
1

3D Post-Stack Seismic Data Compression With a Deep
Autoencoder

Ana Paula Schiavon, Kevyn Swhants dos Santos Ribeiro, João Paulo Navarro,
Marcelo Bernardes Vieira, and Pedro Mário Cruz e Silva

Abstract—We approach the problem of 3D post-stack seismic data
compression by training a model based on a deep autoencoder. Our
network architecture is trained to consider the similarity between 3D
seismic sections drawn from one or multiple seismic volumes. A whole
seismic volume is compressed with the latent representations of each of
its composing volumetric sections. The goal is to compress the seismic
data at very low bit rates with high-quality reconstruction. Our model is
suitable for training general compressors from multiple seismic surveys
or for specialized compression of a single seismic volume. Results show
that our method can compress seismic data with extremely low bit rates,
below 0.3 bpv (bits-per-voxel), while yielding Peak Signal-to-Noise Ratio
(PSNR) values over 40 dB.

Index Terms—Seismic Data Compression, 3D Post-stack Data, Deep
Learning, Autoencoder.

I. INTRODUCTION

SEISMIC data are mappings from the Earth’s subsurface that
reveal a representation of geological structures present in the

regions where they were acquired. The necessity of oil and gas
exploration has led to improvements in the acquisition methods. Due
to the high-quality of the acquisition sensors, the data needs hundreds
of terabytes to be stored or transmitted, motivating their compression
[1]–[3]. In general, the seismic data can be pre-stack or post-stack.
Pre-stack contains a rather raw and redundant information. Post-stack
data is a processed version in which the signal redundancies are
attenuated. There exists a demand for pre-stack compression, as they
are bigger and less processed than post-stack. However, the post-stack
compression is of interest in applications that need huge processed
seismic data transmission or storage. In this work, we only consider
the compression of 3D post-stack volumes uniformly discretized in
a 3D grid.

Several methods have been proposed to solve the problem of
seismic data compression. Considered as transform-based methods,
the works [4]–[6] approach the task by transforming the seismic
data into a different domain whence the sparsity and correlation
among coefficients provide a smaller representation. An approach
based on dimensionality reduction was proposed by [7] where signal
dimensions are reduced using a Principal Component Analysis (PCA)
method. Taking into account the progress in video and image com-
pression, some methods were proposed, by adapting the JPEG-XR
[8] and the HEVC [9], [10] codecs for seismic data compression.

Considering the success of deep learning methods to solve com-
puter vision [11] and geophysics tasks [12], [2] proposed to com-
press 3D post-stack seismic surveys through deep neural networks.
Sustained on the premise that neural networks can learn important
information directly from data for compression tasks, the main
hypothesis is that CNNs can compress seismic data at low bit rates,
preserving most of its underlying structural information. The work
[1] adapted the method proposed by [3] to deal with the seismic
domain, splitting a post-stack volume as a set of 2D slices. We refer
to this method as 2D-based Seismic Data Compression (2DSC).

A.P. Schiavon, K.S. Ribeiro and M.B. Vieira are affiliated to UFJF -
Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.

J.P. Navarro and P.M. Silva are affiliated to NVIDIA.

Seismic data can be compressed using 2D sections [1]. But higher
compression is possible by exploiting the post-stack 3D seismic
data as a volume. Assuming that seismic data is locally similar,
our hypothesis is that a set of sections can be represented with the
same latent representation of a single slice. As the main contribution,
we propose the Multi-Channel Seismic Data Compression (MCSC)
method. The proposal is to stack multiple consecutive 2D seismic
slices extracted from the volume. The stack is thus a 3D seismic
volume section from which the neural network can learn volumetric
similarities. The goal is to extend the work from [1] to compress the
seismic data at low bit rates. It is expected that the correlation among
slices provide smaller bit rates compared to the 2DSC method.

