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Identi¯cation of motion in videos is a fundamental task for several computer vision problems.

One of the main tools for motion identi¯cation is optical °ow, which estimates the projection of
the 3D velocity of the objects onto the plane of the camera. In this work, we propose a di®er-

ential optical °ow method based on the wave equation. The optical °ow is computed by min-

imizing a functional energy composed by two terms: a data term based on brightness constancy

and a regularization term based on energy of the wave. Flow is determined by solving a system
of linear equations. The decoupling of the pixels in the solution allows solving the system by a

direct or iterative approach and makes the method suitable for parallelization. We present the

convergence conditions for our method since it does not converge for all the image points. For

comparison purposes, we create a global video descriptor based on histograms of optical °ow for
the problem of action recognition. Despite its sparsity, results show that our method improves

the average motion estimation, compared with classical methods. We also evaluate optical °ow

error measures in image sequences of a classical dataset for method comparison.

Keywords: Optical °ow; di®erential methods; wave equation; points-of-interest extraction; edge

characterization.

1. Introduction

The study of movement in image sequences is an important ¯eld in computer vision for

many years. Identifying movement in a video is a fundamental task in order to analyze

its semantic information. This kind of information is useful in several applications, for

example time-to-collision, motion compensated encoding, stereo disparity measure-

ment, action recognition, and motion detection. However, extracting features that

represent movement in a video is a challenge and not a fully exploited problem.
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Optical °ow is a motion representation widely used in computer vision. It consists

in estimating the projection of the 3D velocity of the objects onto the plane of the

camera. In general, optical °ow computation is based on estimation of the brightness

variation from a sequence of images. The occlusion of objects is a major problem.

Dealing with homogeneous regions and determining large displacements are other

problems for optical °ow methods.1,2

Several methods have been developed since Horn and Schunck3 proposed their

di®erential optical °ow method.4–7 Also, in the last years, new datasets for optical

°ow evaluation were proposed.2,8,9 These are useful to evaluate the new optical °ow

algorithms. The set of benchmarks of these datasets contains sequences for several

scene con¯gurations. This shows that the computation of optical °ow is still an open

problem.

There is a large variety of optical °ow methods and the most suitable for any

problem is application dependent. An example of problem where movement ex-

traction is useful is the human action recognition,10,11 which consists of three stages:

feature extraction, video descriptors creation and classi¯cation. Optical °ow can be

useful in the stage of motion features extraction, since it is an estimative of motion in

image sequences.

Di®erential optical °ow methods use the brightness of the images to extract

movement information. Thus, making a physical analogy, we can assume the

brightness as mass elements and analyses its temporal variation. For example, Lucas

and Kanade12 and Horn and Schunck3 methods start from a movement equation

which is just an equation with advective terms.

Another example of transport phenomenon is modeled by the wave equation.13

This equation describes the propagation of waves in a continuous medium and was

studied by many famous mathematicians including Euler, Bernoulli, d'Alembert and

Lagrange. Several physical phenomena are based on this equation, for example,

water waves and vibration of an elastic string.

In this work, we propose a di®erential optical °ow method based on the wave

equation. We start by modeling the brightness variation as waves propagating in a

medium and by showing how the wave equation can contribute to estimate motion

from image sequences. This study inspires us to propose an energy function that must

be minimized similarly to Horn and Schunck approach.3 Our energy function and its

computational method are the main contributions of this work, which is based on the

hypothesis that the wave equation is useful for motion estimation in videos. Our

method provides a sparse optical °ow, mainly concentrated on high brightness

variation points, useful for Computer Vision problems that need good °ow estima-

tions on these regions. Our convergence condition, for instance, is useful for detecting

points of interest on edges. We apply our method on the problem of action recog-

nition, that needs meaningful motion °ows, to compare with classical works.12,3

Considering only the valid points, the results showed that our method overcomes the

classical ones. The performance of the °ow reconstructed by using the wave equation

indicates that our approach is suitable whenever di®erential methods are needed. It
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is important to notice that our goal is not to overcome the state-of-the-art methods

for optical °ow. Di®erential methods lack non-local information and tend to be

sparse due to high frequency dependency. We instead look for a new constraint for

di®erential methods using the wave equation and showing that it is useful to extract

reliable brightness variation spots.

Consider I1ðx; yÞ and I2ðx; yÞ two consecutive images in time. Formally, for each

point ðx; yÞ, the optical °ow is represented by a vector ½uðx; yÞ; vðx; yÞ� that describes
the movement between I1 and I2. In other words, let ðx; yÞ be a point in the image I1,

then the optical °ow vector associated to this point is ½uðx; yÞ; vðx; yÞ� such that

I1ðx; yÞ ¼ I2ðxþ uðx; yÞ; yþ vðx; yÞÞ. The following sections present the related

works, fundamentals, the proposed method, and the experiments in order to:

. show the convergence conditions of the proposed method;

. ¯nd the best values of the method parameters;

. apply our optical °ow to the human action recognition problem, using Histograms

of Optical Flow, as an evaluation application;

. compare the performance of our method to the classical optical °ow methods,

although it is naturally sparse.

1.1. Related works

This section describes the related approaches to calculate optical °ow, including

di®erential (variational), hierarchical, physical model based and other methods.

1.1.1. Di®erential methods

Di®erential methods are based on the spatio-temporal image gradients. These

methods are classi¯ed into local and global groups. Local methods assume that the

°ow is uniform in a pixel neighborhood. The ¯rst local optical °ow method was

proposed by Lucas and Kanade.12 On the other hand, global methods, for example

the classical Horn and Schunck3 method assume that the °ow is smooth over the

whole image. In global methods, the °ow is propagated to homogeneous regions,

where the derivatives are null, therefore making it impossible to estimate the °ow.

On the other hand, the °ow ¯eld estimated by local method tends to be more robust

against noise.

Bruhn et al.4 propose to combine the local Lucas and Kanade method and the global

method of Horn and Schunck. The objective is to generate a dense °ow robust to noise,

combining the main advantages of the local and global di®erential methods. The

method, known as combined local-global (CLG), permits to gradually scatter a dense

°ow ¯eld. Additionally, non-quadratic and multiresolution approaches are presented. In

this work, we propose an energy minimization similar to Horn and Schunck. However,

our energy depends only on a small neighborhood of each point used to calculate image

derivatives. Our method is thus classi¯ed as local. Furthermore, our method is sparse,

but the resulting °ow has high quality for the selected points.
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Brox et al.5 presented a di®erential method that computes optical °ow by mini-

mizing a functional combining a brightness constancy assumption (Sec. 2.1), a

gradient constancy assumption, and a discontinuity-preserving spatio-temporal

smoothness constraint. The ¯rst two constraints correspond to the data term while

the third penalizes the total variation of the °ow ¯eld. This approach still justi¯es

theoretically how warping methods can be used in order to improve the performance.

In our method, we proposed to minimize a functional that combines the data term of

brightness constancy and a term using the wave equation energy. Our method

converges only for some image pixels, which can be useful as a feature extractor.

Girosi et al.14 observe that when the image brightness changes over time, its

changes can be described in terms of in¯nitesimal deformations. Based on the Hel-

moltz theorem on deformable objects, they proposed four constraints to calculate

optical °ow. These constraints are associated to elementary deformations: rotation

over the image plane, uniform expansion, and two components of shear. Combining

these constraints, they obtain a general method for optical °ow computation. This

method uses second-order di®erential operators. Second-order di®erentials add extra

smoothness constraints to the resulting optical °ow and this is another motivation

for using the wave equation in our work.

Recently, Rashwan et al.6 proposed a di®erential method that adapts the data

term using anisotropic stick tensor voting. This term still uses a sub-quadratic pe-

nalization function in order to make the method robust against outliers. They de¯ne

a regularization tensor to complete the functional to be minimized. The directional

information of this tensor, represented by its eigenvectors, is used to de¯ne the

additional energy term. Additionally, they propose to introduce a weighted non-local

term in order to reduce the impact on °ow discontinuities. Their work shows that the

energy minimization proposed by Horn and Schunck3 is still the basis of several

di®erential methods. Our method is based on the di®erential approaches, solving a

simple system for each image pixel.

1.1.2. Hierarchical (pyramidal) methods

Bouguet15 proposes a pyramidal implementation of Lucas and Kanade method.

