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Abstract. In this paper, we present a deep learning approach for very
low bit rate seismic data compression. Our goal is to preserve perceptual
and numerical aspects of the seismic signal whilst achieving high com-
pression rates. The trade-off between bit rate and distortion is controlled
by adjusting the loss function. 2D slices extracted from seismic 3D ampli-
tude volumes feed the network for training two simultaneous networks,
an autoencoder for latent space representation, and a probabilistic model
for entropy estimation. The method benefits from the intrinsic charac-
teristic of deep learning methods and automatically captures the most
relevant features of seismic data. An approach for training different seis-
mic surveys is also presented. To validate the method, we performed
experiments in real seismic datasets, showing that the autoencoders can
successfully yield compression rates up to 68:1 with an average PSNR
around 40 dB.

Keywords: Seismic Data Compression · Deep Autoencoders · Geophys-
ical Image Processing · High Bit-Depth Compression.

1 Introduction

The quality of acquisition sensors has been evolved significantly in the past
years. This fact implies on higher resolution signals to process, to storage, and
to transmit. The use of effective compressing algorithms plays an important role
in seismic processing, aiming to deal with the substantial increase in data resolu-
tion. Generally speaking, reliance on compression algorithms in terms of signal
reconstruction is a concern in the field due to the dilemma of choosing loss-
less methods, with perfect reconstruction, or lossy compression, with a greater
reduction on storage with allowed reconstruction distortions.

Typical compression methods benefit from the extensive oscillatory nature
of the seismic data to model the algorithms. This leads to approaches involving
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transformations to wavelets and cosine domains [1]. The so-called transform-
based methods consider the representation of the volume in these domains, stor-
ing and processing only on a small subset of the total coefficients. A wavelet-
transform based compression algorithm was proposed in [2], allowing extremely
high compression ratios with considerably small errors. Other techniques such as
low-rank methods are focused in working directly on lower dimensional matrices
sampled from the higher dimensional wavefield [3].

Recently, some methods explored standard video and image compression
techniques. With similar performance to a licensed commercial wavelet-based
scheme used by the industry, experiments performed in [4] indicated that the
JPEG-XR can be used to fast compress seismic images allowing to control the
quality or bit rate target. Motivated by the performance of video codecs, a codec
under the HEVC [5] intra coding framework is presented in [6] to compress
seismic images, outperforming the previously published compression schemes.
Considering the similarity between 3D seismic data and videos, an extension of
this method was proposed in [7] aiming to explore the temporal redundancy in
three-dimensional data. This method surpasses the previous method and it is
less time-consuming.

However, one may notice that most of these approaches are exposed to any
sort of dataset bias. The challenge in working with compression for seismic do-
main relies on the difficulty of detaching parts of the signal that represent phys-
ical properties from those who do not. We argue that capturing all variances
and inconsistencies that may be present in seismic signals such as noise, inter-
ferences, and processing inaccuracies in a deterministic fashion is not practical.
Machine Learning techniques is a viable way to face this problem. In this sense,
these techniques were employed in [8] to compress seismic signals directly from
the field. They trained a shallow autoencoder to compress the data while a Re-
stricted Boltzmann Machine was used to optimize its parameters. In addition
to achieving interesting preliminary results (10:1 and a PSNR of 30dB), this
approach can capture the most representative features using only a portion of
the dataset.

The popularity of Deep Learning (DL) algorithms has considerably increased
in recent years due to consistent advances in solving complex computer science
tasks such as image classification, speech to text, and translation. Recently, deep
neural network approaches are taking momentum in solving low-level problems
in image processing, such as super-resolution and image compression, leading
to impressive state-of-the-art results. Complementing the autoencoder with an
adversarial training, the proposal of [9] to image compression outperforms all pre-
vious codecs producing visually agreeable reconstructions for very low bit rates.
With competitive performance to the previous work, [10] proposed an image
compression system based in two networks trained concurrently. A probabilistic
model is used to learn the dependencies between symbols in the autoencoder
latent representation, and another autoencoder uses it for entropy estimation,
in order to control the rate-distortion trade-off.
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The main contribution of this work is the extension of the method proposed
by [10] for low bit rate compression of seismic volumes. More specifically, we pro-
pose a training and inference schemes tuned for seismic compression of multiple
volumes. Our method is trained using a collection of seismic 2D-slices to feed
the network. A DL method based on conditional probabilistic deep autoencoder
is tuned to exploit the inherent features of seismic data.

