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Abstract. We address in this paper the problem of filtering three-dimensional sparse data representing real objects.
The main application is to eliminate points that are not structured on surfaces. Points classified as organized can be
the input for other processes. An accumulation process infers the organization of each input element. The tensorial
fields used in our method act as three-dimensional structuring elements. They define normal orientations in space
indicating possible surface continuations.

1 Introduction

Surface reconstruction concerns the problem of retrieving
three-dimensional shapes which, in general, represent a
physical object. In most cases, only points distributed over
the object are known. Obtaining precise 3D models of real
objects has applications in reverse engineering, shape anal-
ysis, computer graphics, computer vision, among others.

The most important works on surface reconstruction
classify sparse data as anunorganized point set[1, 2]. Since
the points are organized over an object, we classify them as
organized. Their spatial organization effectively allows the
extraction of the original structuring object. In fact, recon-
struction becomes a problem when information about the
points organization is limited or missing.

In Gopi & Krishman [3], a set of points isorganizedif
it has additional information about original surface. In our
work, organized points are those that, within their neigh-
borhood, are structured over a surface.

Sparse data representing objects may have outliers
and additive noise in real applications. In Gideon Guy’s
paradigm [4, 5], surface reconstruction is made by evaluat-
ing the sparse data organization. More precisely, Guy pro-
vides two functionsn(D, Q) → R3 ands(D, Q) → R+,
where D is a sparse data set andQ ∈ R3 is an arbitrary
point, in such a way that

• n(D, Q) is the estimation of a normal inQ repre-
senting a surface that presumably structuresQ in con-
junction with its neighborhood in D;

• s(D, Q) is the pertinence, or relevance degree of
the normal estimate in comparison with the original
object represented by D.

Recently, we proposed new mathematical foundations
to enhance the sparse data organization inference [6]. The
more precise pertinence values provided by our functions
may be used to classify each given point as structured or
not. In this paper, we propose a method for sparse data
filtering suitable for pre-processing purposes.

2 Accumulation method for finding normals

In the method described in [6], the procedures and mathe-
matical notions originally proposed by Guy are adapted for
robust normal inference.

More precisely, we propose new tensorial fields that
are treated as surface specificstructuring elementsin an ac-
cumulation method. These fields are composed by symetric
second orderorientation tensors[7]

T = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3 , (1)

where orientations are coded in eigenvectorse1 ⊥ e2 ⊥
e3 with their respective eigenvaluesλ1 > λ2 > λ3 > 0
representing pertinences.

Aligned with an input element, a tensorial field defines
normal contributions in space. The contributions of every
input are then accumulated for normal inference. In our
method, the secondary information in resultant tensors are
interpreted as indecision of normal estimation [8].

2.1 Normal tensorial field

The normal field is the most important in the accumulation
method. Its trajectories define the expected curvature for
surface reconstruction. We chose the vectorial and force
fields with identical connecting trajectories converging to
the origin.
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Figure 1: Ellipses with different shapes.

The trajectory curvature may be controlled by using
ellipses centered in theyaxis and tangent to thexaxis, given
by

x2

t2xk2 +
(−ty + y

k )2

t2y
= 1 (2)

wheretx andty are constants andk define the ellipse having
axis parallel tox and toy with sizes2ktx and2kty respec-
tively. The ellipses shape defines the connections curvature
and can be easily controlled by the ratio of axis sizes

d =
2kty
2ktx

=
ty
tx

(3)

that is the same for all ellipses of a family. Figure 1 shows
some ellipse families with different values ofd. The circu-
lar continuity is obtained withd = 1.

