparse ICP CTSF achieves the smallest
rotation errors for all the metrics which is significantly smaller
than the Sparse ICP rotation error. Table III reports the
minimum and maximum relative errors achieved by the Sparse
ICP CTSF with respect to the considered metrics. Likewise
in the above case, the smallest relative error happens for the
metric φ3, as well as the smallest error interval [Min,Max],
but now with k = 5% and k = 50%.

TABLE III: Sparse ICP CTSF rotation relative error for
alignment 45◦ − 90◦.

Method Metric Min Max
Relative Error k Relative Error k

Sparse ICP CTSF

φ1 0.0136222 5% 0.2399373 50%
φ3 0.0003704 5% 0.1151393 50%
φ4 0.0186458 25% 0.2104903 50%
φ5 0.009632 5% 0.16470541 50%

Figure 8(a) allows to visually check the alignment obtained
by the Sparse ICP CTSF using k = 5%. Also, Figure 8(b)
allows to compare that result with the Sparse ICP registration
in order to confirm that, different from the case 0◦ − 45◦, the
alignment of the former is really better than the alignment
generated by the latter in this case.

The third registration test is the hardest one, since there is
a 90◦ variation between the two point sets. It implies also in
a smaller overlapping, which is a complicating factor in rigid



(a)

(b)

(c)

(d)

Fig. 7: Rotation error for the registration techniques (Trimming
parameter τ = 0), for the case 45◦ − 90◦, computed using
metric: (a) φ1. (b) φ3; (c) φ4; (d) φ5.

registration. All methods failed to obtain a correct registration
in this case. The minimum and maximum absolute errors of
the best two methods are reported in Table IV for the case

Fig. 8: Case 45◦ − 90◦: (a) Registration obtained with Sparse
ICP CTSF using k = 5%. (b) Final alignment generated by
Sparse ICP.

90◦-180◦.

TABLE IV: Best two methods, with minimum and maximum
errors computed by each metric for the alignment 90◦−180◦.

Method Metric Min Max
Error k Error k

ICP CTSF

φ1 0.1244098475 75% 0.81487218 100%
φ3 0.0154772929 75% 0.664016846 100%
φ4 0.3132339459 50% 0.6542840582 75%
φ5 0.1752597383 75% 0.9418682848 100%

SWC-ICP

φ1 0.1318543928 75% 0.9498184948 1%
φ3 0.0173850661 75% 0.9021556037 1%
φ4 0.161463837 75% 0.5907273744 1%
φ5 0.1856579836 75% 0.9952022544 1%

The minimum rotation error is achieve by ICP CTSF, with
k = 75%, in the metric φ3. However, Figure 9 shows that the
obtained alignment is not correct.

Fig. 9: Best registration (ICP CTSF, with k = 75%) obtained
for the 90◦-180◦ case. All the registration methods of Section
III get incorrect results in this case.

Figure 10 shows the CPU time for the execution of each
technique in the experiments reported in this section. We can
notice that Sparse ICP CTSF computational time is much
longer. Also, Sparse ICP CTSF is followed by the Sparse ICP,
ICT-CTSF and SWC-ICP in terms of computational time. So,
despite of the good performance of Sparse ICP CTSF in cases
0◦-45◦ and 45◦-90◦, its computational time is higher.



(a)

(b)

(c)

Fig. 10: CPU time in seconds obtained for each method when
computing alignment for: (a) 0◦-45◦. (b) 45◦-90◦. (c) 90◦-
180◦.

The influence of the trimming parameter can be discussed
through Figure 11, when considering the registration for 45◦-
90◦. We calculate the rotation error using function φ3, shown
on Figure 11a. To complement the information, Figure 11b
pictures the error variation. We shall observe that the SWC-
ICP with k = 75% undergoes the larger registration improve-
ment (0.112109), for trimming τ = 10% , but it also suffers
the larger error increasing if τ = 20%. On the other hand, the
Sparse ICP CTSF with k = 5%, that achieves the smallest
error without trimming, remains almost unchanged once it
gets a difference of −1.411663 · 10−6 with both τ = 10%
and τ = 20%. However, the SWC-ICP, that gets the second
place in the 45◦-90◦ alignment, increases its efficiency for
trimming 10% and k = 25%, 50%, 75% but decreases for all
the other cases when incorporating trimming. Therefore, it is
not possible to figure out a tendency to the influence of the

trimming procedure in the registration error.