Initially, the pyramid is computed for each image. The °ow computation starts from

the coarsest pyramid level. For each upper level, the °ow of the lower one is used to

pre-translate the image. Thus, only a small residual °ow is computed in order to

adjust the displacement. This residual °ow is computed using an iterative Lucas and

Kanade algorithm and propagated to the upper level until the highest level is

reached. In this work, a simple iterative method to locally calculate the optical °ow

with few iterations is given. As showed in Sec. 3, however, our energy is local and can

be computed directly.

Another hierarchical method was proposed by Hwang and Lee.16 This method

starts calculating a Gaussian pyramid. They compute the °ow combining the

brightness constancy assumption to a inter-level motion smoothness constraint.
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Since the pyramid image consists of low-pass ¯ltered versions of the images, they

consider that the °ow vector in a pyramid level is the low-pass ¯ltered version of the

°ow vector at the higher level. Based on this fact, the inter-level motion smoothness

constraint is obtained by the di®erence between the °ow vector and its projection

from the adjacent level. The °ow is calculated by a iterative method and the authors

present a convergence analysis. They performed experiments in ¯ve datasets, in-

cluding synthetic and real sequences. The results show their method outperforms the

similar methods. In our work, we also presented a convergence criterion, but we solve

the °ow problem without multi-scale approach.

A problem of these hierarchical approaches was addressed by Brox and Malik:17

small objects with very fast moving. In their work, they propose to deal with this

problem by using rich descriptors in a di®erential optical °ow method. They present

a general model of energy minimization containing three terms: a data term, a

gradient constraint and a smoothness constraint. In addition, they propose to add

two other constraints to the di®erential model: a term of descriptor matching and a

term of point correspondences from descriptor matching. An initial guess of the

descriptor matching term is determined separately. The authors perform tests with

known descriptors, such as HOG and SIFT. Once the initial guess of the descriptor

matching term is determined, the remaining terms are minimized and the °ow is

obtained. The authors see the possibility of application of their method in the action

recognition using HOF. This is also an important application used in our work.

Furthermore, our method does not need to extract features from the images, making

our pre-processing very simple.

Tu et al.18 proposed a variational method using combined post-¯ltering to

improve the accuracy. They extract °ow edges on a structure tensor (ST) and extend

the Harris edge detector into a 3D spatial-scale detector to improve the detection. To

preserve discontinuities they use a gradient bilateral ¯lter (GBF). However, to

improve the computational e±ciency, they combine the GBF to a Gaussian ¯lter,

using GBF to smooth discontinuity regions and the Gaussian ¯lter is applied to non-

discontinuity regions. Finally, they perform a post-¯ltering using a weighted median

¯lter (WMF) to the detected edges and a bilateral ¯lter (BF) to handle occlusions. As

compared to Brox and Malik,17 our method seek simplicity, estimating the °ow with

no need to perform several pre- and post-¯ltering.

Another multi-scale variational method was presented by Tu et al.19 Their pro-

posed to fuse °ows achieved by two methods: a nearest neighbor ¯eld (NN-¯eld) and

a combined post-¯ltering (CPF) algorithm. The °ows are combined by a weighted

local intensity fusion. Thus, they estimate the smoothness parameter and treat

large displacements. Furthermore, they correct the con°ict between the color and

motion similarity, using a weighted median ¯lter (WMF) based on the occlusion

rate, the color and spatial distances. They performed experiments on two datasets

and the achieved results demonstrated the method e®ectiveness for including

large displacements and small objects. They apply several constraints and ¯ltering
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to re¯ne the °ow. As previously mentioned, our method seeks to be as simple as

possible.

1.1.3. Physical model based methods

Haussecker and Fleet20 propose to exploit physical models of time-varying brightness

to compute optical °ow. They consider that the temporal brightness variation can be

speci¯ed by di®erential equations for a given physical model. Then, the objective is to

estimate the parameters of the optical °ow ¯eld and a set of parameters of the

physical model. They propose formulations for some transport models, for example,

di®usion. In our work, we propose the use of a well-known physical model for wave

phenomena as an extra restriction to estimate the optical °ow. Even if, in general,

the overall image brightness does not change as a wave propagation, the convergence

conditions for our method naturally reject points whose local brightness variation

does not behave as if a wave is passing through them. The points for which our

method converges can thus be assumed as feature points, an use that needs further

investigation.

The work of Sakaino21 proposes to estimate °uid °ow based on the physical

properties of waves. The method exploits three properties of transport present in

°uid simulation: convection, di®usion and advection. Based on a wave generation

model, the method uses an objective function that estimates two optical °ow com-

ponents and ¯ve wave-related parameters that are the two wavenumber compo-

nents, frequency, amplitude, and orientation. This function is minimized in order to

calculate the seven variables. This method is suitable for images of water waves,

cloud and smoke. In a di®erent way, we propose to use wave properties in order to

calculate the optical °ow for general images.

1.1.4. Other approaches

Barnard and Thompson22 propose a method for matching images and computing the

di®erences between them. Initially, some interest points are selected separately from

the two images. Then, for each point, a set of labels of possible matches is con-

structed. The algorithm determines a probability associated with each label based on

the sum of the squares of the di®erences between a small window centered on a point

in the ¯rst image and the possible correspondent one on the second image. After the

probabilities are calculated, the point with highest probability is de¯ned as the

correspondent point. The displacement between the two points will be the optical

°ow. This method presents a high computational cost because it performs many

distance calculations and comparisons. We proposed low cost method without

extracting correspondences between the images.

In phase-based methods, the phase behavior of band-pass ¯lter outputs de¯nes

the velocity. Fleet and Jepson23 proposed the ¯rst phase based method. Initially,

they represent the images by a set of shift-invariant ¯lters. These ¯lters are tuned so

that their amplitude spectrum concentrates around the appropriate line in frequency
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space. They argue that the phase component of the ¯lters response is better to

approximate the velocities ¯eld. The optical °ow vectors are expressed by ¯rst-order

temporal derivative of surfaces of constant phase. The authors emphasize that their

method does not depend on previous element detection from the images. This is also

a characteristic of our method, but proceeding in space-time domain.

Fortun et al.24 presented a survey of optical °ow estimation. They described the

main data cost used to complement the constancy brightness constraint, the

parametric approaches and the regularized models. Some methods that handle

occlusions were presented, including occlusion detection and ¯lling. The survey also

presented methods combining feature matching and optical °ow. The authors con-

clude the paper appointing the main challenges of optical °ow computation such as

handling large displacements and occlusions, and to reduce the computational cost.

Sun et al.25 presented a convolutional neural network (CNN) model for optical

°ow estimation. They use a pyramidal feature extractor to achieve a feature repre-

sentation of the images. The features between the images are warped using an

upsampled °ow. The features are then used to construct a volume cost, which is used

by a multi-layer CNN to estimate the optical °ow. They performed experiments in

two datasets and compare the results to another methods using CNN. The achieved a

similar performance to the compared methods using a more compact model. In our

work, we do not extract features and not apply machine learning strategies.

Another model based on CNN was presented by Hui et al.26 They use two sub-

networks: NetC, which performs the feature extraction and warp them, and the

NetE, which estimates the °ow by a descriptor matching followed by a sub-pixel

re¯nement. A regularization °ow layer remove artifacts and the vague °ow bound-

aries. They evaluated the method performance in ¯ve datasets and compare the

results state-of-the-art methods, including conventional and CNN based. Their

method present similar performance using a smaller model and spending less time.

Our work presented a variational method, which does not apply CNN or other

learning approaches to °ow estimation.

Chen et al.27 proposed a framework to optical °ow estimation based on ¯ltering.

They derived the model from the variational model using a data term and a regu-

larization term. For the data term, they used a weighted quadratic penalization

based on brightness constancy assumption. The regularization was a constrained

minimization representing the interrelationship between the °ow vectors to the local

neighboring. This framework was used by designing new algorithms by employing

kernels that represents certain motion constraints. They analyzed alternatives for

the regularization term based on general ¯ltering and a 3D ¯ltering. The framework

performance was evaluated in three datasets and compared to the state-of-the-

art algorithms. The achieved results showed their method outperforms classical

state-of-art-methods. Their method presents a strong relationship among pixels.

Our approach, on the contrary, tries to decouple the pixels to allow the method

parallelization.
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Zhang et al.28 proposed a non-local total variation (TV) method using a L1 norm

for smoothing term. They improved the TV � L1 formulation by a self-adaptive

weight based on a function of the image gradient along scale parameters. Further-

more, they detected occlusion by a regular triangulation. The occlusion information

is used to optimize the computed °ow ¯eld by weighted median ¯lter that uses an

occlusion factor. They evaluated the approach in two datasets and compare with

state-of-the-art methods. They claim their results presented a higher accuracy and

robustness.

