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Abstract:
There are several aspects that may help in the characterization of an action being performed in a
video, such as scene appearance and estimated movement of the involved objects. Many works in
the literature combine different aspects to recognize the actions, which has shown to be superior
than individual results. Just as important as the definition of representative and complementary
aspects is the choice of good combination methods that exploit the strengths of each aspect. In
this work, we propose a novel fusion strategy based on two fuzzy integral methods. This strategy
is capable of generalizing other common operators, besides it allows more combinations to be
evaluated by having a distinct impact in sets linearly dependent. Our experiments show that the
fuzzy fusion outperforms the most commonly-used weighted average on the challenging UCF101
and HMDB51 datasets.

1 INTRODUCTION

Nowadays, a visual inspection performed by
a human operator, in order to identify events of
interest in videos, has become quite impracticable
due to the massive amount of data produced in
real-world scenarios, especially in situations that
require a real-time response.

The automatic recognition of events in video
sequences is a very challenging task, however,
it benefits several other problems, such as
health monitoring, surveillance, entertainment,
and forensics (Cornejo et al., 2015; Gori et al.,
2016; Ji et al., 2013; Ryoo and Matthies, 2016).

In this work, we are especially interested in
human action recognition (Alcantara et al., 2013,
2016, 2017a,b; Concha et al., 2018; Moreira et al.,
2017), which aims to classify activities performed
by human agents from video data. Most of the
approaches available in the literature can be clas-
sified into two categories: (i) traditional methods
and (ii) deep learning methods. In the first one,
handcrafted features are extracted to describe re-
gions of the video. On the other hand, deep learn-
ing methods use neural networks that automati-

cally learn features from the raw data.
Recent deep learning strategies have explored

information from traditional methods in order
to improve the convergence by (i) using expert
knowledge together with deep models and (ii) ap-
plying techniques well-established for still images
in a video context. According to this trend, the
majority of the state-of-the-art approaches use
multi-stream architectures based on 2D CNNs, in
which each stream deals with different and ideally
complementary information.

Despite the recent advances in these ap-
proaches, the strategy for combining the streams
outputs has not received much attention in the
literature. Usually, a simple weighted average is
applied to fuse the predictions. In this work, we
propose a novel method for the combination of
the streams using fuzzy integral in the late fu-
sion. This type of fuzzy-based fusion is capable
of generalizing other common operators and thus
presents more adaptive behavior. Two types of
integral were evaluated as fusion operators for ac-
tion classification.

Experiments conducted on two well-known



challenging data sets, HMDB51 (Kuehne et al.,
2013) and UCF101 (Soomro et al., 2012), show
that the fuzzy fusion surpassed the common
weighted average in the combination of classifi-
cation scores from different streams.

This paper is organized as follows. In Sec-
tion 2, we briefly describe relevant related work.
In Section 3, we present our proposed fusion
method for multi-stream architectures. In Sec-
tion 4, experimental results achieved with the
proposed method are presented and discussed.
Finally, we present some concluding remarks and
directions for future work in Section 5.

2 RELATED WORK

The first convolutional neural networks
(CNNs) proposed for action recognition used
3D convolutions to capture spatio-temporal fea-
tures (Ji et al., 2013). Karpathy et al. (2014)
trained 3D networks from scratch using the
Sports-1M, a data set with more than 1 million
videos. However, it does not outperform tradi-
tional methods in terms of accuracy due to the
difficulty in representing motion.

To overcome this problem, Simonyan and Zis-
serman (2014) proposed a two-stream method
in which motion is represented by pre-computed
optical flows, which consists in estimating the
apparent motion of pixels between adjacent
frames (Szeliski, 2010). An RGB sample is the
other stream representing the spatial context.
Both are separately encoded with a 2D CNN.

Later, Wang et al. (2015) further improved the
method, especially using more recent deeper ar-
chitectures for 2D CNN and taking advantage of
the pre-trained weights for the temporal stream.
Many approaches still use the two-stream strat-
egy by adding or modifying the streams or pro-
pose new architectures for the CNNs involved.

