Filtering sparse data with 3D tensorial structuring elements
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Abstract. We address in this paper the problem of filtering three-dimensional sparse data representing real objects.

The main application is to eliminate points that are not structured on surfaces. Points classified as organized can be
the input for other processes. An accumulation process infers the organization of each input element. The tensorial
fields used in our method act as three-dimensional structuring elements. They define normal orientations in space
indicating possible surface continuations.

1 Introduction Recently, we proposed new mathematical foundations

. .. to enhance the sparse data organization inference [6]. The
Surface reconstruction concerns the problem of retrieving ; : . .
more precise pertinence values provided by our functions

three-dimensional shapes which, in general, represent ama be used to classify each given point as structured or
physical object. In most cases, only points distributed over y 9 P

the object are known. Obtaining precise 3D models of real not. In th'.s baper, We propose a method for sparse data
. o X ; . filtering suitable for pre-processing purposes.
objects has applications in reverse engineering, shape anal-
ysis, computer graphics, computer vision, among others. ) o
The most important works on surface reconstruction 2 Accumulation method for finding normals
classify sparse data as anorganized point s¢l, 2]. Since  In the method described in [6], the procedures and mathe-
the points are organized over an object, we classify them asmatical notions originally proposed by Guy are adapted for
organized. Their spatial organization effectively allows the robust normal inference.
extraction of the original structuring object. In fact, recon- More precisely, we propose new tensorial fields that
struction becomes a problem when information about the are treated as surface specsfioucturing elementi an ac-
points organization is limited or missing. cumulation method. These fields are composed by symetric
In Gopi & Krishman [3], a set of points isrganizedf second ordeorientation tensor$7]
it has additional information about original surface. In our " " "
work, organized points are those that, within their neigh- T=XAee + e, +Asese;, 1)
borhgod, aredst;uctured ovetr_ a s“g?‘cet- h i where orientations are coded in eigenvec®rsl e |
parse dala representing Objects may have ou ',erseg with their respective eigenvalues > X2 > A3 > 0
and additive noise in real applications. In Gideon Guy’s : :
) o representing pertinences.
paradigm [4, 5], surface reconstruction is made by evaluat-

ina th dat i M iselv G Aligned with an input element, a tensorial field defines
Ing the sparse data organiza |on.3 ore precisely, LUy Pro-nqrmal contributions in space. The contributions of every
vides two functionsn(D,Q) — R3? ands(D,Q) — R,

h Di dat t ande R i bit input are then accumulated for normal inference. In our
where LIS a sparse data se aRae IS an arbitrary method, the secondary information in resultant tensors are
point, in such a way that

interpreted as indecision of normal estimation [8].

e n(D, Q) is the estimation of a normal IQ repre- o
senting a surface that presumably structi@es con- 2.1 Normal tensorial field
junction with its neighborhood in D; The normal field is the most important in the accumulation
method. Its trajectories define the expected curvature for
e s(D, Q) is the pertinence, or relevance degree of surface reconstruction. We chose the vectorial and force
the normal estimate in comparison with the original fields with identical connecting trajectories converging to
object represented by D. the origin.
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Figure 2: Spherical coordinates
of a pointQ in the coordinate
system of a surfelP, k).

and the orthonormal bade, j, k} form a coordinate system
in R3 (Fig. 2). The spherical coordinatés, ¢, #) of a point

Figure 1: Ellipses with different shapes. Q € R3 are:
k J
The trajectory curvature may be controlled by using p=IPQl, tan¢ = JET tanf = =
ellipses centered in theaxis and tangent to theaxis, given
by wherei = i-PQ, j = j-PQandk = k-PQare the cartesian
@ (—t, + )2 coordinates of) in the system (Fig. 2). The Eq 4 can be
— % =1 ) used to compute the anglebetween the plang and the
2k ty tangent plane to the ellipsoid passing®y
wheret, andt, are constants arlddefine the ellipse having )
axis parallel tax and toy with sizes2kt,, and2kt, respec- tan f = M7
tively. The ellipses shape defines the connections curvature d* — tan® ¢
and can be easily controlled by the ratio of axis sizes cos ¢ # 0, d = tan oy ed # [tan @
d— 2kt, _ by 3) wherea.;;, is the maximal connection angle. The 3D vec-
2kt,  tg torial field for normals is defined by