2 Proposed method

We extend the end-to-end pipeline proposed by [10]. Our goal is to compress
an amplitude seismic volume training simultaneously two deep networks: a com-
pressing autoencoder and a probabilistic model. The first deals with the rate-
distortion trade-off between a small number of bits and small distortions. The
second is a 3D-CNN that learns the dependencies between the symbols of the au-
toencoder latent representation. Both models were trained to balance the trade-
off. We provide training and inference schemes for 2D-slice based seismic volume
compression.

2.1 Probabilistic autoencoder

By definition, an autoencoder is an unsupervised learning algorithm that is
trained to adjust its weights aiming to set the target values to be equal to
the inputs. The compressive autoencoder is a model composed of an encoder,
a decoder, and a quantizer [11]. The encoder E : Rd → Rm maps the input
x to a lower dimension latent space. The quantizer Q : R → C discretizes the
latent representation z, obtaining ẑ = Q(z), and allowing it to be losslessly
encoded into a bitstream through arithmetic coding strategy. The decoder D
reconstructs the image x̂ = D(ẑ) from its quantized representation through the
losslessly decoded bitstream. The goal is to minimize the rate-distortion trade-off
d(x, x̂) +βH(ẑ), where d is a function that measures the distortion between the
original image and its reconstruction, H is the entropy of the quantized latent
representation and β controls the trade-off.

The quantization combines the works of [12] and [13]. The authors used a
clustering based quantization, where each entry of the latent representation is
changed by the index of the nearest centroid. The encoder and the decoder
are 2D-CNNs with the particularity that the last layer of the encoder has an
additional feature map, named importance map. This map is used to generate
a binary 3D mask dme that is applied to the feature maps volume. It allows
different regions of the image to be represented by a different number of bits,
according to the detail level. Since the mask binarization is not a differentiable
operation, a soft approximation in the backward pass of the back propagation is
used.

The probabilistic model P (ẑ) is a 3D-CNN that models the conditional prob-
ability of a symbol belonging to a centroid given the previous symbols to it,
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learning their dependencies in the latent representation of the autoencoder [14].
Considering the distribution

p(ẑ) =

m∏
i

(ẑi|ẑi−1, . . . , ẑ1), (1)

this network is used to estimate each term (ẑi|ẑi−1, . . . , ẑ1):

Pi,l(ẑ) ≈ p(ẑi = Cl|ẑi−1, . . . , ẑ1), (2)

where l = {1, . . . , L} and L is the size of the centroids set C.
The losses of both models are based on the rate-distortion trade-off. Given the

set of training seismic images X, we train over minibatches XB =
{
x(1), · · · ,x(B)

}
of crops from X.

Since the models are trained simultaneously, the entropy term H is calcu-
lated using two approaches: first, instead of encoding the entire masked symbol
volume, the 3D binarized mask dme is encoded and subsequently the symbols
of the volume that are not zero. This is used by the autoencoder, since it allows
the encoder to easily control the spatial allocation of bits [15]. The second, uses
the distribution p(ẑ), since it does not have direct access to the mask and needs
to learn the dependencies on the entire masked symbol volume [14]. The loss
function for the probabilistic model P is defined as:

LP :=
1

B

B∑
j=1

d(x(j), x̂(j)) + β

m∑
i=1

− logP
i,I(ẑ

(j)
i

)
, (3)

where P
i,I(ẑ

(j)
i

)
specifies for each voxel i in the entire masked symbol volume

the probabilities of belonging to each index I(ẑi) of the centroids set. The loss
function for the autoencoder is given by:

LE,D,Q =
1

B

B∑
j=1

d(x(j), x̂(j)) + β

m∑
i=1

−dmie logP
i,I(ẑ

(j)
i

)
. (4)

Notice that this loss incorporates the probabilistic model as the entropy term
of the autoencoder with the benefit of being weighted by dme. In next sections,
we propose training and inference schemes, based on this compression model,
taking into account the characteristics of seismic 2D-slices.