II. METHOD

The basis of our approach was proposed by [3], and adapted by
[1] to compress 2D seismic sections extracted from 3D post-stack
data. In that work, bi-dimensional slices were extracted from the
volume and each one was compressed separately. In the reverse
process, the compressed slices coefficients are decompressed and the
whole volume is reconstructed. In addition, training and inference
schemes were proposed to allow the compression of seismic data
having different characteristics. In this work, the approach proposed

Fig. 1: Autoencoder and probability model architectures.



2

by [1] is extended to directly compress 3D regions of the volume.
A set of 2D slices is concatenated, yielding a volume of dimensions
h×w×d, where h and w are the spatial dimensions. The dimension
d is the number of 2D slices that compose the volume and are stacked
as input channels in Figure 1.

Figure 1 shows the architecture used in this work. It is composed of
an encoder and a decoder. The “normalize” layer normalizes the input
using the mean and variance of the training set and the “denormalize”
performs the inverse operation. From the encoder, “C2D k5 n64 2
ReLU” is the convolution 2D with kernel size 5, 64 filters, stride 2 for
both spatial dimensions w and h and ReLU as activation function.
The last layer of the encoder performs a convolution with C + 1
filters, yielding the latent representation z ∈ Rh/8×w/8×C and an
importance map t ∈ Rh/8×w/8×1, where the value 8 is the fixed
network subsampling factor for spatial dimensions w and h, and
the parameter C indicates the number of feature maps of the latent
representation. Then z is masked and quantized and its quantized
representation ẑ is used to feed the decoder side and the probability
model P. The decoder mirrors the encoder but performing transposed
convolutions to make output equals input. The transposed convolution
is represented as “TC2D”. All convolutional layers are normalized
using batch normalization. The probability model P is a 3D CNN
that estimates the bit rate through ẑ.

The autoencoder is composed of an encoder E : Rh×w×d →
Rh/8×w/8×C that maps an input data x with dimensions h×w× d
to a latent representation z = E(x). It differs from [1], in which
a single slice with size h × w is used as input. The input volume
of dimensions h × w × d is mapped into a latent representation of
dimensions h/8× w/8× C, that are the same from [1]. Therefore,
we assume that the latent space is inherently capable of representing
similarities of multiple slices. The quantizer Q : Rh/8×w/8×C →
Ch/8×w/8×C discretizes the entries of z using a finite set of L
centroids C = {c1, . . . , cL}, cl ∈ R, yielding ẑ = Q(z). The decoder
D : Ch/8×w/8×C → Rh×w×d then forms the reconstructed data
x̂ = D(ẑ). In this case, the decoder reconstructs the whole 3D stack
of slices.

The quantization, proposed by [3], is performed in two steps.
Considering that the visual information is spatially variant in an
image, a mask quantization is proposed to make the bit rate allocation
locally adaptive. In this setting, a single channel, also called as
importance map (t), is added to the last layer of the encoder and a
mask m is generated so that the network learns to weight the latent
representation regions that provide the most relevant information for
the reconstruction of the image. The latent representation z ∈ R is a
mapped version of the 3D seismic data input already having several
values close to zero. The quantization step is performed with a finite
set C ⊂ R with L scalar centroids learned by the autoencoder. The
final discretization takes place by assigning each latent value zi to the
nearest learned centroid in C, forming the quantized entries ẑi ∈ C.

The conditional distribution of the quantized latent representation
ẑ is needed to estimate the obtained bit rate:

p(ẑ) = p(ẑ1, . . . , ẑn) =

n∏
i=1

p(ẑi|ẑi−1, . . . , ẑ1), (1)

where n = w/8 ·h/8 ·C. A model that combines the proposals [13],
[14] was presented by [3] to compute the bit rate needed to compress
ẑ. The probability model P is used to estimate the joint distribution
p(ẑ) of the quantized latent representation ẑ.

The problem of learning a conditional distribution can also be
formulated as a classification task. Given a sample ẑi and a set of
centroids C = {c1, . . . , cL}, we want to predict the probabilities of
matching ẑi to each centroid cl from C, according to their similarity.

