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Abstract. This paper exposes an algorithm which leads to a fuzzy segmentation. This algorithm performs, as in 
the watershed method, a progressive flood of the gradient image from pixels of lowest gradients. It uses a new 
distance, called topographic distance. Any local minimum of the gradient norm image constitutes a seed for the 
region growing, avoiding the use of a marker image. These seeds constitute the cores of the initial fuzzy 
regions. Then the sites are gradually agglomerated to the region, while their membership degrees to the region 
decrease, according to the distance to the core and to the gradient norms, by the way of the topographic 
distance. The numerous fuzzy regions are then merged and the membership degrees of pixels to final regions 
are computed. Applications concern crisp segmentation of colour or gray scale images and pattern recognition 
from fuzzy regions. 
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1 Introduction 
Image segmentation is defined as an image partition into 
regions, which are crisp sets (in opposition to fuzzy sets). 
But a complete segmentation or accurate regions are 
useless in many applications. In image indexing or in 
object detection for example, accurate edges are not 
awarded.  

In crisp segmentation, there is a one-to-one choice for 
every site to belong or not to each region. But a pixel in 
the “center” of an homogeneous region, certainly belongs 
much more to this region than pixels agglomerated 
afterward, during a region growing for example. And a 
pixel close to a contour is certainly not in the same region 
than a pixel situated on the other side of this contour. To 
model this kind of knowledge, we suggest to build regions 
which are no more crisp sets but fuzzy sets, with for every 
site of the image a membership degree to every region.  

There are two main types of method to segment 
images [5], the first one extracts the homogeneous areas 
(the regions), whereas the second one looks for the zones 
of transition (contours). Both approaches are 
complementary and none of them has proved its 
superiority over the other one, each of them has its 
advantages and its domains of application. The solution 
seems to be in a cooperative approach, using both types of 
methods.  

The contour extraction has the advantage to generally 
provide well-localised contours, and works well when 
zones on each part of the contour have different average 
colours. But if these zones have different textures with the 
same colour, these methods work rather badly. 
Furthermore the extracted contours are rarely closed, 
specially in case of slow transition between regions and do 
not provide a segmentation strictly speaking (partition into 
regions).  

Methods that look for regions better differentiate the 
textured zones, even if they have close colours. On the 
other hand these methods often have a bad behaviour in 
transition zones, providing imprecise contours or an over-
segmentation of these zones. The image of regions so 
provided is directly a segmentation, but it often requires 
post-treatments such as small region removal. 

To lead a cooperative contours / regions approach, 
we will perform a growing region, initialised by an image 
of gradient norm. The zones where the gradient norms are 
weak will be used as seeds for the region growing : they 
will constitute the cores of the fuzzy regions. Points with a 
high gradient norm will constitute dams, that are hard to 
cross. They will be bypassed, which allows to overcome 
the impulse noise, for example. For textured zones, criteria 
of size of the regions and of similarity of the gradient 
norms will be added, thereby avoiding over- segmentation 
often inferred by texture. 



  

Membership degrees of sites to regions are then 
computed, based on a double criterion of spatial nearness 
and of gradient magnitude. They are computed from a 
“topographic distance” , which is defined in §3. 

2 Fuzzy segmentation 
Let Ω  ⊂  ZZ² be a finite referential (set of N sites). A fuzzy 
segmentation of Ω  is a set of M fuzzy regions Rj whose 
supports are included in Ω  and defined by the two 
following axioms :  
if µij is the membership degree of site si to region Rj, then : 
(a)  ∀ i, ∀ j, µij ∈  [0, 255]  
(b)  ∀ j ∑µ

i
ij ∈  ]0, 255 x N[.  

Notice that membership degrees are between 0 and 
255, so they will equal 255 for the sites of the core and 0 
for the sites which do not belong to the fuzzy region. The 
second axiom means that a fuzzy region must not be 
empty and must not be complete (equal to Ω ). 

This definition is based on Ruspini’s definition of a 
fuzzy partition [12], but without the third axiom which 
imposes that for every site, the sum of the membership 
degrees to all regions is equal to 255. 

Of course the terminology “fuzzy segmentation” can be 
found in several papers, but it is never clearly defined. The 
main ways which lead to fuzzy segmentation, as 
mentioned by Bezdek [2] are fuzzy thresholding, fuzzy 
pixel classification, region growing, or fuzzy rules. 

