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Abstract—Pairwise rigid registration aims to find the rigid
transformation that best registers two surfaces represented by
point clouds. This work presents a comparison between seven
algorithms, with different strategies to tackle rigid registration
tasks. We focus on the frame-to-frame problem, in which the
point clouds are extracted from a video sequence with depth
information generating partial overlapping 3D data. We use
both point clouds and RGB-D video streams in the experimental
results. The former is considered under different viewpoints with
the addition of a case-study simulating missing data. Since the
ground truth rotation is provided, we discuss four different
metrics to measure the rotation error in this case. Among
the seven considered techniques, the Sparse ICP and Sparse
ICP-CTSF outperform the other five ones in the point cloud
registration experiments without considering incomplete data.
However, the evaluation facing missing data indicates sensitivity
for these methods against this problem and favors ICP-CTSF
in such situations. In the tests with video sequences, the depth
information is segmented in the first step, to get the target region.
Next, the registration algorithms are applied and the average
root mean squared error, rotation and translation errors are
computed. Besides, we analyze the robustness of the algorithms
against spatial and temporal sampling rates. We conclude from
the experiments using a depth video sequences that ICP-CTSF
is the best technique for frame-to-frame registration.

Index Terms—Rigid registration; Iterative Closest Point;
Frame-to-Frame Registration, Depth Images, Rotation Error
Metric, Gaussian Mixture, Tensor Shape Descriptors.

I. INTRODUCTION

Surface registration is a common computer vision problem,
with applications in computer graphics, robotics, quality in-
spection, photogrammetry, augmented reality, pose estimation,
among others [1]. Rigid registration is a sub-problem, dealing
only with sets that differ by a rigid motion. In this problem,
given two point clouds, named source set P = {p;|p; =
(plmaplyaplz)} and target set Q = {qj|q] = (Qjmaqjyvqu)}v
we need to find a motion transformation v, composed by a
rotation R and a translation t, that applied to P best aligns
both clouds ((P) ~ @), according to a distance metric.

The classical and most cited algorithm in the literature
to rigid registration is the Iterative Closest Point (ICP) [2].
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This algorithm takes as input the point clouds P and @), and
consists of the iteration of two major steps: matching between
the point clouds and transformation estimation. The matching
searches the closest point in P for every point in ). This set
of correspondences is used to estimate a rigid transformation.
These two steps are iterated until a termination criterion is
satisfied.

Although simple in concept, ICP assumes that there is a
correct correspondence between the points of both clouds. This
assumption easily fails on real applications because, in general,
the acquired data is noisy and we need to scan the object from
multiple directions, due to self-occlusion as well as limited
sensor range, producing only partially overlapped point clouds.
Another issue of ICP and some variants is that they expect that
the point clouds are already coarsely aligned.

The mentioned issues have been more or less addressed by
more recent methods that have been produced by researchers
in computer graphics, computational geometry and computer
vision communities, as we can see in related surveys [3]-[5].
The large variety of such techniques poses a problem to decide
a specific technique for a specific application.

In this paper, our goal is to compare the convergence
characteristics of surface registration methods in the frame-to-
frame problem, where the frames are obtained from a video
stream of range images. The video sequence is processed
to extract the point clouds that represent sample sets of the
target object surface. The objective is to register point clouds
in consecutive frames. In this application, we observe the
following problems: partial overlapping point clouds, noise,
outliers, scale variation, and missing data.

In order to limit the scope of the problem, and avoid a
combinatorial explosion in the number of possibilities to test,
we focus on rigid transformation techniques that fulfill at
least one of the following requirements: (a) Incorporate local
geometric features to enhance the quality of the matching
step; (b) Estimate the transformation using a distance different
from the Euclidean one; (c) Perform registration without
correspondence.