Thereby, each distribution p(ẑi|ẑi−1, . . . , ẑ1) provides the probability
of classifying ẑi as each of the L centroids given the previous values.

A 3D CNN P : Cw/8×h/8×C → Rw/8×h/8×C×L is used to
estimate each term p(ẑi|ẑi−1, . . . , ẑ1):

Pi,l(ẑ) ≈ p(ẑi = cl|ẑi−1, . . . , ẑ1), (2)

where Pi,l is the probability of each symbol ẑi to be assigned to each
centroid cl of C. The model P is trained with a loss:

£P = d(x, x̂)− β 1

n

n∑
i=1

L∑
l=1

yi,l logPi,l(ẑ), (3)

where d is an equation that measures the distortion achieved when
compressing x at a certain bit rate. The negative term is the cross-
entropy loss that expresses the number of bits per pixel required to
compress the latent representation ẑ using P as a probability model.
The term β controls the trade-off between bit rate and distortion.

The autoencoder uses the probability model loss to deal with
the rate-distortion trade-off. To control the bit rate, the autoencoder
weights up the P (ẑ) using the mask dme. The weighting is a
way to easily control the coding cost, by increasing/decreasing the
value of the importance map t for some spatial locations, obtaining
fewer/more zero entries in dme. The loss function of the autoencoder
(E,D) and the quantizer Q is given by:

£E,D,Q = d(x, x̂)− β 1

n

n∑
i=1

L∑
l=1

dmieyi,l logPi,l(ẑ)︸ ︷︷ ︸
r(ẑ)

. (4)

Different from [3], we use the Peak Signal-to-Noise Ratio (PSNR)
as distortion function instead of the proposed MS-SSIM. The MS-
SSIM is a perceptual metric, suitable for image compression tasks.
The PSNR is a generic metric that can be used to evaluate the
similarity between two scalar fields, such as the post-stack data. As
the results show, it was sufficient for compressing arbitrary seismic
data. However, our proposals are not suitable for general-purpose 3D
scalar field compression.

III. TRAINING AND INFERENCE PROCEDURES

The training and inference steps were performed similarly as
described in [1]. As a pre-processing step, the seismic surveys are
normalized to the [0,1] interval using its minimum and maximum
values. It is needed because the seismic data is quantized with 32-
bit floating-points and its range values are wider and the min-max
values are arbitrary across different volumes. To make possible the
training of a model capable of compressing different seismic surveys,
we need to put all of them at the same conditions.

The batch generation step is performed as depicted in Figure 2.
Initially, we extract a set of sub-volumes from the whole seismic
volume v ∈ RH×W×D . The sub-volumes can be extracted by
considering the inline, crossline and time-depth directions along the
axes x, y and z, respectively. For inline sub-volumes, for instance, the
samples are formed of d bidimensional crops of size h×w extracted
along the x axis. Similarly, for crossline and time-depth are composed
of samples along the axes y and z, respectively.

To extract sub-volumes from the inline direction, we consider the
volume indexed according to the raster scan order in which the row is
the y axis, the column is the z axis and the depth is the x axis. Using
this order, we extract all non-overlapping sub-volumes of size h×w×
d. If some dimension H,W , or D of the volume is not divisible by the
corresponding dimension h,w, or d in the sub-volume, it is allowed
the smallest overlapping sub-volume containing the remaining voxels.
Figure 2 shows an example in which the dimension W is not divisible



3

Fig. 2: Batch generation step. The volume is detached in a set of
sub-volumes that are randomly selected to generate the batch.

by w. In this sense, the last sub-volumes extracted (blue) have w −
(W mod w) columns overlapping the previous sub-volume extracted
(green). An analogous process is used to extract crossline and time-
depth samples.