The fuzzy thresholding aims at defining membership 
functions to object regions, based on a set of thresholds 
[10] [4]. Most of the methods of fuzzy pixel classification 
are based on the fuzzy c-means (FCM) algorithm [1], 
which does not lead to a properly so called segmentation, 
since it only classifies the pixels into fuzzy classes and 
does not create fuzzy regions. It is used by Boujemaa et al 
[3] to achieve a crisp segmentation on tomographic 
cardiac images. The number of classes is often fixed in the 
beginning. In the region growing methods, the problem is 
to find the seeds of the regions and the function linking 
region homogeneity and membership grades. 
Moghaddamzadeh et al. [9] have developed a complex 
algorithm of region growing limited by edges. The 
algorithm consists of two steps, the first one performs a 
coarse segmentation, seeds are chosen following a double 
criterion: most frequent colors and farness from edges. In 
the second step, which leads to a fine segmentation, seeds 
are pixels far from any of the regions of the first step. The 
membership function takes into account the color 
homogeneity and the farness to seeds. In [14] region 
growing is carried out by fuzzy rules involving fuzzy 
criteria such as region homogeneity, region size or 
gradient sharpness. 

In this paper, we propose an algorithm which leads to a 
fuzzy segmentation. This algorithm performs a region 
growing from seeds whose membership degrees to the 
region are maximal (255). These seeds constitute the cores 
of the fuzzy regions. Then the sites are gradually 
agglomerated to the region, while their membership 
degrees to the region decrease, according to the distance to 
the core and to the gradient norm.  
The growing region is performed by a progressive flood of 
the image of the gradient norms, as in the algorithm of 
watershed [8] [15] . In crisp segmentation, the growing of 
a region stops when it encounters another region, while we 
will pursue this growing, authorizing the overlap of the 
supports of fuzzy regions. 

3 Topographic distance 
It is interesting to define a distance between pixels which 
takes into account both the distance between sites (in Ω ) 
and the roughness of the surface, that is to say a measure 
of the shortest 3D path drawn on the surface.  Such a 
distance can be defined by the mean of a cost function [8].  

Let f be an image : Ω  →  ZZ.  

The  π− topographic distance between p ∈  Ω and  
q ∈  Ω along path  π = {p = p1, p2 , …  , pn = q}  is :  

Tπ(p,q) = ∑
= −
n

2i i1i )p,p(C  

The cost function is : 
C(pi-1, pi) = f(pi-1) - f(pi)+ dist (pi-1, pi)}                     (1) 
where dist is a distance in ZZ², which in the simplest case of 
4-connectivity equals 1. 

The topographic distance between two sites p and q is 
the minimum of all  π− topographic distance between p and 
q along any path from p to q. 

)qp,(Tmin  q)T(p, π
π

=  

Contrary to Meyer’s topographic “distance” [8], this 
measure T is a distance in the mathematical sense of term. 

proof : 
i. for all sites p and q, T(p,q) ≥ 0, since T is the sum 

of costs, which all are positive or equal to zero. 
ii. T(p,q) is equal to zero if and only if it exists a path 

π, where all costs are equal to zero; this is only 
possible if all f(pi) are equal and all distances 
dist(pi-1, pi) are equal to zero, that is to say if p and q 
are equal. 

iii. for all sites p and q , Tπ (p,q) = Tπ (q,p), since the 
costs are symmetrical, so does T. 

iv. for all sites p, q, r T(p,r) ≤ T(p,q) + T(q,r), since T 
is the minimum of all  π− topographic distances. 



  

4 Algorithm 
As in watershed algorithm [8] [15], we use a region 
growing which simulates the flood of the image from 
seeds. The algorithm is performed on gradient norm 
images. Seeds are automatically determined during image 
flooding and constitute the fuzzy region cores. To 
overcome the problem of over-segmentation, adjacent 
regions are merged, at the moment they get in contact, if 
one of them has a small area or a small depth. Membership 
degrees are finally computed. 

4.1. Region growing and catchment basin merging 
At first pixels are sorted according to their gradient norm. 
Levels are processed from the lowest to the highest 
gradient norm. The pixels of level (gradient norm) h are 
added to the basins computed up to level h-1 or form a 
new basin.  

Solving the problem of region initialization of the 
basins is tricky. Andrade [6] builds region seeds during the 
image flooding : every local minimum of the image 
constitutes a region core and is labeled with a new label. 