2.2 Training Scheme

Fig. 1 presents our training pipeline. Initially, we perform a preprocessing step,
aiming to adapt the volumes to the network input. Seismic sections are numer-
ically represented as one channel 32-bit floating-point. But the model proposed
by [10] was designed for general purpose image compression with 3-channels of
8-bit unsigned integers. We have verified that pre-trained models based on Ima-
geNet did not fit our specific data domain. The fine-tuning approach using initial
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Fig. 1: Overview of the proposed training scheme.

weights from 8-bit images for network optimization led to higher iterations until
convergence. For this reason, we adapted the network and all metrics to work
with seismic data and trained all models from scratch for a collection of volumes.

The encoder-decoder performs 2D convolutions and thus the training dataset
was formed by extracting slices of the inline, crossline or time-depth directions.
Then, the slices are normalized using min-max strategy. This is important be-
cause the original network was designed to work in the [0,1] interval quantized
with 8-bits for low-dynamic range images. Since seismic data are quantized with
32-bits, its range values are wider and the min-max is arbitrary across different
volumes. In order to train multiple volumes at the same time, the min-max from
all volumes are used.

The batch generation is performed extracting random crops from the slices
and randomly flipping them. In the case of a training set composed by various
datasets, the batch is built with crops from all of them at the same quantity. In
this way, we are preventing the model from being biased by one dataset. Since
the number of slices of a dataset can vary, smaller datasets will provide crops of
repeated slices. In general, given the random nature of the cropping, the chance
of an exactly repeated crop is negligible.

The batch is then used to feed the encoder. The output of the encoder is
quantized and it is used by the probabilistic model to estimate the entropy and to
calculate the centroids. These centroids and the quantizer output are used by the
decoder to reconstruct the batch images. We perform a PSNR evaluation between
the initial and reconstructed batches. This metric was chosen to be maximized
by the training step instead the original Multi-Scale Structural Similarity (MS-
SSIM) for images. The PSNR is simpler to compute and yielded better overall
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results. The training step is repeated until the maximum number of iterations
is reached.

2.3 Inference Scheme

Fig. 2: Overview of the proposed inference scheme.

The inference of the DL model is performed according to the Fig. 2. After
the training step, the network is tuned for compression of seismic slices normal-
ized in [0,1] range. Given a seismic volume, the slices are extracted in one of
the directions and then normalized with its min-max values. If their shapes are
not divisible by the network subsampling factor, they are padded with a border
extension. We propose the symmetric border extension since it better preserves
the frequencies of the seismic volume. The encode/decode are then performed
for model inference. Both input and output are unpadded to guarantee coher-
ence of the metric evaluation. The slices are denormalized to reconstruct the
compressed seismic volume. Finally, we evaluate the error between the original
and reconstructed volumes.

3 Experimental results

To validate the proposed method, we perform experiments in different 3D stacked
seismic volumes available on SEG Open Data repository [16]. Our method was
implemented using the TensorFlow framework, and all runs performed on a single
GPU NVIDIA Tesla V100. We verified that the following hyper-parameter space
was suitable for all datasets: Adam optimizer, batch-size of 32, initial learning
rate of 8 ·10−5 for the autoencoder and 1 ·10−4 for the probabilistic model, both
with step decay of 0.1 every 10 epochs, and crop size of 128×128. Reconstruction
quality is reported as PSNR and SNR in decibels (dB) due to its sensibility to
small error variations, and compression rate as bits-per-voxel (bpv), expressing
the average number of bits necessary to represent the 32-bits amplitude values.
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3.1 Training Protocol

From SEG Open Data repository [16] we selected five seismic surveys: Kahu3D,
Parihaka3D, Netherlands F3-Block, Penobscot3D and Waihapa3D volumes. Nether-
lands F3-Block, Penobscot3D and Waihapa3D were used only for testing. We
also reserved 10% of training volume slices for validation (randomly chosen), so
we could define appropriate hyper-parameters such as number of epochs. Nor-
malizing by standardization leads to impressive reduction in epochs, with initial
average PSNR of 25 dB in contrast with 10 dB.

The details of the seismic surveys, such as size and grid dimension are shown
in Table 1. Slices were extracted from volumes in (x, z) (inline), (y, z) (crossline)
and (x, y) (time-depth) planes.

Table 1: Uncompressed dataset properties.