2. Wave Equation

In general, waves are caused by a disturbance in a medium. For example, a pulse

traveling on a cord can be formed by a quick up-and-down motion of the hand.29 This

pulse travels along the cord moving its particles vertically. This way, we have two

velocities associated to a wave propagation: the velocity of the wave along the cord

(or another mean) and the velocity of its forming particles. Figure 1(a) represents a

wave propagating and its velocities.

An example of two-dimensional waves in the nature is the tsunamis which are

water waves that can be caused by earthquakes, volcanic eruptions and other un-

derwater explosions.30 These waves travel over the water surface causing elevation.

Figure 1 shows a simulation of a 2D water wave. We can see three moments of the

(a) (b)

(c) (d)

Fig. 1. Examples of wave propagation. (a) 1D wave propagation. (b)-(d) three moments of a 2D wave
propagation.
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wave propagation: the moment which the disturbance happens (Fig. 1(b)) and two

moments of the propagation along the water surface (Figs. 1(c) and 1(d)).

In this work, we propose to compare the motion in image sequences to a two-

dimensional wave. An image can be represented by a surface where the heights of the

points are the brightness intensity. Assuming image brightness constancy, we con-

sider that a wave passing along the image plane causes the temporal brightness

variation. Figure 2 shows two successive images and their surface representation. On

the horizontal plane we can see the contours of the images from which the inference

of propagation is of main interest. The premise of this work is that these contours

might be modeled as waves traveling in the image.

Mathematically, the phenomena involving the propagation of waves in a con-

tinuous medium are described by the wave equation, which is important in me-

chanics, acoustics, and °uid dynamics.13 It has the general form:

@ 2I

@t2
¼ c2r2I; ð1Þ

where r2 represents the spatial Laplacian and the constant c represents the mag-

nitude of the propagation velocity. I is a scalar function that represents the vertical

position of the particles in function of the time.

(a) (b)

(c) (d)

Fig. 2. Images (a) and (b) and their respective surface representations (c) and (d).
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In the 2D case, the equation has the following shape:

@ 2I

@t2
¼ c2

@ 2I

@x2
þ @ 2I

@y2

� �
: ð2Þ

The ¯rst solution of (1) in one dimension was proposed by d'Alembert.31

He solved the problem of initial value, where the initial vertical position of the

particles is Iðx; 0Þ ¼ I ð0ÞðxÞ and the initial velocity is Itðx; 0Þ ¼ I
ð0Þ
t ðxÞ. The solution

obtained was

Iðx; tÞ ¼ 1

2
½I ð0Þðx� ctÞ þ I ð0Þðxþ ctÞ� þ 1

2c

Z xþct

x�ct

I
ð0Þ
t ðsÞds:

The solution of d'Alembert calculates the position of each medium particle along

time. In other words, the function I is the unknown of the di®erential equation. To

obtain the values of the function I it is necessary to know the velocity of propagation

c, which is not necessarily constant along the medium, and initial and/or contour

conditions are needed.

2.1. Combining the wave equation with the brightness constancy

constraint

In our problem, two consecutive images represent two distinct realizations of the

medium I in time. In this case, the unknown is the velocity c of propagation in each

point. The solution of this problem is a realization of brightness transport between

the two images and might represent an optical °ow, also restricted by the aperture

problem.

Waves transport energy from one place to another.29 The energy is transferred

from one particle to the neighbor particle in the medium when the wave is traveling.

The energy of the two-dimensional wave equation (2) is given by Myint and

Debnath13:

EðtÞ ¼ 1

2

Z 1

�1

Z 1

�1
I 2
t þ c2ðI 2

x þ I 2
y Þdxdy: ð3Þ

Generally, the 2D wave equation de¯nes a vertical displacement of particles in the

direction perpendicular to the wave plane.32,33 This is interesting for optical °ow

computation because most methods try to ¯nd a displacement vector to compensate

the local brightness variation It. Here, the It plays the role of how much mass is

locally transferred by the passing wave. In an energy minimization model, (3) has

also the function of compensating the brightness variation.

The major contribution of this work is to combine the above second-order con-

straint originated from the wave equation with the classic ¯rst-order constraint:

Iðx; y; tÞ � Iðx; y; tÞ þ Ixuþ Iyvþ It;
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where Ix ¼ @I
@x, Iy ¼ @I

@y and It ¼ @I
@t . It comes from the Taylor expansion of the

brightness constancy constraint equation

Iðx; y; tÞ ¼ Iðxþ uðx; yÞ; yþ vðx; yÞ; tþ�tÞ;

where Iðx; y; tÞ is the brightness intensity of the pixel ðx; yÞ at the time t. The vector

v ¼ ½uðx; yÞ; vðx; yÞ� is the optical °ow vector and �t is the time variation. We

assume �t ¼ 1 since it is the displacement between two consecutive frames. In order

to simplify the notation, from now we assume v ¼ ½uðx; yÞ; vðx; yÞ� as v ¼ ½u; v�.

3. Proposed Method

In Sec. 2, we have presented the wave equation and its associated energy. We start by

de¯ning the square of the velocity of propagation c in (3). This is a crucial step of our

method and the proposed velocity is an important contribution of our work. We need

to ¯nd velocities that minimize the energy of the wave, yielding vectors whose

magnitudes are the lowest possible. Denoting the inner product as h�; �i, we de¯ne:

H ¼ h½u; v�; ½u; v�i;
which represents the squared norms of all unknown 2D velocities ½u; v�.

We propose a wave velocity that considers the variation of the square of the norm

of the image velocity vectors. The reason is that minimizing the variation of the

squared norm favors constant actual velocities. We also propose this to decouple the

contributions of the x and y velocities. The velocity of propagation of the wave is

then de¯ned as the spatial gradient of H, resulting in the energy

Ew ¼
Z 1

�1

Z 1

�1

1

2
I 2
t þrH � ðI 2

x þ I 2
y Þ

� �
dxdy; ð4Þ

where Ix ¼ @I
@x, Iy ¼ @I

@y and It ¼ @I
@t . Note that this empirical approach implies sepa-

rated energies for x and y.

Horn and Shunck used the optical °ow constraint Ixuþ Iyvþ It ¼ 0 as a ¯rst-

order term of the energy. This term is de¯ned as:

Ed ¼
Z 1

�1

Z 1

�1
ðIxuþ Iyvþ ItÞ2 dxdy: ð5Þ

Combining (5) and (4), the complete proposed energy is:

E ¼
Z 1

�1

Z 1

�1
Ixuþ Iyvþ It
� �

2 þ �
1

2
I 2
t þrH � I 2

x þ I 2
y

� �� �� 	
dxdy; ð6Þ

where � is a weight to control the in°uence of the energy of the wave equation. This

is similar to what Horn and Shunck proposed to control the smoothness constraint.3

As shown below, however, the e®ect of � in our method is not related to a global

smoothing process since our solution is locally de¯ned.
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Calculating the partial derivatives of H, we have

@H

@x
¼ 2 ½u; v�; @½u; v�

@x


 �
¼ 2ðuux þ vvxÞ;

@H

@y
¼ 2 ½u; v�; @½u; v�

@y


 �
¼ 2ðuuy þ vvyÞ;

where ux ¼ @u
@x, uy ¼ @u

@y, vx ¼ @v
@x and vy ¼ @v

@y.

Introducing the 2D velocity in the energy, we obtain naturally decoupled energy

equations for x and y. Separating x and y components of (6), we have two energy

terms:

Ex ¼
Z 1

�1

Z 1

�1
ðIxuþ Iyvþ ItÞ2

þ �
1

2
ðI 2

t þ 2ðuux þ vvxÞðI 2
x þ I 2

y ÞÞ
� 	

dxdy; ð7Þ

Ey ¼
Z 1

�1

Z 1

�1
ðIxuþ Iyvþ ItÞ2

þ �
1

2
ðI 2

t þ 2ðuuy þ vvyÞðI 2
x þ I 2

y ÞÞ
� 	

dxdy: ð8Þ

The total energy to be minimized is the sum of (7) and (8):

Etotal ¼
Z 1

�1

Z 1

�1
2ðIxuþ Iyvþ ItÞ2 þ �h½I 2

t þ ðI 2
x þ I 2

y Þ� dxdy; ð9Þ

where h ¼ uux þ vvx þ uuy þ vvy. This equation de¯nes the energy of waves trav-

eling along the image sequence and obeying the constraint of brightness constancy.