Wang et al. (2016) introduced the temporal
segment networks that posses a new form of train-
ing that aggregates more samples and allows to
capture longer temporal relationships. Carreira
and Zisserman (2017) proposed a 3D CNN that
is an inflated version of a 2D CNN and also uses
the pre-trained weights, in addition to training
the network with a huge database of action and
achieving significant higher accuracy rates.

Wang et al. (2017) added a third stream that
uses a composition of the differences between con-
secutive frames of the entire video. Concha et al.
(2018) also introduced a new stream that uses

the whole video, the visual rhythm that extracts
a slice of each frame and composes a new im-
age whose texture reflects motion patterns. Bilen
et al. (2018) used dynamic images, an image that
represents the parameter of a ranking in videos
frames, as an additional stream.

Zhu et al. (2017) introduced a generative net-
work for computing the optical flow representa-
tion that can be learned in an end-to-end fash-
ion with the action classes. Similarly, Fan et al.
(2018) developed a convolutional network that
acts as an optical flow solver, even without train-
ing, but can be further trained to the action-
specific task.

Hommos et al. (2018) proposed an alternative
for optical flow with an Eulerian phase-based mo-
tion representation that can also be learned in an
end-to-end scheme. Santos and Pedrini (2019)
proposed a third stream that can be learned in a
end-to-end fashion and compress the video to an
image with an autoencoder architecture.

There were also attempts to combine features
of the streams using Long Short Term Memory
(LSTM) networks (Gammulle et al., 2017; Ma
et al., 2019; Ng et al., 2015) and other encoding
methods (Diba et al., 2017). Nevertheless, the
late fusion did not encounter much change; in the
original two-stream reference (Simonyan and Zis-
serman, 2014), experiments were performed with
support vector machines (SVM) to perform the
fusion, but it did not surpass the weighted aver-
age, being a trainable method that requires much
more computational cost and data.

To the best of our knowledge, our work is the
first to employ fuzzy fusion for the human ac-
tion classification task using CNNs. It is mainly
found in image processing tasks such as enhance-
ment (Rao, 2018) and segmentation (Santos et al.,
2016). Recently, fuzzy fusion has been used in
conjunction with convolutional neural networks
to classify sonar images (Galusha et al., 2019).

3 PROPOSED FUSION
METHOD

Our method is built over a two-stream model
for action recognition (Simonyan and Zisserman,
2014) through the application of a novel fuzzy
fusion strategy to the classification scores of the
spatial and temporal streams. Figure 1 illustrates
a diagram of the proposed method, where its in-
put is a video.

The spatial stream is composed of a single



Figure 1: Fuzzy fusion strategy combined with a two-stream architecture for action recognition.

sampled RGB image as input to the 2D CNN
classification image network. Several different
architectures have been proposed for the image
recognition task. In this work, we choose the In-
ceptionV3 (Szegedy et al., 2016) since it achieves
good results in the ImageNet competition. In ad-
dition, it is very compact and easy to converge.

For the temporal stream, images gener-
ated with the TV-L1 optical flow estimation
method (Zach et al., 2007) are used as input. The
classification network is modified to cope with the
input of a stack of 20 optical flow images, 10 for
each x and y direction. The expected number of
channels for input to the network is 3, such that
it is necessary to change the input layers in or-
der to accept 20 images. This would be as simple
as changing one parameter, however, we would
lose the pre-trained weights between the input
and the first hidden layer. Following the strategy
described by Wang et al. (2015), the weights of
the three-channel version are averaged and copied
20 times.

Each CNN is trained separately and the
streams are combined only for the action clas-
sification test, where they generate the predictive
confidences for each class. A weighted average
usually produces a final prediction, such that the
action label is the one with the highest confidence.