(a)

(b)

Fig. 11: Influence of the trimming parameter in the case 45◦-
90◦. (a) Rotation error according to φ3. (b) Visualization of
the error variations, with respect to the trimming null.

Missing data is simulated by taking the 0◦ view of the
Bunny and moving it using the rotation (45◦) and translation
available in the web site [12]. In this way, we have the ground
truth for the correspondence set which allows to compare
the RMS (

√
e2 (R, t)) of the techniques without ambiguities.

Then, we remove a set of points inside a ball centered in a
specific point in the cloud, with radius = 0.03, and update the
correspondence set. Figure 12.(b) shows the two clouds before
alignment. Figure 12.(a) allows to analyse the performance
of the registration techniques, regarding the RMS, against
missing. In this figure we indicate in yellow the best technique
and in magenta de worst one. It is noticeable the GMM
gets the larger RMS error while ICP-CTSF with k = 10%
presents outstanding performance. With exception of GMM,
the other methods perform close one to each other. Table
V allows to get a better idea about the numeric differences
between the RMS errors. The Sparse ICP-CTSF k = 5%
and Sparse ICP, which were the best methods in the previous
experiments, achieve the 14th and 16th place in the RMS rank
for incomplete Bunny data. We shall be careful because the
difference between the Sparse ICP and the best technique in
Table 12 is approximately 0.0008, which is not too important,
considering that the clouds are normalized in the unitary cube.
The Figures 12.(c)-(e) agrees with this observation once it is



hard to notice differences between the alignments. However,
the relative decrease of performance of Sparse ICP-CTSF and
Sparse ICP may indicate some sensitivity against incomplete
data, which could impact their efficiency for frame-to-frame
registration.
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Fig. 12: (a) RMS for missing data simulation (b) Point cloud
0◦ and its version rotated/translated and corrupted by removing
data. (c) Best alignment obtained by ICP-CTSF with k = 10%.
(d) Alignment generated by Sparse ICP-CTSF with k = %5.
(e) Worst alignment obtained by Sparse ICP.

TABLE V: RMS for alignment of clouds with missing data.

Rank Method RMS
1 ICP-CTSF k = 10% 0.0110090321
14 Sparse ICP-CTSF k = 5% 0, 0118308936
16 Sparse ICP 0, 0118385019
19 GMM 0, 0204105014

Table VI summarizes the main results reported in this
section. All the rotation errors presented in Table VI are
computed using the φ3 (Section IV-B) once the discussion

related to Table I, Figures 5 and 6 points out this metric as
the more appropriate.

TABLE VI: Conclusions of the point cloud registration exper-
iments.

Test Best Method Error

0◦ − 45◦ Sparse ICP 9.03625 · 10−7 (φ3)

45◦ − 90◦ Sparse ICP CTSF, with k = 5% 0.000370 (φ3)

90◦ − 180◦ All fail —

Trimming No conclusion —

Missing data ICP-CTSF, with k = 10% 0.0110090321 (RMS)

B. Frame-To-Frame Registration

According to Section V-A, the best methods in the per-
formed experiments are Sparse ICP, Sparse ICP CTSF, without
considering incomplete data, and ICP-CTSF otherwise, with
the parameters reported in Table VI. In this section, we must
check the obtained conclusions, but now in the frame-to-frame
registration, which composes the second sequence of experi-
ments. These tests are executed using the 640× 480 pixels of
the frames extracted from the #03118 video, as reported at the
beginning of this section. The image resolution yields a depth
array with 307200 elements which increase the computational
cost of the registration algorithms. Therefore, we uniformly
sampled each frame of the video, with sampling rates r = 8,
to reduce the total number of points, generating new video
sequence V . This way, each frame Cm, 1 ≤ m ≤ |V | becomes
a matrix Cm ∈ RM1×M2×4, where M1 = integer (640/r),
M2 = integer (480/r), Cm (i, j, 1) , · · ·, Cm (i, j, 3) hold the
R,G and B channels, respectively, and Cm (i, j, 4) corresponds
to the depth information, captured with 8-bit resolution.