We need to ¯nd the optical °ow vector ½u; v� that minimizes this equation.

In order to minimize (9), we apply the Euler–Lagrange equations34:

@L

@u
� @

@x

@L

@ux

� �
� @

@y

@L

@uy

� �
¼ 0; ð10Þ

@L

@v
� @

@x

@L

@vx

� �
� @

@y

@L

@vy

� �
¼ 0; ð11Þ

where L is the functional to be minimized.

Applying the Euler–Lagrange equation (11) to (9), we have:

ð2I 2
x � �ðIxxIx þ IxyIy þ IxyIx þ IyyIyÞÞuþ 2IxIyvþ 2IxIt ¼ 0; ð12Þ

where Ixx ¼ @ 2I
@x 2 , Iyy ¼ @ 2I

@y 2 and Ixy ¼ @ 2I
@x@y ¼ @ 2I

@y@x.
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Similarly, applying the Euler–Lagrange equation (11) to (9), we also have:

ð2I 2
y � �ðIxxIx þ IxyIy þ IxyIx þ IyyIyÞÞvþ 2IxIyuþ 2IxIt ¼ 0: ð13Þ

Therefore, we ¯nd the linear system whose unique solution ¯nds the °ow vectors

½u; v� for each pixel that minimizes our energy (9):

ð2I 2
x � ��I Þuþ 2IxIyvþ 2IxIt ¼ 0;

2IxIyuþ ð2I 2
y � ��I Þvþ 2IyIt ¼ 0;

(

where �I ¼ IxxIx þ IxyIy þ IxyIx þ IyyIy.

Notice that, at each pixel, the °ow does not depend on the neighbors. Thus, for

each image point, we have the following system:

Du 2IxIy
2IxIy Dv

� 	
u
v

� 	
¼ �2IxIt

�2IyIt

� 	
; ð14Þ

where

Du ¼ 2I 2
x � ��I ;

Dv ¼ 2I 2
y � ��I :

The system (14) can be solved by a direct or an iterative method. Using the

iterative Jacobi method, we have:

uðkþ1Þ ¼ �2IxIyv
ðkÞ � 2IxIt
Du

; ð15Þ

vðkþ1Þ ¼ �2IxIyu
ðkÞ � 2IyIt
Dv

; ð16Þ

where ½uðkÞ; vðkÞ� is the optical °ow at the iteration k.

One may note in the iteration equations that the °ow vector at each pixel depends

just on itself at the previous iteration. Considering one iteration at position ðx; yÞ, the
component uðkþ1Þ depends only on vðkÞ and vðkþ1Þ depends only on uðkÞ. In other

words, the °ow at a point does not depend immediately on its neighbors. This ensures

quick convergence and makes the method suitable for parallelization. This is espe-

cially interesting for use in modern GPUs. The individual pixels can be easily

grouped to take advantage of stream processors.

However, Jacobi method does not converge for all the image points. A conver-

gence condition is necessary as exposed in Sec. 3.3.

3.1. Direct method

In addition to the iterative solution, we can solve the system (14) by a direct method.

For each point, we have the matrix:
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A ¼ Du 2IxIy
2IxIy Dv

� 	
;

whose inverse is

A�1 ¼ 1

detðAÞ
Dv �2IxIy

�2IxIy Du

� 	
:

Therefore, one may calculate the °ow directly by

u
v

� 	
¼ A�1

�2IxIt
�2IyIt

� 	
ð17Þ

It is important to note that (17) can be solved just at the points where detðAÞ 6¼ 0.

Similarly to the iterative method, in the direct solution some calculated vectors

present high magnitudes and all vectors bigger than seven pixels are set to null. With

the direct approach is easier to see how the method can be parallelized in a straight

forward way. It requires only an order 2 matrix inversion followed by a matrix vector

multiplication. Since the derivatives are computed by constant masks through

convolution, our method is suitable for GPU parallelization, for instance.

3.2. Discretization

Di®erential methods extract motion information based on instantaneous variations

in the image. An important issue for these methods is the computation of these

variations. Since the image domain is not continuous, a discretization is necessary.

The ¯nite di®erence method is very useful to solve di®erential equations numer-

ically. In order to reduce time costs, the derivative elements of images are often

estimated by the convolution of high-pass linear and shift-invariant ¯lters. It is

important to choose appropriate ¯lters to reduce the e®ect of noise. In order to make

our work reproducible, we present here the steps to calculate the derivatives:

. Gaussian ¯ltering of each input image using the impulse response [0.006 0.061

0.242 0.383 0.242 0.061 0.006] in the directions X and Y ;

. @I
@x:

— convolution of the ¯ltered input image by the low-pass impulse response ½0:5 0:5�
in the Y -direction;

— convolution of the resulting image by the high-pass ¯lter ½�0:5 0:5� in the

X-direction.

. @I
@y:

— convolution of the ¯ltered input image by the low-pass impulse response ½0:5 0:5�
in the X-direction;

— convolution of the resulting image by the high-pass ¯lter ½�0:5 0:5� in the

Y -direction.

L. M. da Silva Maciel & M. B. Vieira

2050027-14



. @I
@t :

— convolution of the ¯ltered input image by the low-pass impulse response ½0:5 0:5�
in the X and Y -directions;

— convolution of the resulting image by the high-pass ¯lter ½�0:5 0:5� in the

T -direction.

. @ 2I
@x2 :

— convolution of the ¯ltered input image by the low-pass impulse response ½0:25 0:

5 0:25� in the Y -direction;

— convolution of the resulting image by the high-pass ¯lter ½0:25 � 0:5 0:25� in the

X-direction.

. @ 2I
@y2 :

— convolution of the ¯ltered input image by the low-pass impulse response ½0:25
0:5 0:25� in the X-direction;

– convolution of the resulting image by the high-pass ¯lter ½0:25 � 0:5 0:25� in the

Y -direction.

. @ 2I
@x@y:

— convolution of the ¯ltered input image by the high-pass ¯lter ½0:25 � 0:5 0:25� in
the X- and Y -directions.

The discretization above presented good qualitative and quantitative results as

shown in Sec. 4. Note that the calculation of @I
@t is the unique having ¯lters applied in

time. Low-pass ¯lters are applied in X- and Y -directions which are both orthogonal

to T . This means that the derivative ¯lter for @I
@t has a 3D impulse response. For all

other derivatives, however, there is no low-pass ¯ltering in T direction, resulting

in 2D ¯lter masks. The unity of the independent variable T (seconds) is di®erent

from the unity of X and Y (meters), making it hard to match their magnitudes.

Furthermore, 3D masks would result in more computational cost.

With the derivatives computed, the convergence conditions (18), (19) and (22)

are tested for each pixel. For the points where the convergence conditions are sat-

is¯ed, the iterative system (15) and (16) is solved. The proposed method is thus

classi¯ed as local and iterative. It can be calculated quickly because of the decoupling

of the pixels in the system solution. In some pixels, the vectors converge to high

magnitudes. This is due to noise and other inconsistencies and can be safely dis-

carded since di®erential methods by de¯nition cannot detect long displacements.

In this work, all vectors bigger than seven pixels are just set to null. The value of

seven pixels was de¯ned based on the assumption that such a displacement is unlike

to be captured by di®erential methods.
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3.3. Convergence condition

Motion behavior of wave propagation is locally smooth and nonrigid. Such nature of

the energy leads to the fact that the minimization process is sensitive to both the

motion boundaries and purely °at region. Thus, some conditions are necessary in

order to ensure convergence of (15) and (16). A simple condition is that the de-

nominator of the equations must not be 0. Therefore, we must have:

Du 6¼ 0; ð18Þ
Dv 6¼ 0: ð19Þ

Except above conditions, the Jacobi method (and any iterative method) con-

verges if and only if the spectral radius of the iteration matrix is strictly less than one.

In other words, if the absolute value of each eigenvalue of the iteration matrix is

smaller than the unity. As each point does not depend on the neighbors, we have an

iterative system for each point de¯ned by:

uðkþ1Þ

vðkþ1Þ

" #
¼

0 � 2IxIy
Du

� 2IxIy
Dv

0

2
664

3
775 u ðkÞ

vðkÞ

" #
þ

� 2IxIt
Du

� 2IyIt
Dv

2
664

3
775; ð20Þ

from which we obtain the iteration matrix:

J ¼
0 � 2IxIy

Du

� 2IxIy
Dv

0

2
664

3
775:

We can obtain the eigenvalues of J by ¯nding the roots of the equation:

detðJ� �I2Þ ¼ 0; ð21Þ
where detð�Þ denotes the determinant and I2 is the 2� 2 identity matrix.