The former is motivated by the fact that ICP, and many other
registration techniques, use just the criterion of minimizing
point-to-point Euclidean distances between the sets P and
@ to compute the matching between the point clouds. This
approach might not be efficient in cases of partial overlapping,
because only a subset of each point cloud has a correct
correspondent instead of all the points. We are also supposing
that the video is acquired by simply waving the capture
device at the scene following smooth and slow motion paths.
Therefore we can discard scale changes when registering two
consecutive frames, since they should be very small, which
justifies only contemplate rigid transformations. Moreover, the
characteristics of the solution to the rigid registration problem
depends on the used notion of distance in the environment
space. Usually, registration techniques apply the Euclidean
distance that is derived from the Lo norm. However, when
using the L, norm, we get an optimization problem in the
least-squares sense, imposing a fundamental assumption that
the error residuals assume a normal distribution, where inliers
are typical events whereas outliers rarely happen. Another
paradigm, that motivates requirement (b), would be to use a
norm that maximizes the number of zero distances between
correspondences. Besides, the requirement (c) comes because
we would like to test a method that attempts to align the
given two point sets without establishing the explicit point
correspondence. A trick in this case is to model each of the
two point sets by a probability distribution, in order to get
a procedure less sensitive to missing correspondences and
outliers. Obviously, we must consider the ICP in order to
obtain a relative measure about how efficient each chosen
methodology is against the difficulties of the frame-to-frame
registration problem.

Based on the aforementioned requirements, we choose
the classical ICP, a combination between the ICP and the
Comparative Tensor Shape Factor (ICP-CTSF), Shape-based
Weighting Covariance ICP (SWC-ICP), Gaussian mixture
model (GMM), Sparse ICP, Super 4PCS (S4PCS), and Sparse
ICP combined with CTSF (Sparse ICP CTSF) [2], [6]-[10].

To evaluate each algorithm in the target application, we
firstly consider point clouds acquired through a Cyberware
3030 MS scanner [11] available in the Stanford 3D scanning
repository [12]. The Bunny model was chosen for the tests
and the corresponding point clouds captured considering four
viewpoints of it. In this case, the ground truth rotation is
available and, as a consequence, we could evaluate four
different metrics to measure the rotation error (Section IV).
Results show better performance for Sparse ICP and Sparse
ICP CTSF in these experiments in the inner product of unit
quaternions metric. Besides the original data, a case-study is
generated to simulate missing data. Visual results are shown
in order to link the error measurements with the results of the
methods on the chosen examples. However, when simulating
missing data with the Bunny model, we notice a decrease
in the registration precision of Sparse ICP and Sparse ICP
CTSF. In this case, the ICP-CTSF obtain outstanding results.
Moreover, we present the CPU time spent on the executions,

in order to highlight the computational complexity of each
technique.

Next, we evaluate the alignment techniques for frame-to-
frame registration using three video sequences with depth
information. We perform the segmentation of each frame of
the sequence through a simple depth threshold operation. The
obtained result generates a point cloud which we must register
with the previous one. We use the average root mean squared
error, average rotation and translation errors as measures to
analyze the results. The tests show that ICP-CTSF is more
reliable for this application.

This work is an extended version of the material published
in [13]. In the current version we have improved the introduc-
tion and we add a related works section. Besides, the Section
III (Registration Algorithms) is augmented with a description
of each target technique to make the material self-contained.
Also, in Section III, we offer details about tensor elements
behind ICT-CTSF and SWC-ICP, with a complete derivation
of the latter based on fundamental results in point clouds
registration in R3. In the Experimental Results (Section V)
we include one more case in the point clouds experiments,
incorporate more details about the CPU time and the influence
of trimming parameter. We substitute the scenario generated
using noise and outliers used in [13] to new example involving
missing points. With this, we can complete the results pre-
sented in [13] having tested the registration techniques against
noise, outliers and missing data, that are common problems
in frame-to-frame registration. Moreover, we have added new
experiments to evaluate the techniques using two benchmark
videos of the database available in the web site [14], that are
accompanied with the ground truth for the rigid registration.
Differently from the work [13], which was not conclusive in
this point, the frame-to-frame registration results presented in
Sections V-B and V-C, show that ICP-CTSF is the best method
to register point clouds extracted from depth sequences.

The remainder of this paper is organized as follows. The
Section II describes related works dealing with comparisons
and qualitative analysis of rigid surface registration methods.
Then, in Section III, we summarize the considered methods.
Next, Section IV describes four different metrics to measure
the rotation error. The Section V shows the experimental
results obtained by applying the registration methods to point
clouds and to depth video sequence. Section VI presents the
conclusions and future researches.