The sequence #03118 was chosen because of how easy it
is to segment the background. In this video, the sign is the
only meaningful object in the scene, with respect to the depth
information (see Figure 4). The grass in the background is
too deep to be captured and yields null depth values. Hence,
we take the set Sm = {(i, j, Cm (i, j, 4)) ; Cm (i, j, 4) > 0,
1 ≤ i ≤ M1 and 1 ≤ j ≤M2} and interpret it as a point
cloud in R3. Besides, a temporal sampling was made, selecting
one frame at each ς consecutive frames. This approach pushes
the difficulty of the registration, as a simulated larger camera
movement, that implies in a smaller overlapping region. So,
we set P = Sς·i, Q = Sς·(i+1) as the pair source/target in
each iteration of the frame-to-frame registration that generates
the pair (Rς·i, tς·i) that best aligns the source cloud Sς·i with
the target one Sς·(i+1).

The root mean squared error (RMS) after the registration of
the clouds Sς·i and Sς·(i+1) is given by:

RMSreg(Sς·i, Sς·(i+1)) =
√
e2 (Rς·i, tς·i), (40)

with e2 being the error computed by expression (5). The
equation (40) allows to compute the average root mean squared



error, denoted by MRMS, through the expression:

MRMS (ς, V ) =

(
1
|V |
ς

) |V |
ς −1∑
i=0

RMSreg(Sς·i, Sς·(i+1)),

(41)
which can be used to measure the quality of the whole
sequence registration.

Since the choice of the parameter k of the ICP-CTSF, the
SWC-ICP and the modified Sparse ICP with CTSF impacts
on the results, we show how they change with k = 75%,
k = 50%, k = 25%, k = 10% and k = 5% of the total number
of points. All methods were set with the same parameters of
the previous experiment.

Fig. 13: RMS error by frame of the original ICP on the
sequence #03118.

From the Figure 13, which shows the registration error along
the video sequence for ICP, we notice that the higher errors
occur near the end of the video sequence, where there is a
rough movement unlike in the rest of the video. The same
happens for all the considered methods. In the corresponding
frames, there is another complication because of the low
number of points that the depth sensor was able to sample,
increasing the chance of a bad alignment. Figure 14 illustrates
this case.

(a) Depth frame 1388. (b) Respective RGB frame.

(c) Depth frame 1389. (d) Respective RGB frame.

Fig. 14: A pair of depth frames (14a, 14c) and their respective
RGB frames (14b, 14d). Note the small area in the depth
frames that the sensor was able to capture, yielding fewer
points than those of Figure 4a, 4b and 4c, in comparison.

Missing data is a frequent problem when using raw depth
data, due to uncertainty caused by reflections in the acquisition
process. Figure 15 shows an example of a pair, in which one
of the point clouds (Figure 15f) misses some points.

(a) Depth frame 49. (b) Respective RGB
frame.

(c) Respective point cloud.

(d) Depth frame 50. (e) Respective RGB
frame.

(f) Respective point cloud.

Fig. 15: A pair of depth frames (15a, 15d) and their respective
RGB frames (15b, 15e) and point clouds (15c, 15f).

Figure 16 shows the MRMS obtained for each method
when varying the temporal sampling parameter ς and fixing
the spacial sampling r = 8. We notice that the MRMS errors
of the Sparse ICP and the Sparse ICP CTSF are the highest,
contrasting with the results of the previous experiments. Table
VII reports the lower MRMS values for results in Figure 16a
with ICP-CTSF having the best score in this experiment for
k = 75%.

TABLE VII: Best methods, respect to MRMS, for frame-to-
frame registration of video #03118 with ς = 1 and r = 8.

Method MRMS Rank
ICP 0,0122449244 Fourth

ICP-CTSF k = 10% 0,0121419904 Third
ICP-CTSF k = 50% 0,0120212500 Second
ICP-CTSF k = 75% 0,0118194802 First

Table VII indicates that variation of the parameter k does
not have much effect for ICP-CTSF. In fact, Figure 16 shows
that the same happens for the other methods, except for a small
trend on the SWC-ICP, where smaller values of k yield higher
MRMS errors.