Expanding (21), we have

detðJ� �I2Þ ¼ �2 � 4I 2
xI

2
y

DuDv

¼ 0;

whose roots are

� ¼ � 2IxIyffiffiffiffiffiffiffiffiffiffiffiffi
DuDv

p :

We can observe that when DuDv < 0, we have complex values for �. However, for

our convergence condition, we desire � values such that their absolute values are less

than one. Thus, we have the following convergence condition:

L. M. da Silva Maciel & M. B. Vieira

2050027-16



j2IxIyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijDuDvj
p < 1; ð22Þ

where j � j denotes the absolute value.

We can compute the optical °ow vector ½u; v� only at points where the conditions

expressed by (18), (19) and (22) are satis¯ed. It is important to note that solving the

system (14) by a direct method, we also need to exclude some points in order to avoid

division by 0.

4. Experimental Results

Some parameters were selected by using the human action recognition problem. The

video classi¯cation protocol for the KTH dataset is described in Sec. 4.4. In Sec. 3.2,

we described our discretization to compute the derivatives of the images. The ¯rst-

order derivatives in this scheme are computed by non-centered ¯nite di®erence given

by the low-pass and high-pass ¯lters ð½0:5 0:5�; ½�0:5 0:5�Þ, whose the correspondent
second-order ¯lters are given by ð½0:25 0:5 0:25�; ½0:25 � 0:5 0:25�Þ. In order to in-

vestigate if a centered ¯nite di®erence is better than the non-centered one to

estimate the image gradient, we performed tests using the masks ([0.25 0.5 0.25],

½�0:5 0 0:5�Þ, whose respective second-order centered ¯lters are given by

ð½0:0625 0:25 0:375 0:25 0:0625�; ½0:25 0:0 � 0:5 0:0 0:25�Þ. The centered version,

however, achieved only 84:1% of recognition, against 87:8% of the non-centered

version, and we adopted the discretization described in Sec. 3.2, with the non-

centered masks.

In Sec. 3, we presented the direct and the iterative version of our optical °ow

di®erential method. In our experiments, the best results for human action recognition

were achieved using the iterative algorithm, which reached 87:8% of recognition

against 85:2% of the direct approach. Perhaps this is due to numerical errors of the

direct solution but it needs further investigation. Despite the small gain due to the

use of the iterative method, we chose to use this version in all experiments.

Furthermore, we performed tests without the initial Gaussian ¯ltering of the

images and without the low-pass ¯ltering in the orthogonal directions before com-

puting the derivatives. Our best result without the orthogonal low-pass ¯ltering was

85:1%. The tests without the initial Gaussian ¯ltering resulted only in 81:6% of

recognition. Consequently, we apply both ¯lterings in all experiments.

The main parameter of our optical °ow method is the weight � used to control the

in°uence of the wave energy term in our functional. The brightness constancy con-

straint will be the dominant term if � is low. On the other hand, a high � leads to

local brightness being less conserved by the resulting °ow. We performed tests

varying � values in the range of ½0:1; 10� and the best results for the human action

recognition problem using our setup is � ¼ 1:0.
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(a) (b)

(c)

(d)

(e)

Fig. 3. Optical °ow detected by our method. (a) First image. (b) Second image. Optical °ow
calculated using our method (c), with Horn and Schunck method (d), and using Lucas and Kanade

method (e).
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Our iterative method presents a quick convergence and, consequently, only a few

iterations are needed per pixel to obtain a °ow estimation. The decoupling of the

pixels in the system solution also helps a fast overall °ow computation. We used 10

iterations in all experiments. The same number of iterations was used for the Horn

and Schunk method.

4.1. Qualitative comparison

A simple representation of optical °ow is a vector ¯eld over the image plane. Figure 3(c)

shows this representation for a ¯eld °ow computed by our method. By visually

inspecting the scene (Figs. 3(a) and 3(b)), one may see that the person moves to the

right side. The whole scene presents objects moving in several directions. Due to the

convergence constraints, the method only computes the vectors at the points where

the image derivatives are not null and (22) is satis¯ed. The °ow was computed with

� ¼ 1:0 for the wave energy. Despite the result is sparse, our °ow is fairly aligned

with the moving edges.

Figure 3(d) shows the °ow computed by the Horn and Schunck's method. This

method is global and generates a °ow denser than our approach. Note that the °ow is

smoother, spreading the motion information detected at strong gradient areas.

In other words, the motion detected on borders tends to in°uence the surrounding

pixels, depending on the smoothing factor. The °ow shown in Fig. 3(d) was com-

puted with the smoothness weight � ¼ 2:0. This value is the best in our tests on

human action recognition (Sec. 4.4).

In Fig. 3(e), we show the result of Lucas and Kanade's method. The °ow vectors

estimated are strongly aligned to the image edges. The °ow is denser than ours in this

example. Note, however, that the displacement vectors have somewhat con°icting

directions. Some of them are following the face to hair contour. The density and the

Fig. 4. Color coding for optical °ow visualization.
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(a) (b)

(c)

Fig. 5. Example of ground truth in color coding. (a) First image. (b) Second image. (c) Ground truth.

(a) (b)

(c)

Fig. 6. Optical °ow computed for Hydrangea sequence. (a) Our method. Note that the method does not
converge for the homogeneous regions. (b) Horn and Schunk. (c) Lucas and Kanade.
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°ow quality depend on the window used. We used a window of 5� 5 elements, the

same used by Lucas and Kanade. The Lucas and Kanade's method can give vectors

with high magnitudes due to discontinuities in the image and its partial derivatives.

The vectors greater than seven pixels are set to null, in order to be fairly compared

with our results.

Baker et al.1 propose a color coding manner to represent optical °ow. In their

scheme, each direction is represented by a color hue and the °ow norm is represented

by the saturation. Figure 4 shows this color coding, which is used in several recent

works in optical °ow.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 7. Evolution of our °ow for a region of an image sequence. (a) First image. (b) Second image.
(c) 1 iteration. (d) 2 iterations. (e) 3 iterations. (f) 4 iterations. (g) 5 iterations. (h) 10 iterations.
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They also provide a dataset to evaluate optical °ow algorithms, including ground

truths for some image sequences. As an example, the image sequence Hydrangea and

the respective ground truth are presented in Fig. 5.

The °ow for Hydrangea sequence using our method is showen in Fig. 6(a). Al-

though our °ow is not dense, one may note color similarity between our °ow and the

ground truth (Fig. 5). Our method was capable to extract some directional infor-

mation from the regions having high brightness variation. Note that the homoge-

neous background is completely discarded by the convergence constraints.

Figures 6(b) and 6(c) show the °ow of the Hydrangea sequence by using the

classical methods. Observe that they compute a denser °ow ¯eld. The background is

not detected since the image derivatives are null in this region. Lucas and Kanade's

approach presents a more intense °ow for this example. It is possible to note color

similarity among the results of the classical methods and our °ow.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 8. Flow computed for di®erent � values. (a) First image. (b) Second image. (c) � ¼ 0:1. (d) � ¼ 0:2.
(e) � ¼ 0:4. (f) � ¼ 0:8. (g) � ¼ 1:0. (h) � ¼ 2:0. (i) � ¼ 4:0. (j) � ¼ 10:0.
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4.2. In°uence of the method parameters on the results

In this section, we analyze the in°uence of the number of iterations and the weight �

on our method performance. In Sec. 3, we showed that the °ow in an iteration only

depends on its own value in the previous iteration. Figure 7 shows an image sequence

and the °ow computed for a region with 1, 2, 3, 4, 5, and 10 iterations. One may

observe that the °ow is stable after four iterations. Due to the decoupling of the

pixels in the system solution, our method converges quickly. The °ow at a point does

not depend on its neighbors.

Similar to Horn and Schunck,3 our method has a parameter � to control the

in°uence of the wave equation energy. We observed that low values of � (around 0:1)

hinders the convergence for several points, with arbitrary outcomes. On the other

hand, a high � reduces the energy of the data term and the resulting optical °ow tend

to be inconsistent in some regions, notably far from the edges (Fig. 8).

4.3. Quantitative comparison

Baker et al.2 propose performance measures for optical °ow. In recent years, these

measures have been used to evaluate the results of new optical °ow methods.7,6

In our experiments, we used two of them.