The batch is generated by randomly selecting sub-volumes ex-
tracted from the input volume. In the case of a training set composed
of various datasets, we attempt to reduce the dataset bias by building
the batch with samples from all of them at the same amount. The
number of samples of a dataset can vary, and smaller datasets provide
repeated samples.

We can use sub-volumes from all directions to train the network.
We use only the inline and crossline directions to train our models due
to their similarity. The time-depth direction has very different struc-
tures and is often too noisy when compared to the other directions.
The batch has the same amount of sub-volumes for each direction.
The validation and testing steps consider only the inline samples.
With the batch generated, it is used to feed the autoencoder model.
This process is repeated until the maximum number of iterations is
reached.

Volumes of size H×W ×d are extracted for the inference. If their
shapes are not divisible by the network subsampling factor, they are
padded with a border extension. We propose the symmetric border

extension since it better preserves the frequencies of the seismic
volume. The autoencoder is fed with the volume and both input and
output are unpadded to guarantee coherence of the metric evaluation.
The volumes are denormalized to reconstruct the compressed seismic
volume and the error between the original and reconstructed volumes
is evaluated.

A possible end-user pipeline can be as follows: the network
is trained from scratch with the seismic volume. In a generalist
approach, the training data is a volume (or multiple volumes) that
can generalize well the testing domain. In this case, the volume
of interest to be compressed is not used to train the network. In
a specialized compression scheme, the volume used to train is the
same to be compressed. The training step considers a percentage
γ ∈ [0, 100] from all sub-volumes extracted from the input data.
The parameter γ can be arbitrary or even 100%. After training,
the compression is performed in the whole volume of interest. The
compressed representation is stored as well as the decoder weights.
To decompress, the decoder weights are recovered and the inverse
transformation is applied.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Our method was implemented using the TensorFlow framework,
and all runs performed on GPUs NVIDIA Tesla V100 of 32GB. Our
models have 950, 534 trainable parameters in total, requiring 42MB
to be stored. The hyper-parameter space was: Adam optimizer, batch-
size of 30, initial learning rate of 8 · 10−5 with step decay of 0.05
every 10 epochs for both networks, volume size of 160 × 160 × d,
latent representation of size C = 64, L = 50 centroids and β = 100.
Parameters C = 64, L = 50 were empirically chosen since they
are not very sensitive. We trained our models for 30 epochs. The
reconstruction quality is reported as PSNR in decibels (dB) due to
its sensibility to small error variations, and compression rate as bits-
per-voxel (bpv), expressing the average number of bits necessary to
represent a single seismic amplitude value.

We selected eight real seismic surveys from SEG Open Data
repository1: Kahu3D, Kerry3D, Netherlands F3-Block, Opunake3D,
Parihaka3D, Penobscot3D, Poseidon3D, and Waihapa3D. Samples
were extracted from the inline (x) and crossline (y) directions. The
model with the smallest validation loss during the training step was
selected.

As proposed by [3], a clipping is used on the entropy term to force
the bit rate target rt to be reached when training. The max(βr(ẑ), rt)
is used instead of βr(ẑ) in Equation 4 when optimizing the au-
toencoder. For an objective comparison, we set the bit rate target
rt = 1.0 bpv. For experimental evaluation, we select the parameters
that provide the best PSNR. But the target bit rate might not be
reached due to divergent network learning. Therefore, we exclude

1https://wiki.seg.org/wiki/Open data

Train
Test Opunake3D Penobscot3D Kahu3D Parihaka3D Waihapa3D N. F3-Block Kerry3D Poseidon3D

Opunake3D 47.66 / 1.12 46.85 / 1.15 44.81 / 1.12 48.32 / 1.14 41.85 / 1.10 37.66 / 1.14 32.35 / 1.11 29.45 / 1.12
Penobscot3D 47.10 / 1.28 35.63 / 1.18 44.60 / 1.30 44.20 / 1.28 44.49 / 1.28 34.57 / 1.26 31.06 / 1.43 26.14 / 1.57