Figure 17 shows the MRMS of the methods when an
image sampling rate r = 16 is used. In this case we fixed the
temporal sampling as ς = 1, i.e., every frame i is registered
with its consecutive i+1. A change of scale is perceived when
comparing with Figure 16a, as some methods almost doubled
its error. However, this result is expected, as with a higher
image sampling, the pixels (and corresponding points) are
farther from each other. Points without an exact correspondent,
then, will increase the error value.

Since the MRMS values presented some inconsistencies
with the previous experiment regarding the Sparse ICP and
Sparse ICP CTSF, we decided to discard the segment at the
end of the video where all methods perform bad. So, we take



(a) ς = 1

(b) ς = 2

(c) ς = 4

Fig. 16: Variation of the temporal sampling. All the three cases
have video sampling rates r = 8. Note how the scale changes
as ς increases.

Fig. 17: MRMS of all methods using video sample r = 16,
with ς = 1.

the first 820 frames and recompute the MRMS for the regis-
tration algorithms. In order to allow a more complete analysis
and comparison with the MRMS for the whole video, we
report in Table VIII the MRMS for both experiments. When
comparing the values in the second and third columns, we
notice that all methods improve the MRMS if only the first
820 frames are used. However, the Sparse ICP and Sparse
ICP-CTSF errors dropped to half when we took the first
820 frames only. This fact points towards the sensitivity of
these methods against incomplete (and missing) data problems
shown in Figures 14 and 15. In the tests of Section V-A, we
figure out a similar conclusion when anaysing the results of
Table VI. So, if we take a subsequence of frames free of this
problem, we expect outstanding performance with Sparse ICP
and Sparse ICP CTSF in these cases.

TABLE VIII: MRMS for frame-to-frame registration of
video #03118 with ς = 1 and r = 8. Second column gives
the MRMS using the complete video and the third column
using the first 820 frames.

Method MRMS (all) MRMS (820)
ICP 0.0122449244 0.0097785502

ICP-CTSF k = 5% 0.0127517351 0.0091452435
ICP-CTSF k = 10% 0.0121419904 0.0090946880
ICP-CTSF k = 25% 0.0127106841 0.0090196982
ICP-CTSF k = 50% 0.0120212500 0.0092728001
ICP-CTSF k = 75% 0.0118194802 0.0092269833
SWC-ICP k = 5% 0.0191444196 0.0167142512
SWC-ICPk = 10% 0.0146610187 0.0115323086
SWC-ICPk = 25% 0.0137439724 0.0100330277
SWC-ICPk = 50% 0.0129120949 0.0101483156
SWC-ICPk = 75% 0.0125843444 0.0101779295

Sparse ICP-CTSF k = 5% 0.0213255462 0.0102627931
Sparse ICP-CTSF k = 10% 0.0214605022 0.0112728029
Sparse ICP-CTSF k = 25% 0.0227560495 0.0106664626
Sparse ICP-CTSF k = 50% 0.0220794083 0.0109903911
Sparse ICP-CTSF k = 75% 0.0193417601 0.0107762084

Sparse ICP 0.0200493252 0.0108378611
GMM 0.0128413983 0.0104018284

Super 4PCS 0.0174477538 0.0137338492

We can use a visual inspection to check this conclusion. In
the beginning of the video #03118, we notice less occurrence
of incomplete data as shown in Figures 18a-d. So, we simulate
an attempt to reconstruct the objects using the frames 1 to 4.
Specifically, the resulting registration of the pairs (1,2), (1,3)
and (1,4) were overlapped.

Figure 19 shows the obtained result. The Sparse ICP CTSF
with k ∈ {5%, 10%} produces an image cleaner than other
methods, like the blurred image produced from the ICP-CTSF
with k = 50%. In Figure 20 we highlight the fact that the
result obtained by Sparse ICP CTSF with k = 5% is much
better then the ICP-CTSF with k = 50%, as the points are
completely overlapped in the former (Figures 20c and 20d),
differently from the latter.

Hence, the visual inspection considering the pairs (1,2),
(1,3), (1,4) and the MRMS in Table VIII indicates that
Sparse ICP and Sparse ICP CTSF suffer the influence of
incomplete/missing data. If true, considering the requirements
of the frame-to-frame registration, they could not be not



(a) (b)

(c) (d)

Fig. 18: (a) Target object in frame 1. (b) Visualization of the
point cloud in frame 2. (c) Point cloud in frame 3. (d) Target
point cloud in frame 4.

recommended for such applications. On the other hand, it
seems that the ICP-CTSF is more reliable for this appli-
cation considering that its performance is less sensitive to
the mentioned problems, as observed in Tables VI and VIII.
Next, we undertake new experiments to evaluate the focused
techniques for frame-to-frame registration with availabe groud
truth transformation, in order to check these conclusions.