II. RELATED WORKS

The survey of Sabata and Aggarwal [15] was one of the first
works to list methods to compute 3D rigid motions between
two sets, whether they are points, lines or surfaces. Points are
the most common representation drawing attention from most
papers of the rigid registration literature. They also classify
the solution found by the methods in iterative or closed form.
However, the listed methods are not compared. Eggert ef al.
[16] compare quantitatively four closed solution for estimating
rigid transformations using controlled synthetic experiments:
singular value decomposition [17], unit quaternion [18], dual



quaternion [19], and orthonormal matrices [20]. No significant
differences were observed in the accuracy and robustness
of the algorithms for non-degenerate 3-D point sets with
various levels of noise. In terms of stability, for non-degenerate
cases, the unit quaternions and singular value decomposition
methods were superior than the other methods, with the latter
marginally more stable than the former.

Some variants of the ICP were surveyed by Rusinkiewicz
and Levoy [21], that classified them in six stages where
optimizations could be made: selection of points, matching,
weighting correspondences, rejection of pairs, error metric
and minimization of error metric. They compare the variants
regarding the RMS error, number of iterations and the time
until correct convergence, in order to propose a high-speed
ICP, using the best strategy in each stage, to address real time
registration.

Dalley and Flynn [22] presented a quantitative analysis of
two methods to reject pairs of matched points, on partially
overlapping range images. In these cases, there is an expected
number of points without homologous correspondence, justi-
fying the need of such methods.

Salvi et al. [3] proposed a classification of methods in fine
registration and coarse registration. In fine registration, the
methods try to find the most accurate solution as possible,
refining an already computed initial guess. The latter is a
class of algorithms that aim to find an initial estimation of
the correct alignment between point sets. These methods tend
to be more robust to noise once make no assumptions about the
relative position of the point sets. However, in general, their
solutions must be improved by a fine registration technique,
that takes the coarse transformation as an initial estimation of
the motion (a guess), and iterate until convergence to a more
accurate solution. This way, new methodologies are gener-
ated through the combination of coarse and fine registration
techniques, called coarse-to-fine schemes [7]. After reviewing
some methods of each class, Salvi et al. [3] compare them
measuring root mean squared error (RMS), rotation error,
translation error and computational time.

Moreover, considering the specific point of rotation error,
Huynh [23] presents a detailed analysis of six known functions
for measuring distance between 3D rotations considering met-
ric and group concepts (SO(3); the group of orthogonal matri-
ces with determinant +1). The conclusions favor quaternions
for 3D rotations representation. Besides, according to Besl
and McKay [2], for two and three dimensions, the quaternion-
based method is preferred, since reflections are not desired.

In this paper, we show how some recent approaches to rigid
registration perform in frame-to-frame application cases. To
the best of our knowledge, it is the first work to address
this kind of comparison. Besides the chosen techniques, we
must take into account other recent works that could be
also used in the target application. In [24] it is described an
algorithm, based on a probabilistic model, for joint registration
of multiple point clouds (JR-MPC). The technique shares with
the GMM (Gaussian Mixture Model) [9] the idea of using
Gaussian mixtures to represent point sets. However, differently

from GMM, the JR-MPC assumes that all the point sets
are generated from the same Gaussian mixture model, that
includes also an uniform distribution parameterized by the
volume of the convex hull encompassing the clouds. In our
application we have a video stream V' with |V| frames, each
one defining a point cloud in R3. The application of JR-MPC
to jointly register these point sets is impractical. Besides, the
assumption that such point clouds could be jointly registered
could be false in such application due to scene changes along
the frames.

Still in the scenario of probabilistic mixture models, the
technique presented in [25] proposes a joint distribution as-
sociated to the observations that allow to incorporate color
information associated with each 3D point. Despite of its
theoretical generality, in practice this strategy cannot be di-
rectly employed for high dimensional 3D shape features due
to complexity problems. Thus, in [26] the authors proposes
an adaptation in the spirit of the bag-of-words paradigm in
order to build a computationally efficient mixture model for
the common joint distribution that originates the 3D points
as well as the corresponding features. All these probabilistic
mixture models suffer from both computational and memory
cost issues for large point sets (tens of thousands or millions
of points) due to the increase in the number of mixture
components. The deterministic model [27] also associates
RGB information and depth measurements through a four
dimensional approach that allows to design an ICP version
in RGB-D space without the computational complexity of
mixture approaches.

Besides, in the case of cross-source point clouds, the per-
formance of feature-based methods like [26] deteriorates due
to the difficult to reliably extract similar features from point
clouds acquired through different sensors. Such application
motivates the CSGM technique [28], that applies a graph
framework to organize and encode data information, which al-
lows to convert the registration into a graph matching problem.
In [28], the CSGM is also compared with ICP and JR-MPC
for 3D data from the same kinds of sensor, outperforming the
latter and achieving lower rate of error than JR-MPC in some
tests.