At level h, the supports of the fuzzy regions are 
spread by conditional dilations of supports of level h-1, 
conditionally to level h. At each dilation at level h, every 
pixel having at least one neighbor already labeled is 
processed. If all labeled neighbors have the same label, the 
current pixel takes this label. If there are different labels in 
the neighborhood, the pixel simply takes one of the labels 
and the merging is processed (cf. § 4.2). A new basin label 
is assigned to each connected block of pixels having no 
labeled neighbors, these pixels take 255 as membership 
degree to this region.  

As Vincent & Soille [15] did, we use the following 
data structures to perform these steps : 

- a label image,  
- an image of geodesic distances (in Ω) to the 

region’s core. This distance image identifies 
pixels of the successive dilations. 

- a FIFO queue (first-in-first-out) of pixels, which 
stores the successive dilations. 

 
Andrade et al [6] used a catchment basin merging to 

suppress the non-significant local minima. In this method, 
when two basins touch each other, their areas (numbers of 
pixels) and depths (bottoms’ levels) are used to decide 
their merging. If the area or the depth of one of them are 
below the respective thresholds, the oldest, and deepest, 
basin absorbs the other one.  

This method assumes that all pixels of the current 
level that belong to such basins have already been 
computed. We propose to delay the merging until all 

dilations of the current level have been achieved. We save 
the two basin labels in a FIFO queue of regions, rather 
than inspect them at the moment they get in contact. After 
the end of the support extension in the current flooding 
level, the FIFO is tracked to process the merging. Then the 
FIFO is emptied for the next flooding level. This ensures 
that the total area of the basins is taken into account in the 
merging test. Note that an absorbed basin will never 
absorb another basin. 

We have yet reached the classical watershed. The 
main thing comes now : overflowing the initial catchment 
basins and computation of the membesrhip degrees. 

4.2. Membership degrees 
Membership degrees of pixels are computed according to 
the topographic distance to initial basin’s core. 

If s is a site belonging to fuzzy region R and v a 
neighbour of s, the membership degree of v to region R is 
computed using the definition of the cost (Eq. 1): 

µR(v) = µR(s) – C(s,v)                                            (2) 

It can be easily deduced from Eq. (2)  that if p and q 
belong to fuzzy region R, then 

µR(q) = max {0, (
π

min (µR(p) – |f(p) – f(q)| - d1(p,q))}  (3) 

where d1 is distance L1, and π is a 4-connected path 
included in R and linking p to q. 

  
10 15   243 238 

10 10   244 244 

0 0   255 255 

(a) image f                    (b) membership degrees 

Table 1 : example of membership degrees. 

The computation is concretely done by successive 
dilations and assignment of a new value if it is lower than 
a former one.  

After merging, a penalty is applied to the membership 
values of the absorbed regions in order to have a higher 
degree in the absorbing basin’s bottom :  

µ(p) ←  µ(p) - |hp- ha| for every absorbed pixel p  

hp is the bottom’s level of the basin containing p,  

ha is the bottom’s level of the absorbing basin. 

If both cores have the same level, the penalty equals 
zero and the region’s core is non-connected. 



  

5 Computational complexity 
Gradient norm computation, immersion simulation and 
basin merging have O(n) time complexity, where n is the 
number of pixels. The membership computation has O(qn) 
complexity, where q is the total number of basins used in 
the process. Consequently, the overall process has O(O(n) 
+ O(n) + O(n) + O(n) + O(qn)) = O(qn) time complexity. 

The smallest possible basin is composed of one pixel, 
with value h, which has its 4-connected neighbours with 
values higher than h. Consider a binary image with a rows 
and b columns, having in the even rows the pattern {0, 1, 
0, 1, ...} and in the odd rows the pattern {1, 0, 1, 0, ...} 
like in a chess table. Such image has 
      2ab2b2a2b2a ///// ≤⋅+⋅  basins. This is the 
maximum number of basins for an image with dimensions 
a and b. As a result, 2/1 abq≤≤ which leads  to the worst 
case for our algorithm in terms of time complexity 
O((ab)2/2) = O(n2). The quadratic time complexity is very 
restrictive for image applications but the worst case 
pattern is rare. Real images may have thousands of 
original basins, and, depending on parameters, hundreds 
of merged ones. Therefore, the computation time may be 
very high in some cases.  

Actually, the algorithms have been very fast in our 
experiments with a linear complexity behaviour. 