The ¯rst measure is the angular error, which is the angle between the °ow vector

½u; v� and the ground truth vector ½uGT ; vGT � in the three-dimensional space. The

third coordinate is set to 1:0. Therefore, the angular error is de¯ned as

(a) (b)

(c) (d)

Fig. 9. Flow computed for Dimetrodon sequence by our method. (a) First frame. (b) Second frame.
(c) Ground truth. (d) Computed °ow.
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(a) (b)

(c) (d)

Fig. 10. Flow computed for Grove2 sequence by our method. (a) First frame. (b) Second frame.

(c) Ground truth. (d) Computed °ow.

(a) (b)

(c) (d)

Fig. 11. Flow computed for RubberWhale sequence by our method. (a) First frame. (b) Second frame.

(c) Ground truth. (d) Computed °ow.
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(a) (b)

(c) (d)

Fig. 12. Flow computed for Urban2 sequence by our method. (a) First frame. (b) Second frame.

(c) Ground truth. (d) Computed °ow.

Table 1. Error measures for Dimetrodon sequence.

Our method Horn and Schunck Lucas and Kanade

AVG AE 45.156 59.472 36.860

STD AE 19.848 10.565 25.896
AVG EE 1.696 2.007 2.174

STD EE 0.808 0.703 1.468

Table 2. Error measures for Grove2 sequence.

Our method Horn and Schunck Lucas and Kanade

AVG AE 60.911 66.345 48.038

STD AE 23.892 11.872 33.932
AVG EE 2.862 2.980 2.931

STD EE 0.9282 0.606 1.712

Table 3. Error measures for Hydrangea sequence.

Our method Horn and Schunck Lucas and Kanade

AVG AE 81.749 74.373 88.012

STD AE 29.718 14.853 44.673

AVG EE 4.070 3.766 5.108
STD EE 1.634 1.205 2.499
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AE ¼ cos�1 1:0þ uuGT þ vvGTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0þ u2 þ v2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0þ u2

GT þ v2
GT

q
0
B@

1
CA:

The second measure proposed by Baker et al.2 is the absolute error computed in

the °ow endpoint. This error is de¯ned by the L2 norm of the di®erence between the

°ow vector ½u; v� and the ground truth vector ½uGT ; vGT �:
EE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� uGT Þ2 þ ðv� vGT Þ2

p
:

In order to compare our method to the classical approaches, we compute the

optical °ow of some sequences in dataset from Baker et al.2 Figures 9–12 show the

used sequences, the respective ground truth and the °ow computed by our method.

We compute the angular and the endpoint errors for the sequences Dimetrodon,

Grove2, Hydrangea, RubberWhale and Urban2. Tables 1–5 show the results for

each image sequence. AVG AE and AVG EE are the average values for angular error

(in degrees) and endpoint error (in pixels). SD AE and SD EE indicate the standard

deviation for angular and endpoint errors, respectively.

Based on the quantitative errors, it is not possible to state which method is the

best for all sequences. Note, however, that our method performs better in average

than the classical methods, as it is not the worst in any sequence and is close to the

best one. The measures proposed by Baker et al.2 are in fact speci¯c for dense optical

°ow methods. Our method and the classical di®erential approaches are actually an

estimation of brightness variation and cannot be fairly compared to state-of-the-art

optical °ow methods. Thus, our goal is not to overcome the state-of-the-art methods

for optical °ow. Di®erential methods tend to be sparse due to high frequency regions

dependency. Considering only the valid points, the results showed that our method

overcomes the classical ones. The resulting °ow for the ground truth pairs shows that

our results are competitive, despite the sparseness. In fact, we observed that our

Table 4. Error measures for RubberWhale sequence.

Our method Horn and Schunck Lucas and Kanade

AVG AE 53.082 50.072 64.898
STD AE 22.133 21.335 40.752

AVG EE 1.337 1.267 2.392

STD EE 0.635 0.513 1.407

Table 5. Error measures for Urban2 sequence.

Our method Horn and Schunck Lucas and Kanade

AVG AE 67.210 69.117 75.157

STD AE 25.311 21.335 44.257
AVG EE 7.822 8.399 10.141

STD EE 7.780 8.079 8.128
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method ¯nd less points but with higher con¯dence. This is particularly valuable for

¯nding points of interest in the image sequence.

4.4. Comparison using the human action recognition problem

In recent years, several works focused on the problem of recognizing human actions

in videos. This problem is one of the key prerequisites for video analysis and un-

derstanding. Some works have used optical °ow in order to extract motion infor-

mation from videos.11,35–37 We propose to use our optical °ow to form a global video

descriptor based on Histograms of Optical Flow (HOF).11 The approach presented in

this section provides a di®erent way for comparing optical °ow methods. For video

classi¯cation problem, we assume that a more precise and less noisy optical °ow

tends to give better accuracy results. Nevertheless, we remark that our goal is to

compare optical °ow methods using this problem and not to propose a new break-

through for this application.

4.4.1. Video descriptor using histograms of optical °ow

Our video descriptor is based on the scheme of Perez et al.38,36 for histograms of

gradients. Since we have computed the optical °ow vector vp ¼ ½u; v� in a point p, we

can represent this vector in polar coordinates sp ¼ ½r; �� with � 2 ½0; �� and r is the

magnitude of vp. The optical °ow ¯eld for an image Ij can be compactly represented

by a one-dimensional histogram of optical °ow hj ¼ hk, k 2 ½1; b��, where b� is the

number of cells for � coordinate. For simplicity, we use a uniform subdivision of the

angle intervals to populate the b� bins of the histogram:

hk ¼
X
p

rpwp;

where fp 2 Ijjk ¼ 1þ bb��p� cg are all points whose angle maps to the k bin and wp is a

per pixel Gaussian weighting factor. The complete optical °ow ¯eld is represented by

a vector with b� elements.

Since we have computed the histogram of optical °ow for an image Ij, we compute

an orientation tensor from the histogram hj:

Tj ¼ hjh
T
j : ð23Þ

The orientation tensor is a symmetric k� k matrix that carries the information of

the optical °ow distribution of the image Ij. It can be combined with other tensors in

order to ¯nd component covariances.

In order to express the motion average of consecutive images, we use a series of

tensors. The average motion of a video can be computed by T ¼ P
Tj with j ¼ ½1;n�,

where n is the length of the video. Each Tj is normalized by L2-norm before summing

and the ¯nal tensor T also is normalized by the L2-norm. The normalization allows

comparing descriptors of videos regardless their length or image resolution.
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In order to maintain the spatial correlation, the video frames are subdivided in

windows of a� b pixels. We compute the histograms separately for each window.

The ¯nal descriptor for each image Ij is then computed by the sum of the tensors of

each window.

4.4.2. Classi¯cation results

We perform most our tests in the KTH dataset,39 since it has been widely used in

literature and has well controlled movements. We also perform some experiments in

the Hollywood2 dataset.40 The classi¯cation was performed using a two-fold strategy

on a nonlinear SVM classi¯er.

For our method, we tested the in°uence of three parameters in the recognition

rate: the weight � of our wave energy term, the size of the window in the image

subdivision and the number of bins of the histogram. Several combinations of these

Fig. 13. Accuracies for di®erent � weights. X-axis indicates �.

Table 6. Results of our method for di®erent window size.

Window height

5 (%) 8 (%) 10 (%) 15 (%) 20 (%) 30 (%)

Window Width 4 83.4 83.7 84.4 84.7 85.5 87.6

5 84.3 84.5 84.4 85.4 85.6 87.8

8 83.4 84.4 84.6 85.2 86.0 87.8

10 84.1 84.6 83.8 85.2 85.8 86.6
16 84.0 84.6 85.1 85.2 85.5 86.0

Table 7. Best con¯guration for each method.

Method Con¯guration Recognition

Our method Window 5� 30, 60 bins, � ¼ 1:0 87.8%

Lucas and Kanade Window 4� 30, 33 bins 86.1%
Horn and Schunck Window 5� 30, 36 bins, � ¼ 2:0 83.9%

L. M. da Silva Maciel & M. B. Vieira

2050027-28



parameters were tested and we have found the best con¯guration with � ¼ 1:0, window

of 5� 30 or 8� 30 pixels and histogram of 60 bins, reaching 87:8% of accuracy.

Setting the window to 5� 30 pixels and the histogram size to 60 bins, we analyze

the in°uence of the weight � of the wave energy on the accuracy for our method.

Figure 13 shows the accuracy in function of the � values. The best recognition rates

are in the interval 0:6 < � < 2:6.

Table 6 shows the accuracy in function of the window size. The weight � was set

to 1:0 and we use a histogram with 60 bins. The best accuracies are obtained by using

Fig. 14. Accuracies for di®erent number of bins.