In this work, we propose the use of a novel
fusion strategy. Fuzzy integral generalizes other
common fusion operators, such as average, maxi-
mum and ordered weighted average. It is charac-
terized by the use of fuzzy membership functions
(h(xi)) as integrands, whereas fuzzy measures are
characterized as weights and the type of fuzzy
connectives applied.

Fuzzy measures serve as a priori importance
for the integrands. They define coefficients for
each source, which are denoted as fuzzy densities
and also for the union of different sources, char-
acterizing the level of agreement between them.
Thus, coefficients µ(Aj) are defined for all subsets
of the set of integrands (χ) in the interval [0, 1]
and they must satisfy the monotonicity condition,
expressed in Equation 1.

Aj ⊂ Ak =⇒ µ(Aj) ≤ µ(Ak) ∀Aj , Ak ∈ χ (1)

There are two main fuzzy integrals that dif-
ferentiate on the used fuzzy connectives, which
are explored in our work: Sugeno Fuzzy In-
tegral (Equation 2) (Murofushi and Sugeno,
2000), which uses minimum (∧) and maximum
(∨), as well as Choquet Fuzzy Integral (Equa-
tion 3) (Murofushi and Sugeno, 1989), which em-
ploys product and addition.

Sµ[h1(xi), ..., hn(xn)] =
n∨
i=1

[h(i)(xi) ∧ µ(A(i))] (2)

Cµ[h1(xi), ..., hn(xn)] =
n∑
i=1

h(i)(xi)[µ(A(i))− µ(A(i−1))] (3)

where the enclosed sub-index (i) refers to a pre-
vious sorting on the integrands, h(1)(x1) is the
source with the highest value, and A(k) is the sub-
set with the k highest values, such that A(n) = χ.

To establish the fuzzy measures and avoid
dealing with the monotonicity condition and also
narrow down the search space, we explored the



particular fuzzy-λ measures (Tahani and Keller,
1990) that define the coefficients of the union of
subsets based on the individual subsets, as shown
in Equation 4.

µ(Ai ∪Aj) =
µ(Ai) + µ(Aj) + λµ(Ai)µ(Aj)

∀Ai, Aj ∈ χ (4)

where λ is found by considering that the fuzzy
measure for the interaction of all sources is equal
to 1 (µ(χ) = 1). Therefore, only three parame-
ters corresponding to the fuzzy densities of each
stream need to be defined. Algorithm 1 summa-
rizes the main steps of using Choquet Integral as
the fusion operator.

Algorithm 1: Fuzzy Fusion (Choquet)
input : set of classification scores S, set of

fuzzy densities w
output: Final classification score ff

1 λ← get_lambda(w)
// Decrease sorting

2 idx← argReverseSort(S)
3 h← S[idx]
4 fm← w[idx]
// initialization of values

5 A0 = fm0

6 ff = h0 × fm0

// fuzzy integral
7 for i ∈ 1, ..., |S| − 1 do
8 Ai = Ai−1 + fmi + λ× fmi ×Ai−1
9 ff = ff+ hi × (Ai −Ai−1)

10 Ai−1 = Ai

11 ff = ff+ h|S|−1 × (1−Ai−1)
12 return ff

Function get_lambda solves Equation 5 for λ.

λ+ 1 =

n∏
i=1

(1 + λ× wi) (5)

The scores for each source of information are
sorted from higher to lower and the fuzzy densi-
ties (weights) are reorganized to follow their re-
spective sources. After some initial values are de-
fined, the loop in the algorithm performs, at each
iteration, the union of the previous fuzzy mea-
sure with the current fuzzy density, thus allowing
to compute the fuzzy integral, as defined in Equa-
tion 3.

The steps involved in the Sugeno integral are
similar to the Choquet integral, differing only in

the operator used. In Algorithm 2, we present
the fusion strategy using Equation 2 to highlight
the differences.