In our work we avoid usual problems with RGB information
(sensitivity against illumination conditions and shadows) by
keeping only 3D data and shape features. We focus on
point clouds acquired through a single sensor and apply
shape features only to improve the match between point sets.
Consequently, we consider only the methods already selected,
which are reviewed in the next section.

III. REGISTRATION ALGORITHMS

We compare in this work seven different algorithms to
frame-to-frame rigid registration: the classical ICP [2] and
four variants (the ICP-CTSF [6], SWC-ICP [7], Sparse ICP
[8], and Sparse ICP CTSF [6]), the Super 4PCS [10], and the
GMM framework [9]. In this section, we aim to establish the
necessary notation and the mathematical formulation behind
these techniques.



Hence, the bold uppercase symbols represent tensor ob-
jects, such as T, S; the normal uppercase symbols represent
matrices, data sets and subspaces (P, U, D, %, etc.); the
bold lowercase symbols denote vectors (represented by column
arrays) such as x, y. The normal lowercase symbols are used
to represent functions as well as scalar numbers (f, 1, A, a,
etc.). Also, given a matrix A € R™*™ and a set S, then
tr(A) = Ayy + Ao + ... + Ay is the trace of A, and |5
means the number of elements of S. Besides, I,,, represents
the m x m identity matrix.

Our focus is rigid registration in the frame-to-frame prob-
lem. So, let the source and target point clouds in R™ be
represented, respectively, by P = {p1,p2,...,Pnp} C R™
and Q = {a1,42,...,4qn,} C R™. A rigid transformation
1 : R™ — R™ is given by:

¥ (x) = Rx + t, (1)

with R € SO(m) and t € R™ being the rotation matrix and
translation vector, respectively.

The registration problem aims at finding a rigid transforma-
tion ¢ : R™ — R™ that brings set P as close as possible to
set @) in terms of a designated set distance, computed using a
suitable metric d : R™ xR™ — R, usually the Euclidean one
denoted by d (p,q) = ||p — q|,. To solve this task, the first
step is to compute the matching relation C' (P,Q) C P x Q
that denotes the set of all correspondence pairs to be used
as input in the procedure to compute the transformation 1.
Formally, we consider:

C(Pv Q) = {(Xil’yil) € P x Q7

(2)
d(Xipyil) S d(X, yil)vvx € P}

where P x @) denotes the Cartesian product between sets P
and Q. We can check that |C' (P, Q)| = |Q|. However, in the
remaining text we say that |C' (P,Q)| = c to simplify the
expressions.

Moreover, in the focused application only partial matches
are expected in general. Therefore, it is desirable a trimmed
approach that discards a percentage of the worst matches
[29]. So, we sort the pairs of the set C' (P, Q) such that
d(Xiy,¥iy) < d(Xiy, ¥ip) < -+ - < d(x,,yi.) and consider a
trimming parameter 0 < 7 < 1 and the new correspondence
relation:

Cl(P)Q7T) = {(thl) € O(PaQ)7
d(xivyi) < d (Xic(l,ﬂ.)ayig(l,f))}v

which is supposed to have |C; (P, @, 7) | = n. We must notice
that Cy (P,Q,7) =C(P,Q) if 7 =0.

The relationship defined by the expression (3) is based on
the distance function and nearest neighbor computation. We
could also consider shape descriptors computed over each
point cloud. Generally speaking, given a point cloud S, the
shape descriptors can be formulated as a function f : S —
P (R), where P (R) is the set of all subsets of R, named the
power set of R. In this case, besides the distance criterion,
we can also include shape information in the correspondence

3)

computation by applying a boolean correspondence function
fe: P xQ — {0,1} such that [5]:

fé(p.aq) = {(1)

Also, before building C' (P, Q) in expression (2) we could
perform a down-sampling in the two point sets, based on the
selection of key points through the shape function, or through
a naive interlaced sampling over same spatial data structure
[30].

if f(p)=fla)

otherwise

“4)