C. Frame-To-Frame Alignment Tests with Ground-Truth

The frame-to-frame registration experiments of Section V-B
was not conclusive with respect to the best technique for this
application. Hence, in this section, we perform frame-to-frame
registration tasks using public data sets, with ground truth
available [14], [46], to complete the analysis. The geometry
behind the data acquisition process is pictured on Figure
21, which represents the world reference system, denoted by
W , and two others coordinate systems, named W1 and W2,
attached to the camera and defining its location and orientation
respect to the system W . Besides, we have a point p ∈ R3,
which has coordinates:

[p]W1
= (α1, α2, α3)

T
, [p]W2

= (β1, β2, β3)
T
,

respect to the systems W1 and W2, respectively. Also, let
rotations R1, R2, and translations t1, t2, be such that:

[p]W = t1 +R1 [p]W1
, (42)

[p]W = t2 +R2 [p]W2
, (43)

(a) (b)

(c) (d) (e)

Fig. 19: Overlapping of the registered frames 1-4 by different
algorithms. (a) Original ICP. (b) ICP-CTSF k = 50%. (c)
Sparse ICP CTSF k = 5%. (d) Sparse ICP CTSF k = 10%.
(e) Sparse ICP CTSF k = 75%.

(a) (b)

(c) (d)

Fig. 20: Zoom-in the selected area showing how the points
do not coincide in the ICP-CTSF with k = 50%, producing
a blurred image observed in Figure 19b. The same does not
happen with the Sparse ICP CTSF with k = 5%. (a) ICP-
CTSF k = 50%. (b) Zoon-in the selected region. (c) Sparse
ICP CTSF k = 5%. (d) Selected region in detail.

as well as the rotation R1,2 and translation t1,2, computed by
a registration algorithm, which allows to write:



Fig. 21: Global (W ) and camera reference systems for two
consecutive frames.

[p]W2
= t1,2 +R1,2 [p]W1

. (44)

Consequently, given a point cloud P =
{p1,p2, . . . ,pnP } ⊂ R3, the registration error can be
computed as:

e2 (R1,2, t1,2) =
1

nP

nP∑
i=1

∥∥[pi]W2
−
(
R1,2 [pi]W1

+ t1,2
)∥∥2

2
.

(45)
Also, considering expressions (42)-(43), a simple algebra

shows that:

[p]W2
= R−12 (t1 − t2)−R−12 R1 [p]W1

. (46)

We interpret the first term of the right-hand side of expres-
sion (46) as the ground truth translation and the matrix R−12 R1

as the ground truth rotation, that can be used to quantify
the precision of the rigid transformation given by expression
(44). The ground truth rigid transformation can be computed
if we know the rotations and the translations that appear in
equations (42)-(43). The database available in [14] provides
these information for the video ‘freiburg2 xyz’, that contains
very clean data for debugging translations, and for the video
‘freiburg2 rpy’ which contains suitable data for debugging
rotations [14]. The former has 3615 RGB-D frames while the
later encompasses 3221 RGB-D images, both with resolution
640× 480 pixels.

We work analogously to the beginning of Section V-B,
by setting r = 16 and ς = 3, to generate the set Sm =
{(i, j, Cm (i, j, 4)) ; Cm (i, j, 4) > 0, 1 ≤ i ≤ M1 and
1 ≤ j ≤M2} and perform the necessary transformation [47]
to convert the 2D depth data to 3D point clouds in the reference
system Wm, that defines the Kinect position and orientation
when frame Cm was acquired. The result is a point cloud
SWm =

{
[pij ]Wm

}
, where [pij ]Wm

is the coordinate vector
of the point pij = (i, j, Cm (i, j, 4)) respect to the coordinate
system Wm .