that is the same for all ellipses of a family. Figure 1 shows |, p | — (icosO+iserd)cos (B+ ) +ksen(B+ ™
some ellipse families with different values af The circu- w((P.k), Q) = (1 cosf+serd) cos (ﬁ 2) (ﬁ 2(6))

lar continuity is obtained witld = 1. . ,
where the addition ofr/2 to 3 defines vectors normal to
Given a poinP € R? with polar coordinateép, 6), the the ellipsoids / p

inclination of the line tangent to the ellipse (Eq. 2) passing The force gradient field should define the same trajec-

by Pis tory of the vectorial field. Thus, the equipotential surfaces
2 of force must be orthogonal trajectories to the ellipsoids.

2d” tan 0 ) -
tan § = 20’ cosf #0 and d # [tan 6| (4) The farthest distance from the origin of the orthogonal tra-

jectory passing by is given by
with G being the angle between this line ardxis (Fig. )
1). When|tan 8| = d, the tangent line is perpendicular to d
thex axis (3 = 90°), invalidating Eq. 4. One point cannot (s ) g) = pcos ¢ (1 n <2 N 1> tan? ¢>> 242 — 1
be connected to the origin beyond these ellipse extremes. d?

They form the maximal connection angle;;, (Fig. 1) that ) i
defines the ellipse family assigning forming the attenuated scalar field

d = tan aeip. (5) —s((P,k),Q)?
In(P.K),Q=e  0°
Consider a surfelP, k) € R? xR? and the unit vectors
i L j,allarbitrary but perpendicular to The normal vector  whose gradient vectors define the same trajectories of the
k defines the plaij represented by the surfel. The point  vectorial field (Eq. 6). The normal tensorial field defining
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Figure 3: Orientation inference with two enhancing accumulations.
elliptical connections for a surféP, k) in 3D is wherel is the identity matrix. The plane estimated to have
. the normal is coded ie;e; with e3 = v;(P,Q) (Eq. 1).
CN((P k) Q) _ v, If (b < Qmag The force is coded |ﬁ1 =Xy = fI(P, Q) with )\3 =0.
’ ’ 07 If (b > Qmag
Umaz < Qelip, T = fy((P,k),Q), v=vn((P,k),Q) 2.4 Primary orientation inference

The primary inference is performed by the accumulation of
influences of all input points. Consider an input set D com-
posed oih = i+ j + k elements. To infer their orientations,
every element of the total input points

wherea.;;, defines the maximal angle and the curvature.
The a,,., parameter can be used to define fields with
smaller influence than.;;,.

2.2 Tangent tensorial field Q={Py,-- ,PiJU{Ny, - N JU{T1, -, Te}, (9)

A curvel (P, t) € R? x R defines a straight line that can be
interpreted as an intersection of planes in space. Thus, ther
is only one plane passing by, t) and a pointQ having

has an associated orientation ten$qy € {T1,---,T,}
‘?epresenting the total influence of sparse data

normal T :ZC (PQ )_|_ZC ((N n)Q )
W m I\Fi, {¥m N 5 )y Nm
VT((P,I),Q)—W, w=1xPQ, (7 P 5
that represents the vectorial field for curvels. + Z Cr((Tk,tk), Q)
The force field should be radial and stronger for points k
nearp: —|PQJ? whereQ,, is them-esime point of Q. Every tensar,, con-

_ 2 tains the inferred orientation for its corresponding p&pt
fI(P7 Q) =e€ g ) (8) . .. . .
. . -7 from every input elements of D. This is primary informa-
whereo is the attenuation factor. The tangent tensorial field tjon pecause the tangent and isotropic tensorial fields do
for curvelsin 3D is not define smooth surfaces. Besides, noisy elements have

Cr((P,1),Q) = T, 1 =1,(P,Q), v=vr((P,1), Q). the same weight of more precise elements.