Dataset Size (GB) Grid Dimension

Kahu3D 6.17 (584× 1695× 1498)
Parihaka3D 3.86 (920× 1124× 874)

Netherlands F3-Block 1.25 (631× 951× 463)
Penobscot3D 0.60 (401× 301× 1251)
Waihapa3D 0.29 (201× 291× 1238)

3.2 Results and Discussion

Due its similarity, we use the inline and crossline directions alongside to train
a single model with good performance in both directions. Since the time-depth
direction is too different from the previous, its results were obtained training
another model using only this direction.

Table 2 shows the comparison between the three possible planes used in the
inference step. Notice that the crossline direction has similar results compared
to the inline. This is expected since the volume in both directions have similar
characteristics. The results of the model trained and inferred with the time-depth
plane is clearly worse than the others. The data in the time-depth directions
seems noisy if compared to the other planes. The compression model is less
efficient, requiring an extra tuning of its hyper-parameters.

We trained the model using only slices from Kahu and Parihaka datasets.
Netherlands F3-Block is known to be a noisy survey, thus naturally harder to
compress. But even under this condition, it took only four epochs for the model
to reach an interesting PSNR of 35.56. This result highlights the generalization
capabilities of the method. With a SNR = 29.56, however, one may not consider
that the relevant original information was preserved. A deeper qualitative anal-
ysis is needed to correlate the minimum bit rate and PSNR that do not result
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Table 2: Results for testing sets. Overall average compression ratio is 68:1.
Dataset Direction bpv PSNR SNR

Netherlands F3 Block
Inline 0.45 35.56 29.56

Crossline 0.46 35.07 29.08
Time-depth 0.40 33.45 27.46

Penobscot3D
Inline 0.39 40.48 34.47

Crossline 0.37 42.00 35.99
Time-depth 0.36 37.11 31.10

Waihapa3D
Inline 0.65 34.81 29.30

Crossline 0.66 34.55 29.04
Time-depth 0.47 35.21 29.70

in relevant losses. We also need to train with more seismic surveys to further
increase generality power. Since the software and the data used by the state-
of-the-art results are private, we are not able to report the performance of our
method on them.

Fig. 3: Section reconstruction from an image in Penobscot test set. Despite the
minor differences (right), overall reconstruction preserves most relevant seismic
features, important for geological interpretations. Compression ratio = 86:1 and
PSNR = 42 dB.

Figure 3 depicts a complete slice compression and decompression result for
the Penobscot dataset. Even with a 86:1 compression, the details are fairly pre-
served with PSNR = 42 dB. Figure 4 shows a crop from a slice of the Waihapa
volume (Fig. 4a) compressed in different bit rates. The extreme compression in
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Figure 4b and 4c introduced high frequencies in the original slice (Fig. 4a). One
may notice a less effective PSNR gain as we move to higher compression ratios
when compared to HVEC-based methods [6, 7]. Considering the Figures 3, 4d
and 4e, along with our observations, bit rates resulting in at least PSNR = 36
dB tend to better preserve details.

(a) Original (b) 0.227 bpv, 31.54 dB (c) 0.657 bpv, 34.55 dB

(d) 0.841 bpv, 36.33 dB (e) 1.385 bpv, 38.46 dB

Fig. 4: Two dimensional crops extracted from Waihapa volume. The method
maximizes PSNR during optimization while achieving low bit rates.

As aforementioned, we performed the standardization operation on both first
and last layers, leading to a drastically reduced convergence time. Using a single
NVIDIA Tesla V100 we were able to train a model within the interval of 1 hour.
We expect to explore parallel approaches such as Horovod [17] to distribute
training between multi-GPU as we increase total amount of training data.
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4 Conclusions

In this paper, we presented a deep learning approach for 3D seismic data com-
pression. The network is fed with two-dimensional 32-bits sections from the
original volume, training at the same time two networks, one for latent space
representation, and other for entropy estimation. The bit rate of the compressed
volume is controlled by hyper-parameter tuning. The method benefits from the
intrinsic characteristic of deep learning approaches and automatically captures
the most relevant features of the data. It presents promising results in data re-
construction with high PSNR values at low bit rates. High compression rates
(up to 68:1 and PSNR = 40 dB in average) are obtained by training models
with multiple seismic surveys on a single procedure. As future work, we intend
to improve our workflow so more volumes are aggregated to the training dataset
without introducing biases.
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