So, we set P = SWς·i , Q = SWς·(i+1)
as the pair

source/target in each iteration of the frame-to-frame registra-
tion that generates the pair

(
Rς·i,ς·(i+1), tς·i,,ς·(i+1)

)
that best

aligns the source cloud P with the target one Q.
Let us consider the Figure 21, with W1 replaced to Wς·i

and W2 replaced to Wς·(i+1). We must notice that the clouds
SWς·i and SWς·(i+1)

correspond to two views of the same scene
S, represented in the system Wς·i and Wς·(i+1), respectively.
So, in order to use expression (45) to compute the registration
error, we must know the ground truth for the matching between
clouds SWς·i and SWς·(i+1)

, which is not given in the database.
In fact, we know only the ground truth for the transformations
between the (camera) reference systems Wς·i and Wς·(i+1)

and the world reference system W , denoted by (Rς·i, tς·i)
and

(
Rς·(i+1), tς·(i+1)

)
, respectively (see Figure 21). So, we

can straightforward compare the pair
(
Rς·i,ς·(i+1), tς·i,ς·(i+1)

)
,

obtained through the registration algorithm, with the ground
truth, computed through the two terms in the right-hand side
of expression (46). So, let qgς·i,ς·(i+1) be the quaternion that

represents the ground truth rotation (
(
Rς·(i+1)

)−1
Rς·i), and

the vector tgς·i,ς·(i+1) =
(
Rς·(i+1)

)−1 (
tς·i − tς·(i+1)

)
which

gives the ground truth translation. Hence, we can define the
mean rotation error:

MRot (ς, V ) =

(
1
|V |
ς

) |V |
ς −1∑
i=0

φ3(qς·i,ς·(i+1),q
g
ς·i,ς·(i+1)),

(47)
where qς·i,ς·(i+1) is the quaternion for rotation matrix
Rς·i,ς·(i+1), and φ3 is the metric defined by equation (36).
Analogously to expression (47), we can define the mean
translation error as:

MTr (ς, V ) =

(
1
|V |
ς

) |V |
ς −1∑
i=0

∥∥∥tς·i,ς·(i+1)−tgς·i,ς·(i+1)

∥∥∥
2
.

(48)
Moreover, we consider the standard deviations:

SRot (ς, V ) =

( 1
|V |
ς

) |V |
ς −1∑
i=0

∣∣∣φς,i3 −MRot (ς, V )
∣∣∣2

1/2

,

(49)

STr (ς, V ) =

( 1
|V |
ς

) |V |
ς −1∑
i=0

|D (ς, i)−MTr (ς, V )|2


1/2

,

(50)
where φς,i3 = φ3(qς·i,ς·(i+1),q

g
ς·i,ς·(i+1)), and D (ς, i) =∥∥∥tς·i,ς·(i+1)−tgς·i,ς·(i+1)

∥∥∥
2
, to analyze the statistical signifi-

cance of the means (47) and (48).
All methods were set with the same parameters of the pre-

vious experiments. We start with the sequence ‘freiburg2 rpy’
and compute expression (47)-(48) with ς = 3, whose results
are shown in Figure 22. Although, according to the database



information [14], in this case we have small translation effects,
we decided to show the translation error in Figure 22.(b)
in order to complete the analysis. The best techniques are
highlighted with yellow bars and the worst with magenta
bars. From Figure 22.(a) wee see that Sparse ICP-CTSF with
k = 50% achieve the lowest rotation error while Figure 22.(b)
shows the superiority of GMM for translation.
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Fig. 22: Results for video ‘freiburg2 rpy’ : (a) Mean rotation
error given by expression (47) . (b) Translation error computed
by expression (48).

The scale of the mean rotation/translation errors in Figure 22
do not allow to rank the best techniques. To solve this problem,
we report in Tables IX-X the best seven methods according
to the rotation and translation errors with the corresponding
standard deviations calculated by expression (49) and (50),
respectively.

Once the metric φ3 ∈ [0, 1], it is straightforward that the
second column of Table IX gives the absolute (MTr± STr)
and relative mean errors ((MTr ± STr) /φmax3 ) for rotation.
Also, considering that the clouds are normalized in the unitary
cube we can also take MTr ± STr as both the absolute and
relative translation error measure.

