
Procedural Terrain Generation at GPU Level with Marching Cubes

Bruno José Dembogurski Esteban W. Gonzalez Clua Marcelo Bernardes Vieira
MediaLab-UFF MediaLab-UFF GCG-UFJF

Fabiana Rodrigues Leta
LMDC-UFF

Figure 1: GPU procedural terrain generation

Abstract

This work presents a procedural terrain generation
using the recent Marching Cubes Histogram
Pyramids (also known as HPmarcher)
implementation. Perlin Noise function is used to
procedurally create the terrain. It runs entirely on
the Graphics Processing Unit of Shader Model 3.0
and 4.0 graphics hardware.

Keywords: Marching Cubes, GPU, Procedural
Generation, Terrains, Histogram Pyramids.

Authors’ contact:
{bdembogurski,esteban}@ic.uff.br
marcelo.bernardes@ufjf.edu.br
fabiana@lmdc.uff.br

1. Introduction

Traditionally procedural terrains have been
limited to height fields that are generated by the
CPU and rendered by the GPU. However the serial
processing architecture of the CPU is not suited to
generating complex terrains which is a highly
parallel task, Geiss [2007]. Another issue with
height fields is the lack of interesting features such
as caves and overhangs.

The GPU, in the other hand, is an excellent
option for this kind of processing since it is a highly
parallel device. GPUs of graphics cards are
designed for large computational tasks with large
requirement for memory bandwidth, based in
massive parallelism.

Terrain creation is becoming the most costly
element in video games and simulators, due the
player high expectations for realistic virtual words.
Procedural generation can create seamless terrains

with a realistic and natural look with a nice level of
customization, without the need of huge amounts of
disk space and loading time.

A voxel representation of the terrain allows
much more features such as natural caves, tunnels,
overhangs, cliffs without stretched walls and also
allows a dynamic environment in a real time
application.

This work presents a procedural terrain
generation implementation using Histogram
Pyramids Marching Cubes approach producing
interesting terrains with a considerable amount of
triangles achieving interactive frame rates.

2. Related Work

In the last years, GPU iso-surface extraction
algorithms have been a topic of extensive research.
In that field procedural terrain generation is also a
well studied topic.

The main issue is that volumetric data consumes
memory quite rapidly and the visualization of an
extremely large and complex terrain can be a very
challenging task. Another point to consider is the
control over the terrain due the pseudo-random
nature of this approach. Creating a specific type of
terrain is a hard job usually requiring some
additional technique to obtain the desired results.

Recently Geiss [2007] presented a good
approach called Cascades to generate and visualize
volumetric complex terrains using shader model 4.0
graphics hardware and new DirectX 10 capabilities
such as the geometry shader (GS), stream output
and rendering to 3D textures. It was able to create
interesting and customizable terrains and also
adding some nice features like particle system for
waterfalls. However, this implementation has the

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 37

limitation of running only under Windows Vista
since it is based on the DirectX 10 API.

The first use of the Histogram Pyramids
algorithm running entirely on the GPU was
presented by Zigler et al. [2007] for stream
compaction in a GPU point listing generation
algorithm.

Later Dyken and Ziegler [2007] presented a
Marching Cubes approach extending the Histogram
Pyramids structure to allow stream expansion,
which provides an efficient method for generating
geometry directly on the GPU. Currently, this
approach outperforms all other GPU-based iso-
surface extraction algorithms.

3. Marching Cubes

The Marching Cubes algorithm (MC) proposed
by Lorensen and Cline [1987] is the most known
and used algorithm for extracting an iso-surface
from a scalar field.

Basically, in the MC algorithm, from a 3D grid
of N x M x L of scalar values a grid of (N-1) x (M-1)
x (L-1) cubic MC cells (voxels) is created. Each cell
has a scalar value associated with each of its eight
corners. The idea of the algorithm is “march”
through all the cells, producing a set of triangles
that approximates the iso-surface of that cell.

The topology of the iso-surface is defined by the
classification of the eight corners of the MC cell as
inside or outside the surface (being inside
represented as “1” and outside as “0”). If all values
in the cell corners are the same it is possible to
discard that voxel, since it will be totally inside or
outside the surface. If the corners have different
values then the cell intersects the iso-surface.

According to that it is possible to determinate
the voxel class using the following notation:

C i,j,k = P0, 2P1, 4P2, 8P3, 16P4, 32P5, 64P6, 128P7

Suppose a corner P5
i,j,k is inside the iso-surface

and all others are outside, according to the binary
notation we will have the following MC class:

(P0
i,j,k,..., P7

i,j,k) = (0, 0, 0, 1, 0, 0, 0, 0),

That corresponds to the class 8 of a total of 256
possible classes, which can be reduced to 14
patterns due symmetry [Lorensen and Cline 1987].
The class also determinates which of the twelve
edges are piercing the surface. If one end-point of
the edge is inside the iso-surface and the other end-
point is outside, that edge is intersecting the surface.
For each of the 256 classes there is a corresponding
triangulation of the edge intersections.