A. Iterative Closest Point

The classical ICP [2], described in the Algorithm 1, receives
the source P and target () point clouds and each iteration of the
main loop is composed by two major steps: matching between
the point clouds and transformation estimation. The former
is performed by computing the set Cy (Psy1,Q,7) through
equation (2). At the end of the matching process we get a base
of the set P, denoted by X = {x1,%2,...,X,} C P, and a
base of the set @, denoted by YV = {y1,y2,...,¥n} C @
such that C (P, Q, 7) stands for the set of n correspondence
pairs (x;,y;) € X x Y. This matching relation will be used
to estimate a rigid transformation that aligns the point clouds
P and Q. Specifically, ICP seeks for a rotation matrix R and
a translation t that minimizes the mean squared distance:

1 n
e’ (R, t) = - ; lly: — (Rx; + t)||§’ )

which is used as a measure of the distance between the
target set @ and the transformed source point cloud ¢ (P) =
{Y(p1),¢ (pP2),...,% (pn)}, with ¢ defined by equation (1).
Now, we focus in the specific three-dimensional case (m = 3)
and state the fundamental theorem that steers most of the
solutions for the registration problem in R3.

Theorem 1: Let X = {x1,X2,...,X,} C R® and Y =
{¥1,¥2,---,¥n} C R3, the centers of mass fi, iy for the
respective point sets X and Y, the cross-covariance X, and
the matrices A and M, given by:

1
n “
=1
1 n
=1
1 & T
Ezy = n Z (Yi - Ny) (Xi - NI) . (3)
i=1
A= (S —-%1), ©)
tr(Szy) A Az
_ A
M (2,,) = Asy Sey + BT, — tr (Suy) I
Aqo
(10)



Hence, the optimum rotation R and translation t vector that
minimizes the error in expression (5) are determined uniquely
as follows [18]. The matrix R is comjputed through the unit
eigenvector v = ( Vg V1 Uy Uz ) of M, corresponding
to its maximum eigenvalue:

1—2(v} +0v3)
2(vov1 + vau3)
2(1)01}2 — Ul’l)g)

2(1)01}2 + 1}11)3)

2(’01’02 — 1}0’03)

1— (v§ + i)
(1

2(’001}1 — U2’U3)
1— (v +v3)
2(1}21)2 + Uovg)

R =

and ¢ is calculated through R and centroids in expressions
(6)-(7) as:

t = py — Ry,. (12)

(]

Based on the above theorem, in the second stage, the ICP
estimates the rigid transformation by computing the rotation
matrix and translation vector using equations (11) and (12).
The matching and transformation estimation are repeated until
the allowed maximum number of iterations is achieved or the
error falls bellow a pre-defined threshold. The ICP technique
is summarized in the Algorithm 1.

Algorithm 1: Iterative Closest Point

Data: P ={p; € R p; = (pn,pmpia,)T},

Q=14 € R%q; = (¢ i Qig)T}; trimming 7;
begin

Py=P,s=0.

Ep = OQ.

Ry = I3, to = (0,0,0)7.

repeat
Apply the transformation to all points of the
source:

Ps+1:RsPs+tsE{Rsp+tsv pGPS}.
Compute the matching relation Cy (Psy1,@Q, T)
through expression (2).

Compute the principal eigenvector v of the
matrix M defined in (10).

Calculate the rotation matrix Rz, and translation
vector ts41 using expressions (11)-(12).
Compute the error between the two point sets:
€sr1 = €2 (Ret1,ts11), from (5).

s < s+ 1.

until e, > ¢,_1;

return R, t.

end

B. ICP-CTSF

The ICP-CTSF [6] implements a matching strategy using a
feature invariant to rigid transformations, based on the shape
of second-order orientation tensors associated to each point.
A voting algorithm is used, divided into an isotropic and an
anisotropic voting field. So, given a cloud point p € P, let

b

Li(p) C P be the set of k% nearest neighbor of p and s €
Lj(p). We can define v, = (s — P), Vps = Vps/||Vps||2, as

well as the function:
_[lsr—plB
In0.01

o(p)=
where sy is farthest neighbor of p, which has influence 0.01.
Given these elements, we can compute the second-order tensor
field:

13)

V)

T(p)= Y oxp

s€Ly(p)

—||Vps 2 ~
TR
which is the isotropic voting field computed through a
weighted sum of tensors vV, - GES, built from the function
(13) and from the vote vectors v, s € Li(p).