2.3 Isotropic tensorial field 2.5 Enhancing the primary inference

We propagate the information of normal containedrip
using the normal tensorial field to enhance the primary in-
ference. We argue that:

A point with no associated orientatidh € R? has insuf-
ficient information to induce normals directly on another
pointQ. Any plane passing by the straight lif& is valid.

The vectorial field defining this line e the normal field is morphologically adapted to
PO infer normals forming smooth surfaces and balanced
vi(P,Q) = — pertinences;
P =1pq | o
_ _ o o the use of the pertinence obtained in primary in-
in3Dis

o the information repropagation allows an extended
C/(P,Q =r (I —w"), r=1f,(P,Q), v=v;(P,Q) evaluation of normal vectors.



The normal information of an orientation tensdr= Obviously, it depends on the accumulation methods
Aerel + \evel + \3es3elis given by functions ability for retrieving consistent pertinences. Successive en-
hancements, as proposed in [6], infer better orientations and

Vn(A) = e, S(A) = A — Ao perform efficient sparse data filtering.

wherevn is the normal vector anslis its pertinence. Ideally, the sparse accumulation should assign maxi-
A new tensor se,,, € {U1,--- , U, } is associated to mal pertinence to the structured points and minimal to the

the set of input points Q and defined by the propagation of Unorganized. The original methods of Guy, Lee [9] and the

the normal information contained ,,: method described here tend to give greater pertinences to

the organized points. This bimodal aspect of pertinence dis-
tribution enable the use of a threshold for segmenting both
sets.

Given a set D witm elements and their respective si-
where(Q;, vn(T;)) is the tuple composed byinput points metric matricedM ; resulted from sparse accumulation, one
and their estimated normals. may define a thresholdhat segments the poinfs € D as

The factory is used for pertinence regularization. If follows:
~v > 1, the difference among them is amplified. Elements
with low pertinence tends to have lower influence, favoring
noise filtering. This may generate holes in regions with low e otherwiseP; is not organized.
point density. Ify < 1, the difference between pertinences
is reduced, inducing an influence equalization. In presence
of noise, this may disturb reconstruction processes.

For general applications, we suggest propagating nor-
mal information twice (Fig. 3). The first time, we estimate
U,, with v > 1 (Eqg. 10) to filter the primary orientations.
Associating the tensor s#t,, € {V1,---,V,} to the set
of input points Q, the second normal propagation is given

by

n

Un = S ST Ch((Qvn(T1),Q,)  (10)

=1

e if S(M;) > 1, P; is organized on a surface;

The pertinence values normalized between 0 and 1
makes the empirical choose logasier. This segmentation
criterion can be applied iteratively, discarding points with
very low pertinence each step. In this paper, we evaluate
the ability of original and proposed methods in segmenting
points in one step.

As an index of filtering accuracy, we propose ane
dex of points correctly classified

n . nec ndc
Vin =Y s(U)? Cn((Q,vn(U1),Q,,)  (12) P o e T2 nd’

=1 . .
wherenecandndcare the number of points correctly classi-

wherew < 1 is the regularization factor. This second ac- fied among thaestructured points and thel unorganized

cumylanqn redees the d,'fferﬁmﬁ amongﬁthe.pertlr?encesrespectively. This index range from 0.50 to 1 in function of
obtained inU,,,, also reducing the filtering effect in regions pertinence threshold

with low point density.

Two accumulations were effective to enhace the nor-
mal estimation but the process may be modified. Experi-
ments performed show that= 1 andw = 1/2 give good Figure 4 shows an ellipsoid and an open surface. Their high
results in general applications. level of noise makes the filtering process more difficult.