The position in the edge where the iso-surface
intersects is obtained approximating the scalar field
along the edge using a linear polynomial and
finding the zero-crossing of that polynomial.

As presented in [Dyken and Ziegler 2007] the
Marching Cube algorithm is implemented as a
sequence of data stream compaction and expansion
operations. The first stream operation determines
the class of each voxel and check the triangulation
table in order to obtain the number of triangles
produced by each voxel. Discarding voxels that
doesn’t produce geometry generate the stream
compaction. Each element in the output stream will
be expanded according to the number of triangles
determined by the triangulation table. The iso-
surface is formed by connecting edge intersections
on each element to form a set of triangles.

4. Histogram Pyramids

The core of the Marching Cubes implementation
in this paper is the Histogram Pyramids algorithm
[Dyken and Ziegler 2007], which is used to compact
and expand data streams on the GPU. The
structure of the Histogram Pyramid is identical to a
MipMap where each level is a quarter size of the
previous level pyramid but instead of taking the
average of the elements to build the higher level, the
algorithm sum the values.

In the input, the 3D voxel domain is mapped in
the 2D domain (a large tiled 2D texture where each
tile represents a slice of the voxel volume) to index a
sequence of texture coordinates, which is known as
a Flat 3D layout [Harris 2003]. The base layer have
the number of elements to be allocated in the output
stream, the rest of the pyramid is constructed
following the MipMap reduction idea but adding
the values of the 2 x 2 block in the texture. In the
end, the top element will have the length of the
output sequence.

All elements are extracted one by one
descending into the sub-pyramids and inspecting
the 4 elements in the corresponding 2 x 2 block until
the base layer is reached. The stream compaction
and expansion is relative to the number of elements
that the input allocates in the output. For example,
if one input element produces 4 elements in the
output a stream expansion occurs. Otherwise, a
stream compaction is performed if the input
element produces no element in the output or a
stream pass-through is performed when one input
element produce one element in the output
sequence.

5. Terrain Generation

Conceptually, the terrain surface can be
described in a implicit form f: R3 → R. For any
point given in the 3D space this function returns a
single floating point value. Those vary over the
space from positive and negative values where
positive means outside and negative means inside
the surface. Thus, one may choose a constant c for
which the locus of points f(p) = c form an isosurface
defining the terrain.

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 38

The most common function used to create
procedural terrains is the Perlin Noise function,
which generates a natural look with no perceptive
pattern.

The noise generation approach used in this work
is similar to the one presented by Green [6]. This
method implements the noise directly in the pixel
shader instead of using pre-computed 3D textures.
Green also uses a new interpolation function which
is a Hermite polynomial of degree five resulting in a
C2 continuous noise function. It is also possible to
use the original interpolation function which is less
expensive to evaluate but has discontinuous second
derivatives.

This approach has several advantages like less
texture memory required and a higher quality
interpolation. But the main enhancement in this
approach is that it has a larger period, meaning
that the noise patterns do not repeat often. This is
essential for a natural and realistic look of the
terrain.

Since the terrain can have an arbitrary size, it
needs to be created in several passes because
volumetric data consume memory really fast (e.g.:
2563 voxels require a GeForce 8800GTX). The idea
is to tile the scene using several cubes adding the
appropriate coordinate’s transformations when
sampling the scalar field and extracting the
geometry.

Considering a static terrain, it is possible to
store the geometry in a buffer, since it is not need to
sample and extract the geometry every frame.
Using the Shader Model 4.0 hardware this is quite
straightforward using the new transform feedback
mechanism, which records vertex attributes of the
primitives processed. The selected attributes can be
written with each attribute in a separate buffer
object or with all attributes interleaved into a single
buffer object. If a geometry shader or program is
active, the primitives recorded are those emitted by
the geometry program. Otherwise, it will capture
the primitives whose vertices are transformed by a
vertex program or shader [5].

Basically, the general idea is to create a large
buffer and incrementally fill this with the iso-
surface each tile of the scene.

6. Results

All tests in this work were performed on a
Nvidia GeForce 8800 GTS with 512mb ram on a
Windows XP SP2 computer with an AMD64 2500+
CPU at 2.2GHz and 2GB of ram using the 175.16
version of the ForceWare (display driver).