6 Results 
The fuzzy segmentation algorithm can be used for two 
purposes. If crisp segmentation is awarded, the fuzzy 
segmentation must be “defuzzified”, which is done by 
affecting each pixel to the region for which it has the 
highest membership degree. The other, and more 
important interest of this algorithm is to keep the fuzzy 
regions to compute scalar features.  

6.1 Monochromatic images 
The gradient norms may be computed with any filter, we 
used Shen-Castan filter [13] because of its accuracy in 
edge localisation.  

On the noisy image of Fig. 1, intensity means of both 
parts only differ by 3 levels. The algorithm creates 287 
fuzzy regions, which, after merging with thresholds of area 
and depth respectively equal to 50 and 2, are reduced to 2 
regions (Fig. 2). 

 
 
 
 
 

 

   
 Fig. 1: Image (enhanced) and profile of a line 

 

    
Fig. 2 : Membership degrees to left region 

and defuzzification 

The image of Fig. 3, is a muscular slice which 
includes on one hand textured fibers and on the other hand 
uniform fibers, but so close to each other that they often 
are connected. We obtain 4434 fuzzy regions from the 
image of gradient norm, and 65 regions after merging with 
thresholds for area of 110 and for depth of 11 (Fig. 4). The 
threshold of area is tuned according to expected region 
size. Dark fibers are correctly segmented, the use of the 
gradient leads to an accurate boarder localization and 
almost all regions are obtained. 

These results can be compared with two segmentation 
results from Cocquerez and Philipp [5] The first one is an 
edge detector, followed by a contour closing (Fig. 6) and 
an unsupervised segmentation method using Markov 
random fields (Fig. 7). The result obtained from fuzzy 
regions is better : region number is smaller, there is no 
oversegmentation due to texture, and borders between 
dark fibers, which are difficult to extract are often found 
(see zoom fig 5a). 

 



  

 
Fig. 3 : Original image (256 × 256) of a muscular 

slice 

 
Fig. 4 : Crisp segmentation (65 regions) 
 

      
    (a) Region in the center      (b) Membership degrees to 
                                                                this region 

Fig. 5 : Zoom on a region of Fig. 3 

 
 

 
Fig. 6 : edge detection + contour closing 

 

 
Fig. 7 : Markovian unsupervised relaxation  

6.2 Fuzzy regions 
The main result is the set of fuzzy regions. Fig. 5b 

displays one fuzzy region, with membership degrees of its 
elements. The core is multimodal, membership degrees are 
almost constant in the central fiber. They slowly decrease 
after crossing small edges, such as those with the two 
other black fibers, and they decrease a lot when 
encountering a sharp edge.  

Rosenfeld [11] extended the classic features of area, 
perimeter, compactness, etc. to fuzzy regions. These 
attributes can then be used for pattern recognition, 
indexing, etc. 



  

6.3 Colour images 
This scheme is a general one, which can also be applied to 
colour images, as soon as a gradient norm is available. 
The Di Zenzo algorithm [7] is well adapted to compute the 
color gradient norm. Fig. 8 displays some  results with a 
gradient norm computed by Di Zenzo algorithm with 
marginal gradients computed on each color band by Shen-
Castan filter. For these two images, we show the maximum 
membership degrees ( over all fuzzy regions) and crsip 
segmentation after defuzzification. 

 

 

     
 

    
 

    

Fig. 8 : two images with maximum membership degrees 
(over all fuzzy regions) and crisp segmentation 

7 Conclusion 
We have proposed an original method of region 
extraction, consisting of a region growing constrained by 
edges. This method overcomes the problem of incomplete 
contours, since it provides fuzzy regions. 

Membership degrees are high in the local minimums 
of the gradient norm (which well correspond to the 
homogeneous zones of the image) and which lessen when 
crossing a contour. For very spread regions, a weighting 

can be added between distance in ZZ² and difference of 
gradient norms, allowing to take differently into account 
distances to cores and gradient norms. 

Contours are correctly positioned, because of the 
competition between adjacent regions (during 
defuzzification). The main advantage regarding 
segmentation is that it is completely automatic, since it 
does not use an image of region seeds. Regions are created 
dynamically during the process in every local minimum. 
Over-segmentation is reduced by merging regions on a 
double criterion of size and difference of depth. The first 
threshold is easy to tune, according to the size of the 
expected regions, the latter one is more delicate.  

Shapes and membership degrees could be improved 
by using a distance more isotropic than L1 distance. We 
are working on using a chamfer distance which is closer to 
Euclidean distance. 
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