Algorithm 2: Fuzzy Fusion (Sugeno)
input : set of classification scores S, set of

fuzzy densities w
output: Final classification score ff

1 λ← get_lambda(w)
// Decrease sorting

2 idx← argReverseSort(S)
3 h← S[idx]
4 fm← w[idx]
// initialization of values

5 A0 = fm0

6 ff = min(h0, fm0)
// fuzzy integral

7 for i ∈ 1, ..., |S| do
8 Ai = Ai−1 + fmi + λ× fmi ×Ai−1
9 aux = min(hi, Ai)

10 ff = max(ff, aux)
11 Ai−1 = Ai

12 return ff

A comparison of the experimental results us-
ing both Sugeno and Choquet fuzzy integral ap-
proaches, as well as the weighted average, is de-
scribed in Section 4.

4 EXPERIMENTS

In this section, we describe the data sets used
in our experiments, relevant implementation de-
tails, as well as experimental results for different
configurations of our method.

4.1 Data Sets

Two challenging data sets that are benchmarks
for the human action recognition problem were
used in the experiments. The UCF101 (Soomro
et al., 2012) data set is composed of 101 classes
equally distributed in 13,320 video clips. The se-
quences have a fixed resolution of 320×240 pix-
els, a frame rate of 25 fps and different lengths.
The HMDB51 (Kuehne et al., 2013) data set is
composed of 51 classes and 6,766 sequences ex-
tracted mostly from movies. It includes lower
quality videos with blur, noise, cuts and actions
from unusual points of views.



Both data sets provide a protocol with three
splits of the samples, where each split contains
70% of samples for training and 30% for testing
for each action class. This is a standard evalua-
tion protocol proposed by the authors of the data
sets, which is followed in the literature of action
recognition for comparison purposes.

4.2 Experimental Setup

The Inception V3 (Szegedy et al., 2016) network
was the 2D CNN selected in our experiments. It
achieved state-of-the-art results in the ImageNet
competition, such that we started with its trained
weights in all cases.

Data augmentation was applied using random
crop and random horizontal flip. The random
crop scheme is the same as in the work devel-
oped by Wang et al. (2015), which uses multi-
scale crops of the four corners and their centers.

The multi-stream approach is inspired by the
practices described by Wang et al. (2015). The
data augmentation is the same as the used for
the autoencoder. The spatial stream uses a 0.8
dropout before the softmax layer and 250 epochs,
whereas the temporal stream uses a 0.7 dropout
and 350 epochs. Finally, the proposed spatio-
temporal stream uses a 0.7 dropout and 250
epochs. In all of them, the stochastic gradient
descent optimizer is used with decay zero, Nes-
terov momentum equal to 0.9. For all tests, the
used batch size is 32 and the learning rate starts
at 0.0001 and drops by a factor of 0.1 – until the
bottom limit of 1−10 – if the validation loss does
not improve in more than 20 epochs.

The final classification of each testing video is
an average of the predictions for 25 frames con-
sidering the augmented version – four corners, the
center and the horizontal flip – adding up to 10
predictions per frame.

The method was implemented in Python 3
programming language using Keras library. All
experiments were performed on a machine with
an Intel R© CoreTM i7-3770K 3.50GHz processor,
32GB of memory, an NVIDIA GeForce R GTX
1080 GPU and Ubuntu 16.04.

4.3 Results

In this subsection, we present the results ob-
tained with the fuzzy fusion methods for the ac-
tion recognition problem. Initially, the individual
results of each stream are shown in Tables 1 and 2.

Table 1: Accuracy rates (%) for individual streams
on the UCF101 data set.

Stream
UCF101

Split 1 Split 2 Split 3 Average

Spatial 86.39 85.62 85.20 85.74
Temporal 86.17 88.56 87.88 87.54

The stack of optical flow images obtained the
best results compared to the RGB samples on the
HMDB51 data set (Table 2). The difference in the
accuracy values between the temporal and spatial
streams is substantial for the HMDB51 data set,
whereas the difference is smaller for the UCF101
data set.
Table 2: Accuracy rates (%) for individual streams
on the HMDB51 data set.