Table 8. Confusion matrix for our method using our best con¯guration (Window
5� 30, 60 bins, � ¼ 1:0).

Box (%) HClap (%) HWave (%) Jog (%) Run (%) Walk (%)

Box 95.8 4.2 0.0 0.0 0.0 0.0

HClap 6.9 92.4 0.7 0.0 0.0 0.0

HWave 6.9 2.1 91.0 0.0 0.0 0.0

Jog 0.0 0.0 0.0 87.5 4.2 8.3
Run 0.0 0.0 0.0 27.8 69.4 2.8

Walk 0.0 0.0 0.0 6.9 2.1 91.0

Table 9. Confusion matrix for Lucas and Kanade method using the best con¯guration
(window 4� 30, 33 bins).

Box (%) HClap (%) HWave (%) Jog (%) Run (%) Walk (%)

Box 91.6 8.4 0.0 0.0 0.0 0.0

HClap 8.3 89.6 2.1 0.0 0.0 0.0

HWave 3.5 3.5 90.3 0.0 2.8 0.0

Jog 0.0 0.0 0.0 82.6 8.3 9.0
Run 0.0 0.0 0.0 19.4 70.8 9.7

Walk 0.0 0.0 0.0 3.5 4.9 91.7
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windows with height 20 and 30 pixels, but small width windows (4, 5 or 8 pixels) also

present good results.

Analogously, we performed tests with the classical methods using several window

sizes, number of bins and, for the Horn and Schunck method, weight �. The best

result for Lucas Kanade was 86.1% with window of 4� 30 pixels and histogram of 33

bins. For Horn and Schunck, we achieved 83.9% with a 5� 30 window, 36 or 52 bins

in the histogram and � ¼ 2:0. Table 7 summarizes the results for the three methods.

We also tested the in°uence of the number of bins of the histogram for each

method. Figure 14 shows the results where our method outperforms the classical

approaches for histograms greater than 45 bins.

The confusion matrix for the best con¯guration of our method is showed in

Table 8. One may observe that the major mislabeling is for jogging, walking and

running actions. The speed of the motion is the main di®erence among these actions.

Since our method is di®erential, it is di±cult to identify long displacements and this

mislabeling is expected. With our method, there is no confusion among arm move-

ments (boxing, handclapping and handwaving) and the other movements.

Tables 9 and 10 show the confusion matrix for Lucas and Kanade and Horn and

Schunck methods, respectively. One may see that our method identify better the

movement jogging than the other approaches. Compared to Horn and Schunck, our

method is better for the movement walking but worst for running. The low recognition

of the class running by our method is justi¯ed by the fact that di®erential methods by

de¯nition cannot detect long displacements and this class presents a fast movement.

The classical approaches yield more confusion between handwaving and running.

We also present results with the challenging dataset Hollywood2. The compu-

tations were performed using the best con¯guration found for each method in the

KTH dataset. Table 11 shows the achieved results, where one may note that our

Table 10. Confusion matrix for Horn and Schunck method using the best con¯gura-

tion (Window 5� 30, 36 bins, � ¼ 2:0).

Box (%) HClap (%) HWave (%) Jog (%) Run (%) Walk (%)

Box 95.1 4.2 0.7 0.0 0.0 0.0

HClap 1.4 81.2 17.4 0.0 0.0 0.0
HWave 6.2 7.6 85.4 0.0 0.7 0.0

Jog 0.0 0.0 0.0 80.6 12.5 6.9

Run 0.0 0.0 0.0 18.1 79.2 2.8

Walk 0.0 0.0 0.0 14.6 3.5 81.9

Table 11. Results in the Hollywood2

dataset.

Method Recognition (%)

Our method 31.9

Horn and Schunck 28.8

Lucas and Kanade 27.4
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method outperforms the classical methods. More tests in Hollywood2 dataset showed

prohibitive due to its much higher size and complexity.

By the results presented in this section, we observed that our method achieve

recognition rates slightly higher than the classical ones. These results show that our

method is useful for applications evolving motion estimation. Despite the sparsity,

the valid points are a good representation of the motion scene. Our comparison was

performed against classical di®erential methods, since they tend to be sparse due to

high frequency dependency. Our objective is to show that the wave equation is a

useful constraint to extract reliable brightness variation spots and motion informa-

tion from image sequences.

In terms of time complexity, the descriptors using HOF and our iterative version

were computed with an average of 19 frames per second for the whole KTH dataset in

an Intelr Xeonr 2.20GHz processor with 32GB of memory. For the classical

methods, we computed for the same dataset with 21 frames per second for the Horn

and Schunck and 25 for the Lucas and Kanade methods. Using 35 videos from

Hollywood dataset the descriptors were computed with 2.12 frames per second using

our method, 1.62 using Horn and Schunck and 2.73 using Lucas and Kanade. Using

the direct version, the descriptors were computed with 20 and 2.28 frames per second

for the KTH and Hollywood2 dataset, respectively.

5. Conclusion

We proposed a di®erential optical °ow method based on the energy of wave equation.

A sparse optical °ow is computed by minimizing a functional energy composed by

two terms: A term of brightness constancy and a term of energy of the wave. This

second term is the main contribution of our work.

Minimizing the functional energy through Euler–Lagrange equations, we obtain a

system of linear equations. Due to the decoupling of the pixels, the system can be

quickly solved by an iterative or a direct method. Besides, the decoupling strategy

makes our approach local and suitable for parallelization. The derivatives compu-

tation using convolution can be easily mapped into GPU architectures.

Di®erential methods lack non-local information and tend to be sparse due to high

frequency dependency. Therefore, the resulting °ow ¯eld is sparse. Using a direct

solution, the velocities can be estimated only where the matrix of the system is

invertible. For the iterative solution, we presented the convergence conditions and

the °ow is computed only at the points that satis¯es them. In spite of the sparsity, we

have high quality °ow in the detected points.

We performed comparative tests with the classical Horn and Schunck3 and Lucas

and Kanade12 methods. This choice is justi¯ed by the fact that these classical

approaches are the basis of most di®erential methods.6,4 For the performance mea-

sures proposed by Baker et al.,2 we veri¯ed that our method performs similar results

to the classical ones with slight improvement on the °ow precision. Our goal is to
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present a new constraint for di®erential methods using the wave equation and show

that it is useful to extract reliable brightness variation spots.

Our °ow was applied into the problem of human action recognition using histo-

grams of optical °ow. The best result of our method in the KTH dataset was 87.8% of

recognition, outperforming the best results for Horn and Schunck (83.9%) and Lucas

and Kanade (86.1%) methods, using the same recognition protocol.38,36 These ac-

curacy rates were computed using the best parameters for each method, obtained

through extensive experimentation. Our method has a parameter � related to the

weight of the energy of the wave equation in the total energy. The experiments

showed that the resulting °ow presents a better quality with 0:6 < � < 2:6 for the

action recognition problem. The results achieved for this problem show that our

method is useful for applications evolving motion estimation. Despite the sparsity,

the valid points are a good representation of the motion scene.

This work presents a ¯rst model for the use of the wave equation as a point based

optical °ow detector. Due to the local constraints imposed by the second order

di®erentials, our method is sparse. However, the quality of the velocity vectors

obtained in such regions show that the use of the wave equation is promising. In

the future, we intend to model the motion as a multiple wave propagation in order to

¯nd displacement vectors closely linked to their neighborhood. Such approach can

lead to a less sparse °ow ¯eld. Furthermore, we intend to include global elements in

the °ow computation, which could also reduce the sparsity. The ¯rst attempt was to

constrain the °ow rotational in the energy functional. However, this approach did

not converge easily, since its overall conditions depended on all the points of the

image. Another possibility is to use our convergence conditions as a feature detector,

de¯ning points with second order smoothness that might be regarded as salient

points.

References

1. S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black and R. Szeliski, \A database and
evaluation methodology for optical °ow," Proc. IEEE International Conference on
Computer Vision (Rio de Janeiro, Brazil, 2007).

2. S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black and R. Szeliski, \A database
and evaluation methodology for optical °ow," International Journal of Computer Vision,
92(1), 1 (2011).

3. B. K. P. Horn and B. G. Schunck, \Determining optical °ow," Arti¯cial Intelligence,
17(1–3), 185 (1981).

4. A. Bruhn, J. Weickert and C. Schn€orr, \Lucas/kanade meets horn/schunck: Combining
local and global optic °ow methods," International Journal of Computer Vision, 61, 211
(2005).