Kahu3D 50.53 / 1.08 48.11 / 1.09 44.55 / 1.13 45.83 / 1.12 45.72 / 1.19 37.03 / 1.12 34.18 / 1.14 30.43 / 1.11
Parihaka3D 54.87 / 0.89 49.60 / 0.95 49.48 / 1.00 51.57 / 0.95 46.57 / 1.05 38.77 / 1.01 35.42 / 1.16 30.85 / 1.19
Waihapa3D 48.82 / 1.21 46.61 / 1.19 45.75 / 1.24 43.62 / 1.25 43.07 / 1.19 35.83 / 1.25 32.31 / 1.35 29.09 / 1.45
N. F3-Block 47.77 / 1.20 46.34 / 1.16 46.33 / 1.16 48.49 / 1.15 43.08 / 1.17 38.73 / 1.09 37.24 / 1.15 33.26 / 1.22

Kerry3D 47.83 / 1.16 45.03 / 1.13 46.56 / 1.18 46.22 / 1.17 43.56 / 1.20 37.90 / 1.15 37.88 / 1.12 32.32 / 1.31
Poseidon3D 34.39 / 1.40 31.84 / 1.39 30.72 / 1.39 29.14 / 1.39 26.77 / 1.39 28.43 / 1.39 25.44 / 1.39 40.28 / 1.39

TABLE I: Leave-one-in protocol results for the MCSC method, reported as PSNR/bpv. Painted cells indicate the top 3 best results for each
testing survey, with darker colors meaning a better result. Values in the diagonal result from reconstructions of the validation set and not
from the reconstruction of the whole volume. We consider only results below the margin threshold (1.2 bpv) of acceptable bpv.



4

Fig. 3: Method comparison for Penobscot3D (left) and Poseidon3D (right) testing surveys. Lines indicate the standard deviation for PSNR
(vertical) and bpv (horizontal).

from comparisons the results having bpv > 1.2·rt since they become
inadequate even yielding a high PSNR. This margin is enough to deal
with differences arising from network initialization.

To evaluate the compression capabilities of our method over
different surveys, we use the leave-one-in protocol [15] such that one
survey is used for training and the remaining ones are used for testing.
The leave-one-out protocol could also be implemented, but we limited
our scope to evaluate the generalization capabilities of our network by
training with individual volumes. A future analysis is needed to define
the best protocol to compress seismic data. For example, it is possible
to train with multiple volumes to obtain a generalist, ready to use,
compressor. Another possibility is to conduct specialist fine-tuning
of the generalist network with the arbitrary target volume. Another
possibility is to consider a specialized training for each survey.

For the leave-one-in protocol, we extract sub-volumes of depth
d = 4 from the training survey and split the training set, so
that the first 10% samples from the training data are used for
validation, according to the order described in Section III. Table I
shows the results of the leave-one-in protocol. Notice that the method
performance depends on the survey used for training. In a generalist
approach, the Parihaka3D was the best training survey, and the worse
result was found using the Poseidon3D. In general, the presence of
noise and high frequencies is directly related to compression quality.
The Parihaka3D has a balance between high and low frequencies,
providing enough information for a generalist training. In contrast,
the Poseidon3D is a high frequency and noisy survey, which hinders
the learning generalization, since the method becomes over-fitted. It
occurs because our method considers that neighbor slices are similar
and perform a mapping from a volume into a set of bi-dimensional
feature maps. The noise leads to arbitrary patterns that are difficult
to be recovered in a generalist approach. In this case, only with a
specialist model it is possible to reach PSNR values up to 40dB.