Let the orthonormal basis generated by the eigenvectors
(e1 (p),e2(p),es(p)) of T (p) and the corresponding eigen-
values supposed to satisfy A3 (p) < A2 (p) < A1 (p). In this
case, the local geometry at the point p can be represented by
the Figure 1 where we picture together the following elements:
the coordinate system Z, 7, Z oriented through the eigenvectors
(e1 (p),e2(p),e3(p)), the plane 7 that contains the point p,
its neighbor s and the axis z. Moreover, Figure 1 shows the
unique ellipse £ C 7 that is tangent to the 7,y plane in p,
contains s, and is centered at a point in z. The vector &g, that
is unitary, parallel to the plane 7, and tangent to E at s, gives
a way to build a different structuring element that enhances
coplanar structures in the sense that the angle 8 = 0 if s is
close to the Z,y plane. Specifically, if d.(p,s) is the length
of the minor arc from p to s along the ellipse E in Figure 1,
we define a new weighting function:

7d€(p7 S)

B} :| ,  tan¢g < tan @paq,
o*(p)

) tan (bS > ta‘n ¢’I’I’LGI)

g(ps) =4 " [
0.0

15)

where o2 (p) is calculated by expression (13), ¢, is the angle

between v,s = (s — p) and the &, ¢ plane, ¢4, constrains

the influence of points misaligned to the Z, ¢ plane, with 45°

an ideal choice, as a mid term between smoother results and
robustness to outliers [31], [32].

With the above elements in mind, it is defined the tensor
field S (p), that is composed by the weighted sum of the
tensors built from the votes received on the point, with weights
computed by expression (15) for all the points that have p as
a neighbor:

S(p) =

Z g(p,S)'<§s'EST)

s€Ly(p)

(16)

The tensor field in expression (16) can be seen as a shape
function S : P — R3*3 whose descriptors at a point p € P
are the eigenvalues AP (p),i = 1,2,3. Therefore, given two
points p,q such that p € P and q € ), we compare the



Fig. 1. Geometric representation of the angles ¢, # and
unitary vector £, of an arbitrary point s.

corresponding (local) geometries using the comparative tensor
shape factor (CTSF), defined as:

3
CTSF (p,a) = Y. (V¥ ()
=1
where S; : P — R33 and Sy : Q — R3*3 are tensors
computed following expression (16) and A$* (p) and A\$? (q)
are the ¢th eigenvalues calculated in the points p € P and
q € @, respectively.

The CTSF is used side by side with the Euclidean distance
to produce a correspondence set that takes into account not
only the nearest point (like in expression (2)) but also the
shape information:

2
-3 @) an

dc,m(p7q7m>: Hp_qHQ'i_meTSF(pvq)? (18)

where CTSF (p,q) is given by Equation (17), w,, = web™,
with b < 1, and 0 < w,, < wy.

The parameter wq is the initial weight given to the CTSF
and b controls the update size of the weighting factor. To avoid
numerical instabilities we set w,,, = 0, when w,,, ~ 0. This
weighting strategy is responsible for its coarse-to-fine behavior
when inserted in the matching step of the ICP algorithm,
given by expression (2). Specifically, the ICP-CTSF procedure
(Algorithm 2) calculates the correspondence relation:

CZ(Panm) = {(XiUYil) € P x Q;
VLYik S Qv (19)
dc,m(xilv Yiws m) > dc‘,m (XiI? yilam)}a
and uses it to define the set:
C3(P3Q»Ta m) = {(Xi,yi) € C2(P7Qam); (20)

ft’l'i’rn (Xi7 Yi, T) = 1}7
which is the correspondence set applied by the ICP-CTSF
technique, which is summarized in the Algorithm 2.

Algorithm 2: ICP-CTSF Procedure

Data: P = pPi € R?’;pi = (pilvpizvpig)T}s

Q= a4 €R%q; = (Qilv%w%g)T}; trimming 7;
b, such that 0 < b < 1; wg > 0;
begin

Py=P,s=0,m=1.

Ep = OQ.

Ry = I3, to = (0,0,0)7.

repeat
Apply the transformation to all points of the
source:

Pty =RsPs+t;={R;p+ts, pEPs}

Compute the matching relation
Cs3 (Pst1,Q, 7, m) through expression (20).
Compute the principal eigenvector v of the
matrix M defined in (10).
Calculate the matrix rotation matrix Rs4; and
translation vector t,; using expressions
11)-(12).
Compute the error between the two point sets:
Es41 = e’ (Rs+17 s+1) from (5)
if £541 > €5 then

m < m+ 1.