4 Experimental results

3 Sparse data filtering

We assume sparse data formedngpoints structured on
surfaces andhd unorganized points that were incorrectly |-
sampled or have strong additive noise. The filtering process/
should be able to segment the pontos, labeling them as
organized.

The symmetric matrice™l; = \iejel + \oevel +
A\sezel’, resulted from the sparse accumulation above, give
the normal pertinence

S(MZ) =)A= A (@) (b)

to each input poinP;. With this organization indicator, Figure 4: Sparse data for filtering evaluation. Both models are
one may establish hypothesis to detect points structured orcomposed by 250 points with additive noise with normal distribu-
surfaces. tion /(0; 0.022) and by 1250 incorrect points.



Qelip = 45° (ipc=0.873) Qelip = 60° (ipc=0.838) Qelip = 45° (ipc = 0.856) Qelip = 60° (ipc=0.844)

Lee (pc=0.719) Guy (ipc=0.716) Lee (pc=0.686) Guy (ipc = 0.662)

Figure 5:Filtering results of ellipsoid and open surface wit®.30 anddmax=0.30. Shown points are classified as organized.

However, all methods obtained good results witd.30. noise in the points sampled from objects. Our orientation
This threshold was choosen from pertinence distributions enhancement step augments considerably the filtering pre-
(Fig. 6). cision. We also apply the Guy’s and Lee’s original methods

The filtering results for the ellipsoid and the open sur- for comparison purposes.
face are shown in Figure 5. Visually, we can verify that In [10], we propose the use of this filtering method
the proposed accumulation method for orientation infer- in altimetry data to find vegetation regions. Further infor-
ence gives better results. Note that the number of incor-mation about our accumulation method and its applications
rect points classified as organized is greater in the methodsan be found in [6].
of Guy and Lee. The greatdpc values of the proposed
method indicate its better performance.

We observe that the proposed method obtains perti-
nence distributions that favors the filtering (Fig. 6). Note This research was supported by Coordémacde
that this method assigns lower pertinences to the incorrectaperfeicoamento de Pessoal deiv®l Superior -
points and greater to the structured points. Consequently,CAPES/Brazil, CNPQ/Brazil and COFECUB.
both sets are more separated than in the other methods. The
standard deviations of the methods of Guy and Lee indi-
cate a greater intersection of the pertinence distributions. [tReferences
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Figure 6: Histogram of pertinences obtained in the filtering process. (a) (c) Pertinence distribution
of the 250 points forming the objects (b) (d) Pertinence distribution of the 1250 incorrect points.

[4] Gideon Guy, Inference of Multiple Curves and Sur-

faces from Sparse Dat#h.D. thesis, IRIS/University

of Southern California, 1996.

[10]

[5] Gérard Medioni, Mi-Suen Lee, and Chi-Keung Tang,

A Computational Framework for Segmentation and

Grouping Elsevier Science B.V.,, 1 edition, 2000.
[6] Marcelo Bernardes Vieira,Orientation Inference of
Sparse Data for Surface Reconstructiéin.D. thesis,
Universidade Federal de Minas Gerais (Brazil) and
Universie de Cergy-Pontoise (France), 2002.
[7] Hans Knutsson, “Representing local structure using
tensors,” inThe 6th Scandinavian Conference on Im-
age AnalysisOulu, Finland, June 1989, pp. 19-22.
[8] Carl-Fredrik Westin, A Tensor Framework for
Multidimensional Signal Processing Ph.D. thesis,
Linkodping University/Sweden, 1994,

[9] Mi-Suen Lee and @rard Medioni, “Grouping, -, —,
0, into regions, curves, and junctionsfJEEE Com-

puter Vision and Image Understandingl. 76, no. 1,
pp. 54-69, Oct. 1999.

Matthieu Cord, Michel Jordan, Thomas Belli, and
Marcelo Bernardes Vieira, “Analyse d'images
aériennes hauteésolution pour la reconstruction de
seenes urbaines,Bulletin de la Sociét Frangaise de
Photogramnatrie et Telédetection, no. 166, pp. 34—
43, 2002.