5. T. Brox, A. Bruhn, N. Papenberg and J. Weickert, \High accuracy optical °ow estima-
tion based on a theory for warping," in European Conf. Computer Vision, Lecture Notes
in Computer Science, Vol. 3024 (Springer, 2004).

6. H. A. Rashwan, M. A. García and D. Puig, \Variational optical °ow estimation based on
stick tensor voting," IEEE Transaction on Image Processing 22(7), 2589 (2013).

L. M. da Silva Maciel & M. B. Vieira

2050027-32



7. D. D. Nguyen and J. W. Jeon, \Tuning optical °ow estimation with image-driven
functions," IEEE International Conf. Robotics and Automation (Shanghai, China, 2011).

8. D. J. Butler, J. Wul®, G. B. Stanley and M. J. Black, \A naturalistic open source movie
for optical °ow evaluation," in European Conf. on Computer Vision, Part IV, Lecture
Notes in Computer Science, Vol. 7577 (Springer-Verlag, 2012).

9. M. Menze, C. Heipke and A. Geiger, \Joint 3d estimation of vehicles and scene °ow,"
ISPRS Workshop on Image Sequence Analysis (Santiago, Chile, 2015).

10. H. Wang, A. Klaser, C. Schmid and C.-L. Liu, \Action recognition by dense trajectories,"
in Proc. 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
'11, IEEE Computer Society, Washington, DC, USA (2011).

11. I. Laptev, M. Marszałek, C. Schmid and B. Rozenfeld, \Learning realistic human actions
from movies," in Conf. Computer Vision and Pattern Recognition (2008).

12. B. D. Lucas and T. Kanade, \An iterative image registration technique with an appli-
cation to stereo vision," in Proc. 7th Int. Joint Conf. Arti¯cial Intelligence, IJCAI'81,
Vol. 2 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1981).

13. T. Myint-U and L. Debnath, Linear Partial Di®erential Equations for Scientists and
Engineers (Birkhäuser, 2007).

14. F. Girosi, A. Verri and V. Torre, \Constraints for the computation of optical °ow," in
Proc. Workshop on Visual Motion (1989).

15. J.-Y. Bouguet, \Pyramidal implementation of the Lucas Kanade feature tracker:
Description of the algorithm," Technical report, Intel Corporation Microprocessor
Research Labs (2000).

16. S. H. Hwang and S. U. Lee, \A hierarchical optical °ow estimation algorithm based on the
interlevel motion smoothness constraint," Pattern Recognit. 26(6), 939 (1993).

17. T. Brox and J. Malik, \Large displacement optical °ow: Descriptor matching in
variational motion estimation," IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500
(2011).

18. Z. Tu, N. Van Der Aa, C. Van Gemeren and R. C. Veltkamp, \A combined post-¯ltering
method to improve accuracy of variational optical °ow estimation," Pattern Recogn. 47
(5), 1926 (2014).

19. Z. Tu, R. Poppe and R. C. Veltkamp, \Weighted local intensity fusion method for
variational optical °ow estimation," Pattern Recognit. 50, 223 (2016).

20. H. W. Haussecker and D. J. Fleet, \Computing optical °ow with physical models of
brightness variation," IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 661 (2001).

21. H. Sakaino, \Fluid motion estimation method based on physical properties of waves," in
Conf. Computer Vision and Pattern Recognition (Anchorage, Alaska, USA, 2008).

22. S. T. Barnard andW. B. Thompson, \Disparity analysis of images," IEEE Trans. Pattern
Anal. Mach. Intell. 2(4), 333 (1980).

23. D. J. Fleet and A. D. Jepson, \Computation of component image velocity from local
phase information," International Journal of Computer Vision, 5(1), 77 (1990).

24. D. Fortun, P. Bouthemy and C. Kervrann, \Optical °ow modeling and computation:
A survey," Computer Vision and Image Understanding, 134, 1 (2015).

25. D. Sun, X. Yang, M.-Y. Liu and J. Kautz, \Pwc-net: Cnns for optical °ow using pyramid,
warping, and cost volume," in Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition (2018).

26. T.-W. Hui, X. Tang and C. C. Loy, \Lite°ownet: A lightweight convolutional neural
network for optical °ow estimation," in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (2018).

Optical Flow Computation Using Wave Equation-Based Energy

2050027-33



27. J. Chen, Z. Cai, J. Lai and X. Xie, \A ¯ltering based framework for optical
°ow estimation," IEEE Transactions on Circuit and Systems for Video Technology,
29(5), 1350 (2018).

28. C. Zhang, Z. Chen, M. Wang, M. Li and S. Jiang, \Robust non-local tv-l1 optical °ow
estimation with occlusion detection," IEEE Transactions on Image Processing, 26(8),
4055 (2017).

29. D. Giancoli, Physics for Scientists and Engineers with Modern Physics (Prentice Hall,
1989).

30. J. Latter, \Tsunamis of volcanic origin: Summary of causes, with particular reference
to Krakatoa, 1883," Bulletin of Volcanology, 44(3), 467 (1981).

31. J. l. R. d'Alembert, \Recherches sur la courbe que forme une corde tendue mise en
vibration" (1747).

32. S. A. Van Duyne and J. O. Smith, \The 2-D digital waveguide mesh," in Proc. IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (New York, USA,
1993).

33. F. Fontana and D. Rocchesso, \A new formulation of the 2D-waveguide mesh for per-
cussion instruments," in Proc. XI Colloquium on Musical Informatics (Bologna, Italy,
1995).

34. C. Lanczos, The Variational Principles of Mechanics, Dover Books on Physics and
chemistry (Dover Publications, 2012).

35. V. F. Mota, E. A. Perez, M. B. Vieira, L. M. Maciel, F. Precioso and P. H. Gosselin, \A
tensor based on optical °ow for global description of motion in videos," SIBGRAPI -
Conf. Graphics, Patterns and Images (Ouro Preto, Brazil, 2012).

36. V. Mota, E. Perez, L. Maciel, M. Vieira and P. Gosselin, \A tensor motion descriptor
based on histograms of gradients and optical °ow," Pattern Recognition Letters 39, 85
(2014).

37. A. A. Efros, A. C. Berg, E. C. Berg, G. Mori and J. Malik, \Recognizing action at
a distance," in Int. Conf. Computer Vision (Nice, France, 2003).

38. E. A. Perez, V. F. Mota, L. M. Maciel, D. O. Sad and M. B. Vieira, \Combining gradient
histograms using orientation tensors for human action recognition," in Proc. Int. Conf.
Pattern Recognition (Tsukuba, Japan, 2012).

39. C. Schuldt, I. Laptev and B. Caputo, \Recognizing human actions: A local svm
approach," in Proc. Int. Conf. Pattern Recognition (Cambridge, UK, 2004).

40. M. Marszałek, I. Laptev and C. Schmid, \Actions in context," in Conf. Computer Vision
& Pattern Recognition (Miami, USA, 2009).

Luiz Maurlio da Silva Maciel is Ph.D. in Systems Engineering

and Computer Science at UFRJ (2018). He hold M.Sc. degree in

Computer Science from UFJF (2014) and graduated in Computer

Science at the same university (2011). He is professor at UFJF

since 2019. His main knowledge area is Computer Science focusing

on Image Proccessing and Computer Vision.

L. M. da Silva Maciel & M. B. Vieira

2050027-34



Marcelo Bernardes Vieira is Ph.D. in Image & Signal Proces-

sing (2002) from ENSEA/UCP in France and Computer Science

(2002) from UFMG. He has M.Sc. in Computer Science (1998)

from UFMG and graduated in Computer Science in PUC-MG

(1995). He is associate professor at UFJF with interests in com-

puter vision, computer geometry and °uid simulation.

Optical Flow Computation Using Wave Equation-Based Energy

2050027-35


	Sparse Optical Flow Computation Using Wave Equation-Based Energy
	1. Introduction
	1.1. Related works
	1.1.1. Differential methods
	1.1.2. Hierarchical (pyramidal) methods
	1.1.3. Physical model based methods
	1.1.4. Other approaches


	2. Wave Equation
	2.1. Combining the wave equation with the brightness constancy constraint

	3. Proposed Method
	3.1. Direct method
	3.2. Discretization
	3.3. Convergence condition

	4. Experimental Results
	4.1. Qualitative comparison
	4.2. Influence of the method parameters on the results
	4.3. Quantitative comparison
	4.4. Comparison using the human action recognition problem
	4.4.1. Video descriptor using histograms of optical flow
	4.4.2. Classification results


	5. Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