To evaluate the performance of the method over different input
depth sizes, we perform experiments with d = 4, 8, 16 and 24
slices. We set the Parihaka3D as the training survey. We perform
experiments for a bit rate target rt = 0.05, 0.10, 0.25, 0.50, 0.75
and 1.0 bpv. Figure 3 shows the results for the Penobscot3D and
Poseidon3D testing surveys for each bit rate target with an average of
3 rounds. Lines indicate the standard deviation for PSNR (vertical)
and bpv (horizontal). Notice that, for the Penobscot3D survey, as
the bit rate target decreases, higher PSNR results are achieved by
using a higher number of slices d. The same does not occur for
the Poseidon3D survey, in which fewer slices provide higher PSNR
values, considering smaller bit rates target. We believe that this is

due to the presence of noise in these surveys. We conclude that the
network performance tends to increase with d, but occasionally it
does not occur in presence of noise. There is not an optimal value
for d on all situations, but with d = 16 slices it is possible to achieve
reasonable PSNR and bit rate values for most testing sets.

Figure 4 shows a qualitative compression result of a 2D slice from
the Penobscot3D testing survey, extracted in the inline direction. Even
with an extreme compression rate of 320:1, the details are fairly
preserved with PSNR = 42.50 dB.

Fig. 4: Reconstruction of a 2D slice from the Penobscot3D survey.
From top to bottom: original slice, reconstructed output and relative
error between them. For a bit rate of 0.10 bpv, the network reaches
a PSNR = 42.50 dB.



5

Aiming to compare our method to others in literature, we perform
the same experiment considering the 2DSC and the JPEG2000 com-
pressors. From Figure 3, we can see that for the Penobscot3D set and
bit rates below 0.25 bpv, our method surpasses the JPEG2000 for all
targets evaluated. From this point up, the JPEG2000 achieves higher
PSNR. The 2DSC had the worst performance and only obtained
bit rates greater than 0.6 bpv. For the noisy volume Poseidon3D,
however, our method is competitive to the JPEG2000 only for the
extremely low bit rate of 0.05 bpv. It occurs due to the presence of
noise in the testing set. Nevertheless, it is an evidence that extreme
bit rates are attainable by CNNs. The proposed MCSC setup was
not sufficient to deal with high presence of noise in the testing
surveys. It suggests that the training protocol and network setup need
improvements to deal with surveys of different characteristics in a
generalist approach. Similarly to Penobscot3D, the 2DSC could not
compress with bit rates smaller than 0.8 bpv, but provided reasonable
results with 4 and 8 slices if compared to the MCSC method.

Regarding the compression time, for a single sub-volume of size
160 × 160 × 4, the MCSC takes 0.031 seconds to encode, while
the JPEG2000 takes 0.036 seconds, on average. To decompress the
sub-volume, the MCSC takes 0.026 seconds and the JPEG2000 takes
0.016 seconds. For the Parihaka3D survey, one training epoch takes
about 326 seconds. In our experiments, it took about 3 hours to train
a model for 30 epochs. These times were measured using a single
NVIDIA Quadro GV100 with 32GB, and a Core i7 870 with 16GB
of RAM.

The results evinced that we can surpass the JPEG2000 for very low
compression rates, i.e. bit rates smaller than 0.3 bpv. In addition, our
scheme can be adjusted to compress seismic volumes in a generalist
or specialist way. However, as the network was designed to minimize
the bit rate as much as possible, a major observed drawback is that
it is very difficult to compress the seismic data in a wide range of
target bit rates. In general, the performance worsens as the target bit
rate increases. The network tends to find the best PSNR only below
a given target bit rate. But it is possible to achieve better results
by adapting the architecture to focus on higher bit rates instead of
extreme compression. In such case, multiple compression streams
could be used to find the best compression.

V. CONCLUSION

This work tackles the 3D post-stack seismic data compression
problem with very low bit rates bpv < 0.3. We propose a model and
training protocol based on a deep autoencoder to find redundancy
in volumetric seismic sections drawn from one or multiple seismic
volumes. Our method can be tuned as a generalist or a specialist
compressor. The performance in both cases depends on the surveys
and protocol used for learning. Our results show fair evidences that
CNN based compression can overcome state-of-the-art compressors
like JPEG2000 for very low bit rates.