From Table IX, it is noticeable that Sparse ICP-CTSF and
Sparse ICP are the best techniques for rotation, with a small
advantage of former with k = 50% against the latter. We shall

TABLE IX: Best seven methods for video ‘freiburg2 rpy’
according to the rotation average (equation (47)) with standard
deviations given by expression (49).

Method MRot ± SRot
Sparse ICP-CTSF k = 50 % 8.31308× 10−5 ± 1.01305× 10−4

Sparse ICP-CTSF k = 75 % 8.31353× 10−5 ± 1.01316× 10−4

Sparse ICP-CTSF k = 25 % 8.31381× 10−5 ± 1.01308× 10−4

Sparse ICP-CTSF k = 5 % 8.31438× 10−5 ± 1.01313× 10−4

Sparse ICP 8.31525× 10−5 ± 1.01330× 10−4

Sparse ICP-CTSF k = 10 % 8.31545× 10−5 ± 1.01312× 10−4

SWC-ICP k = 75 % 8.61504× 10−5 ± 1.05042× 10−4

TABLE X: Best seven methods for video ‘freiburg2 rpy’
according to translation average (equation (48)) with standard
deviations given by expressions (50).

Method MTr ± STr
GMM 0.00168± 0.00099

Super 4PCS 0.00168± 0.00099
ICP 0.04537± 0.05005

SWC-ICP k = 75 % 0.04970± 0.05068
ICP-CTSF k = 50 % 0.04992± 0.05470
ICP-CTSF k = 75 % 0.05045± 0.05465
SWC-ICP k = 50 % 0.05058± 0.05339

highlight that the mean error and standard deviation regarding
rotation, reported in Table IX, are of order 10−5 and 10−4,
respectively, which show that the methods perform well in this
item.

Regarding to translation, the best techniques reported in
Table X are GMM and Super 4PCS. They work equivalent in
the translation estimation once both achieve the same values
for MTr and for the standard deviation STr, in the precision
used in Table X. The Sparse ICP-CTSF and Sparse ICP do
not appear in the list of seven better methods.

The next tests show the performance of the registration
methods when using the video ’freiburg2 xyz’. Although the
data set documentation [14] assures that this video is indicate
for debugging translations, we reported both the rotation (Fig-
ure 23.(a)) and translation errors (Figure 23.(b)) to complete
the analysis.

Likewise in the last tests, Sparse ICP-CTSF with k = 50%
is the best methods for rotation as emphasized by the yellow
bar in Figure 23.(a). In Table XI we also report the best
seven methods according to the rotation mean errors for tests
with video ‘freiburg2 xyz’ with the corresponding standard
deviations. Considering the error mean MRot and standard
deviation SRot we see that the performance of Sparse ICP is
close to Sparse ICP-CTSF with k = 50% while both perform
very well if we take into account that φ3 ∈ [0, 1].

Regarding the errors for translation for video
‘freiburg2 xyz’ shown in Figure 23.(b), we notice that
GMM outperforms all the other methods, likewise in the
previous video. Also, the first column of Table XII shows that
the GMM and Super 4PCS work equivalently in the precision
used in this table.

Therefore, the results obtained for videos ’freiburg2 rpy’
and ’freiburg2 xyz’ show that Sparse ICP-CTSF with k =
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Fig. 23: Results for video ‘freiburg2 xyz’ : (a) Mean rotation
error given by expression (47). (b) Translation error computed
by expression (48).

TABLE XI: Best seven methods for video ‘freiburg2 xyz’
according to the rotation average (equation (47)) with standard
deviations given by expressions (49).

Method MRot ± SRot
Sparse ICP-CTSF k = 50 % 2.81713× 10−5 ± 3.91618× 10−5

Sparse ICP-CTSF k = 10 % 2.81726× 10−5 ± 3.91613× 10−5

Sparse ICP-CTSF k = 75 % 2.81734× 10−5 ± 3.91645× 10−5

Sparse ICP 2.81739× 10−5 ± 3.91651× 10−5

Sparse ICP-CTSF k = 25 % 2.81769× 10−5 ± 3.91652× 10−5

Sparse ICP-CTSF k = 5 % 2.81778× 10−5 ± 3.91715× 10−5

ICP-CTSF k = 75 % 3.94410× 10−5 ± 1.03781× 10−4

TABLE XII: Best seven methods for video ‘freiburg2 xyz’
according to translation average (equation (48)) with standard
deviations given by expressions (50).