Stream
HMDB51

Split 1 Split 2 Split 3 Average

Spatial 52.68 52.22 52.48 52.46
Temporal 57.52 59.41 59.74 58.89

To perform the fusion for the weighted average
and fuzzy integral schemes, it is necessary to de-
fine their weights. In our work, the weights were
defined through a linear search, where the best
weights were selected considering the accuracy in
the first split of the HMDB51 data set applied
to all data sets and splits. Table 3 reports the
weights used in each scenario.

Table 3: Weights for the stream fusion.

Fusion
Weights

Spatial Temporal

Weighted Average 3.00 5.00
Fuzzy (Sugeno) 0.50 1.00
Fuzzy (Choquet) 0.20 0.33

The range for the weighted average (WA) was
[1, 10] with step 1. For the fuzzy fusion, the
weights need to be in the range [0, 1], so the search
range is the same except that the weight is di-
vided by 10. Considering the arithmetic average,
the values are based on proportions; for example,
the sets of weights (0.2, 0.4) and (0.4, 0.8) are
equivalent when performing average because both
indicate that a classifier has 2 times more weight
than the other. In the fuzzy fusion, these sets of



weights represent different combinations, allow-
ing more feasible weights. Thus, we performed a
second search using the same range but dividing
by 2 times the sum of the weights.

Table 4 shows the comparative results between
the two types of fuzzy fusion, as well as the
weighted average on the UCF101 data set.

Table 4: Accuracy rate (%) for two-stream fusion on
the UCF101 data set.

Fusion
UCF101

Split 1 Split 2 Split 3 Average

Weighted Average 92.36 92.42 92.80 92.53
Fuzzy (Sugeno) 90.77 91.30 91.31 91.13
Fuzzy (Choquet) 93.02 92.66 92.94 92.87

The results with the fuzzy fusion using the
Choquet integral are superior, however, the dif-
ference from the weighted average is smaller. The
Sugeno version achieved poor results. Table 5
shows the comparative results on the HMDB51
data set.
Table 5: Accuracy rate (%) for two-stream fusion on
the HMDB51 data set.

Fusion
HMDB51

Split 1 Split 2 Split 3 Average

Weighted Average 64.71 66.01 63.66 64.79
Fuzzy (Sugeno) 61.63 61.96 60.85 61.48
Fuzzy (Choquet) 66.27 66.21 65.10 65.86

The accuracy rate followed the previous re-
sults with the Sugeno fuzzy fusion, achieving the
lowest values, whereas the Choquet version ob-
tained the best results. However, the difference
was higher, with a gain of more than one percent-
age point from the average.

5 CONCLUSIONS

This work presented and analyzed the use of
fuzzy integral as fusion operator for the action
classification in videos using a two-stream model.
The fuzzy fusion generalizes other operators and
is more sophisticated than simple averaging, since
it uses ordered weighting. Two types of integrals
were investigated: (i) Sugeno, that uses maxi-
mum and minimum operators, and (ii) Choquet,
that uses product and sum operators.

Two well-known and challenging data
sets, HMDB51 (Kuehne et al., 2013) and
UCF101 (Soomro et al., 2012), were used to
validate the proposed method. Using fuzzy fu-
sion with the Choquet integral, the experiments
revealed that the accuracy rate surpassed the
weighted average, whereas the Sugeno integral
obtained worse results. This was expected
because the use of minimum and maximum
operators makes the combination discrete, which
is not suitable for classifier ensemble, where a
real-value confidence over the classes can be
generated Soria-Frisch (2004).

Several action classification methods include
additional streams to the two-stream framework
adopted in our work. Therefore, a straightfor-
ward direction for future work would be to ap-
ply the proposed fuzzy fusion to a multi-stream
approach. The expected advantage of the fuzzy
fusion over the weighted average would improve
with more classifiers since it considers the weigh-
ing of subsets in all combinations. As a draw-
back of the method is its manual definition of the
weights, further research is intended to automat-
ically determine the weights in a more adaptive
way.
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