The terrains in Figs. 2, 3 and 4 were generated
with 1273 voxels, 8 octaves for the turbulence
function, a 2.0 lacunarity and a 0.5 gain for each
iteration. These values can be changed for different
results like a higher number of mountains or a
more regular terrain. This experiment provided
real time results with about 40.0 fps.

Figure 2: Terrain example with over 160.00 triangles and
over 2 million voxels at a 38.2 fps.

Figure 3: Wireframe representation of the same terrain.

It is also possible to manipulate the terrain
creating flat spots in some areas (e.g. to support
some building or any kind of construction in a
game). For this, Geiss [2007] present a method to
replace the density function with a flat spot within a
linear radius of some point center. Other
approaches like using a hand-painted texture and
warping the coordinates to break the homogeneity
of the terrain when using many octaves are possible
ways to customize the terrain.

The Fig. 4 shows a terrain using a coordinate
warping before applying the noise function. The
result is an alien/organic look, showing the wide
range of customization possibilities for this
approach.

Figure 4: Alien look terrain using coordinate warping
before applying the noise function.

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 39

Other volume dimensions were also evaluated
for performance purposes: 313, 633 and 2553. The
relation between volume dimensions and the
respective FPS values are shown in Fig 5. The
frame rate depends on the number of triangles
obtained the terrain.

Figure 5: Dimension x FPS comparison

The FPS is related to the number of triangles
presented by the terrain with a higher dimension
volume, the FPS drop is expected since the number
of triangles is about 5 times higher in each version.
This graph shows that even with an extremely large
number of polygons the visualization is possible and
a very detailed terrain is shown in iterative frame
rates. The low fps presented at 2553 is related to the
number of triangles used in this massive
representation (in this case over 600.000 triangles
were used).

The number of marching cubes cells processed
per second is also a good way to evaluate the
algorithm effectiveness (Fig. 6). One may see that
even with cubic time/space complexity, the
histogram pyramid approach is a powerful
isosurface extraction algorithm. It performs fast
with larger datasets and is well suited for this non
restrictive terrain representation.

Figure 6: Dimension x Cells processed relation

7. Conclusion and Future Work

This work presented a fast procedural terrain
generation using the Histogram Pyramids

Marching Cubes approach. The terrain is generated
with a Perlin noise function to create a scalar field.
This strategy provided good results with interactive
frame rates and customizable features.

The performance of the presented approach was
evaluated in function of grid dimensions. The
results are promising since the implementation
achieved a real time frame rate with 1273 voxels.

As a future work, we intend to extend the
Histogram Pyramids approach with a CUDA
framework. The voxel classification and the
pyramid construction pass can be enhanced because
CUDA supports 2D buffer texture sampler.

We also intend to improve the terrain with
texturing, shading and some kind of erosion
(thermal or hydraulic). Texturing is a challenge to
procedural generations due to its arbitrary topology
but one solution is to apply three different planar
projections one along each primary axes with some
blending between areas [Geiss 2007].

References

EBERT D.S et all,” Texturing & Modeling. A Procedural
Approach”, 3rd ed, Morgan Kaufmann Publishers, 2003.

DYKEN, C., ZIEGLER, G. “High-speed Marching Cubes
using Histogram Pyramids”. Proceedings of
EUROGRAFICS 2007, Volume 26, Number 3.

GEISS, R. “Generating Complex Procedural Terrains
Using the GPU”. GPU Gems 3. Chapter 1, pp. 7-37. 1st

Ed. 2007.

GREEN, S., “Implementing Improved Perlin Noise”,
GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose
Computation., 2005, pgs 409-415.

HARRIS M. J., III W. V. B., SCHEUERMANN T.,
LASTRA A.: Simulation of cloud dynamics on graphics
hardware. Proceedings of Graphics Hardware 2003.

LORENSEN W., CLINE H. E.: Marching cubes: A high
resolution 3d surface construction algorithm. Computer
Graphics (SIGGRAPH 87 Proceedings) 21, 4 (1987), 163–
170.

OLSEN, J. “Real-time Procedural Terrain Generation:
Realtime Synthesis of Eroded Fractal Terrain for Use in
Computer Games”, IMADA University of Southern
Denmark, 2004.

ZIEGLER G., TEVS A., TEHOBALT C., SEIDEL H.-P.:
“GPU Point List Generation through Histogram
Pyramids”. Tech. Rep. MPI-I-2006-4-002, Max- Planck-
Institut für Informatik, 2006.

OLSEN, J. “Real-time Procedural Terrain Generation:
Realtime Synthesis of Eroded Fractal Terrain for Use in
Computer Games”, IMADA University of Southern
Denmark, 2004.

SBC - Proceedings of SBGames'08: Computing Track - Technical Posters Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9216-3 40