Method MTr ± STr
GMM 0.00610± 0.00301

Super 4PCS 0.00610± 0.00301
ICP 0.05807± 0.06520

SWC-ICP k = 75 % 0.06107± 0.06515
SWC-ICP k = 50 % 0.06140± 0.06729
SWC-ICP k = 25 % 0.06182± 0.06727
ICP-CTSF k = 75 % 0.06378± 0.07572

50% is the best technique for rotation while GMM got outstand
results for translation estimation. In order to put all this
together to try a final conclusion, we apply the transformation
(46) to the set P and take the correspondence relation (2) as
the ground truth matching in order to compute the MRMS
error using equations (40)-(41) and (45). Tables XIII-XIV
reports the obtained results. It is noticeable that ICP-CTSF
with k = 75% achieves the best MRMS for both tables. If
we return to Figures 22 and 23 we observe that ICP-CTSF
was among the best methods, as we can confirm by Tables
XII, XI, and X.

TABLE XIII: Best seven methods for video ‘freiburg2 rpy’
according to the MRMS given by expression (41).

Method MRMS
ICP-CTSF k = 75 % 0.01350± 0.01077
ICP-CTSF k = 50 % 0.01350± 0.01081
ICP-CTSF k = 10 % 0.01356± 0.01089
SWC-ICP k = 75 % 0.01366± 0.01084
ICP-CTSF k = 25 % 0.01370± 0.01173
SWC-ICP k = 50 % 0.01372± 0.01085
ICP-CTSF k = 5 % 0.01373± 0.01122

TABLE XIV: Best seven methods for video ‘freiburg2 xyz’
according to the MRMS given by expression (41).

Method MRMS
ICP-CTSF k = 75 % 0.01559± 0.01490
ICP-CTSF k = 50 % 0.01562± 0.01494
ICP-CTSF k = 25 % 0.01562± 0.01494
ICP-CTSF k = 10 % 0.01565± 0.01508
SWC-ICP k = 75 % 0.01576± 0.01503
SWC-ICP k = 50 % 0.01576± 0.01507
ICP-CTSF k = 5 % 0.01579± 0.01542

If we assemble the results presented in Figures 22-23
and and TablesIX-41, we conclude that the best technique
for rotation estimation is Sparse ICP-CTSF with k = 50%
while GMM outperforms the other techniques for translation
computation. However, considering rotation and translation
together in the MRMS, the ICP-CTSF with k = 75% obtains
the best results. We shall remember that in the end of Section
V-B we pointed out that ICP-CTSF is more reliable for frame-
to-frame registration applications considering that its perfor-
mance seems to be less sensitive against missing/incomplete
data, as also reported in Table VI. Besides, we must take into
account that ICP-CTSF with k = 75% is among the seven best
methods reported in Tables XII, XI, and X. So, all this together
favor the ICP-CTSF as the best technique for frame-to-frame
registration.

VI. CONCLUSION AND FUTURE WORKS

In this paper we consider the frame-to-frame registration
problem, in which the point clouds are extracted from a video
sequence with depth information. We compare seven tech-
niques, named by the acronyms ICP, ICP-CTSF, SWC-ICP,
GMM, Sparse ICP, S4PCS, and Sparse ICP CTSF (Section
III). We use both point clouds and a RGB-D video streams
in the experimental results. In the former, the ground truth



rotation is provided which allows to analyse four different
metrics, described on Section III, to measure the rotation error
in this case. The results show better performance for Sparse
ICP and Sparse ICP CTSF using the inner product of unit
quaternions metric. However, when simulating missing data,
the experiments show outstanding results for ICP-CTSF. Con-
sidering that missing/incomplete data is a common problem in
frame-to-frame registration it was expected some influence of
this fact in second class of experiments, where video sequences
with depth information were segmented and the registration
algorithms applied. I fact, the results show that ICP-CTSF is
more reliable for frame-to-frame registration.

As further works, we should observe that the CTSF can be
used as a dissimilarity factor between any second order tensors
and applied in tasks other than rigid registration. Therefore, a
new avenue is to apply this criterion in non-rigid alignments
problems and compare its performance with counterpart ones
[9], [48], [49] in a more general registration scenario.
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