A future investigation is needed to evaluate the best protocol to
compress seismic data by using the proposed neural network. It
is possible to perform a generalist training with multiple volumes,
a specialist fine-tuning for a given volume, or even use a trained
network for each survey setup. Also, the autoencoder architecture
can be adapted to perform multi-resolution compression or to model
a known residual error distribution, such as the white noise, through
generative networks. These improvements can make the method less
sensitive to noise and less prone to generate reconstruction distortions.

ACKNOWLEDGMENT

Authors thank CAPES and FAPEMIG for the financial support,
and NVIDIA Corporation for the GPU Grant Program.

REFERENCES

[1] A. P. Schiavon, J. P. Navarro, M. Vieira, and P. M. C. e Silva, “Low bit
rate 2d seismic image compression with deep autoencoders,” in Int. Conf.
on Computational Science and Its Applications, 2019, pp. 397–407.

[2] J. Navarro, A. Schiavon, M. Vieira, and P. Silva, “Deep seismic compres-
sion,” in 81st EAGE Conference, vol. 2019, no. 1. European Association
of Geoscientists & Engineers, 2019, pp. 1–5.

[3] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
“Conditional probability models for deep image compression,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[4] A. S. Spanias, S. B. Jonsson, and S. D. Stearns, “Transform methods
for seismic data compression,” IEEE Transactions on Geoscience and
Remote sensing, vol. 29, no. 3, pp. 407–416, 1991.

[5] G. Aharoni, A. Averbuch, R. Coifman, and M. Israeli, “Local cosine
transform - a method for the reduction of the blocking effect in jpeg,”
in Wavelet Theory and Application. Springer, 1993, pp. 7–38.

[6] A. Z. Averbuch, F. Meyer, J. . Stromberg, R. Coifman, and A. Vassiliou,
“Low bit-rate efficient compression for seismic data,” IEEE Transactions
on Image Processing, vol. 10, no. 12, pp. 1801–1814, Dec 2001.

[7] H. H. Nuha, B. Liu, M. Mohandes, and M. Deriche, “Seismic data
compression using signal alignment and pca,” in 2017 9th IEEE-GCC
Conference and Exhibition (GCCCE). IEEE, 2017, pp. 1–6.

[8] Y. Liu, Z. Xiong, L. Lu, and D. Hohl, “Fast snr and rate control for jpeg
xr,” in Signal Processing and Communication Systems (ICSPCS), 2016
10th International Conference on. IEEE, 2016, pp. 1–7.

[9] M. Radosavljević, Z. Xiong, L. Lu, and D. Vukobratović, “High bit-
depth image compression with application to seismic data,” in Visual
Communications and Image Processing. IEEE, 2016, pp. 1–4.

[10] M. Radosavljević, Z. Xiong, L. Lu, D. Hohl, and D. Vukobratović,
“Hevc-based compression of high bit-depth 3d seismic data,” in IEEE
International Conference on Image Processing. IEEE, 2017, pp. 4028–
4032.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural In-
formation Processing Systems 25. Curran Associates, Inc., 2012, pp.
1097–1105.

[12] Y. Shi, X. Wu, and S. , “Automatic salt-body classification using a deep
convolutional neural network,” in SEG Technical Program. Society of
Exploration Geophysicists, 2018, pp. 1971–1975.

[13] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
recurrent neural networks,” in Intern. Conf. on Machine Learning, 2016,
pp. 1747–1756.

[14] A. Van Den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves
et al., “Conditional image generation with pixelcnn decoders,” in Ad-
vances in Neural Information Processing Systems, 2016, pp. 4790–4798.

[15] L. Trippa, L. Waldron, C. Huttenhower, G. Parmigiani et al., “Bayesian
nonparametric cross-study validation of prediction methods,” The Annals
of Applied Statistics, no. 1, pp. 402–428, 2015.