Wy, < wob™.
end if

s+ s—+1.
until e, > e,_1;
return R, t.

end

C. SWC-ICP Technique

In this technique, besides the correspondence relation (2),
we also use the correspondence set:

Corsr(P,Q) ={ (si,yi) € P x Q;

si = argmin(CTSF(p.y1)}, D

pEP

which contains the pairs of points (s;,y;) € P x @ whose
local shapes are the most similar, according to the CTSF
criterion calculated by expression (17). In order to combine
both correspondence sets, we firstly develop expression (8) to
get:

— iyl (22)

1 n

- Z yiX
=1

So, if we take expression (5) and perform the substitution:

(23)

3

X; < X; + wnS;

with w,, € R, we can write the mean squared error (5) as:

1 n
:E;H}’i_

Also, by substituting the variable change (23) in expression
(6) we get:

R(xi +wnsi) +t]]2. (24



n

1
Hr+w,s = E z; (Xi + wnsi)
1=
1 — 1 —
_ ( zxi> b (nz> o+ it
i=1 =1

and, consequently:

n

1
Lotwusy = Z {Yz’ (xi + wnsi)T} — tty (o + wapts) "

=1 (26)
where p, is computed by equation (7). We shall notice
that the matrix (26) combines the matching relations (2) and
(21) being fundamental for the SWC-ICP described in [7].
According to the Theorem 1, the optimum rotation matrix
R and translation vector t that minimizes the error in ex-
pression (24) are uniquely determined by equations (11)-(12)
where v .= (wvg v1 vy w3 )T is the unit eigenvector
of M (£44w,s,y) corresponding to the maximum eigenvalue.
However, the SWC-ICP methodology achieves a coarse-to-fine
behavior through the use of the weighting strategy of the ICP-
CTSF. The SWC-ICP technique can be summarized in the
Algorithm 3.

D. Sparse ICP

The Sparse ICP [8] is formulated as recovering a rigid
transformation that maximizes the number of null residuals
z; = Rx; +t — y;, where R is the rotation matrix and
t is a translation vector. The Sparse ICP uses LP norm,
p € [0,1], to implement this idea. So, given the correspon-
dence set C; (P, Q) in expression (2) and the residual vector
z = [||z1]|5, -, ||zn|[5]T, the objective is to find a large set of
inliers, ||z;|[5 ~ 0, and a small set of outliers, ||z;|[5 >> 0.
This can be written as:

n

min ||z;||5, such that, §; = 0, 27
R.t.2
where §; = Rx; +t —y; — 2z;, and Z = (z1,29,...,2,)

represents a generic point in the residual space. This con-
strained problem can be solved using an augmented La-
grangian method, which uses the Lagrangian:

La(B.6,2.8) =Y (llzills + AT6i + Z1813) . 28)

i=1

with Lagrange multipliers A = {\; € R™ i = 1...n}, penalty
weight o > 0, and the restriction that R is a rotation matrix.
Equation (28) is optimized using an alternating direction
method of multipliers (ADMM). The Algorithm 4 summarizes
the Sparse ICP procedure.

Algorithm 3: SWC-ICP Technique
Data: P = P € RS, P = (pilvpizvpis)T}’

T
Q =949 € RSaqz = (QiUQiquig)
b, such that 0 < b < 1; wg > 0;

} ; trimming 7;

begin
Py=P,s=0, m=1.
Epg = OQ.

Ry = I3, to = (0,0,0)7T.
Compute the matching relations Corsr (P, Q)
through expression (21).

repeat
Apply the transformation to all points of the

source:
Pty =RsPs+t;={Rsp+ts, pE€EPs}
Compute the matching relation Cy (Psy1,Q,7)
through expression (2).
Build the covariance matrix from (26) using the
shape correspondences (21) and the nearest
neighbors (2).
Compute the matrix M in expression (10) using
(26).
Compute the principal eigenvector v of the
matrix M.
Calculate the rotation matrix R¢,; and translation
vector tg41 using expressions (11)-(12).
Compute the error between the two point sets:
€11 = €% (Rst1,ts11), from (5).
if £511 > &4 then

m <+ m+ 1.

Wy, < wob™.
end if

s+ s+ 1.
until e, > e,_1;

return R, t.

end

E. Super 4PCS

The