Given a pointP ∈ R2 with polar coordinates(ρ, θ), the
inclination of the line tangent to the ellipse (Eq. 2) passing
by P is

tanβ =
2d2 tan θ

d2 − tan2 θ
, cos θ 6= 0 and d 6= |tan θ| (4)

with β being the angle between this line andx axis (Fig.
1). When|tan θ| = d, the tangent line is perpendicular to
thex axis(β = 90◦), invalidating Eq. 4. One point cannot
be connected to the origin beyond these ellipse extremes.
They form the maximal connection angleαelip (Fig. 1) that
defines the ellipse family assigning

d = tanαelip. (5)

Consider a surfel(P, k) ∈ R3×R3 and the unit vectors
i ⊥ j, all arbitrary but perpendicular tok. The normal vector
k defines the planij represented by the surfel. The pointP
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Figure 2: Spherical coordinates
of a point Q in the coordinate
system of a surfel(P, k).

and the orthonormal base{i, j, k} form a coordinate system
inR3 (Fig. 2). The spherical coordinates(ρ, φ, θ) of a point
Q ∈ R3 are:

ρ = |PQ| , tan φ =
k√

i2 + j2
, tan θ =

j

i

wherei = i ·PQ, j = j ·PQandk = k ·PQare the cartesian
coordinates ofQ in the system (Fig. 2). The Eq. 4 can be
used to compute the angleβ between the planeij and the
tangent plane to the ellipsoid passing byQ:

tan β =
2d2 tanφ

d2 − tan2 φ
,

cos φ 6= 0, d = tan αelip ed 6= |tan φ|

whereαelip is the maximal connection angle. The 3D vec-
torial field for normals is defined by

vN ((P, k), Q) = (i cos θ+ jsenθ) cos
�
β +

π

2

�
+ksen

�
β +

π

2

�
(6)

where the addition ofπ/2 to β defines vectors normal to
the ellipsoids.

The force gradient field should define the same trajec-
tory of the vectorial field. Thus, the equipotential surfaces
of force must be orthogonal trajectories to the ellipsoids.
The farthest distance from the origin of the orthogonal tra-
jectory passing byQ is given by

s((P, k), Q) = ρ cos φ

(
1 +

(
2− 1

d2

)
tan2 φ

) d2

2d2 − 1

forming the attenuated scalar field

fN ((P, k), Q) = e

−s((P, k), Q)2

σ2

whose gradient vectors define the same trajectories of the
vectorial field (Eq. 6). The normal tensorial field defining
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elliptical connections for a surfel(P, k) in 3D is

CN ((P, k), Q) =
{

rvvT , if φ 6 αmax

0, if φ > αmax
,

αmax 6 αelip, r = fN ((P, k), Q), v = vN ((P, k), Q)

whereαelip defines the maximal angle and the curvature.
The αmax parameter can be used to define fields with
smaller influence thanαelip.

2.2 Tangent tensorial field

A curvel(P, t) ∈ R3×R3 defines a straight line that can be
interpreted as an intersection of planes in space. Thus, there
is only one plane passing by(P, t) and a pointQ having
normal

vT ((P, t), Q) =
w
|w| , w = t× PQ, (7)

that represents the vectorial field for curvels.
The force field should be radial and stronger for points

nearP:

fI(P, Q) = e

− |PQ|2
σ2 , (8)

whereσ is the attenuation factor. The tangent tensorial field
for curvels in 3D is

CT ((P, t), Q) = rvvT , r = fI(P, Q), v = vT ((P, t), Q).

2.3 Isotropic tensorial field

A point with no associated orientationP ∈ R3 has insuf-
ficient information to induce normals directly on another
point Q. Any plane passing by the straight linePQ is valid.
The vectorial field defining this line

vI(P, Q) =
PQ
|PQ|

should be used to code this planar indecision for normals.
Using the force equation 8, the isotropic tensorial field

in 3D is

CI(P, Q) = r (I − vvT ), r = fI(P, Q), v = vI(P, Q)

whereI is the identity matrix. The plane estimated to have
the normal is coded ine1e2 with e3 = vI(P, Q) (Eq. 1).
The force is coded inλ1 = λ2 = fI(P, Q) with λ3 = 0.

2.4 Primary orientation inference

The primary inference is performed by the accumulation of
influences of all input points. Consider an input set D com-
posed ofn = i+ j +k elements. To infer their orientations,
every element of the total input points

Q = {P1, · · · , Pi} ∪ {N1, · · · , Nj} ∪ {T1, · · · , Tk}, (9)

has an associated orientation tensorTm ∈ {T1, · · · , Tn}
representing the total influence of sparse data

Tm =
∑

i

CI(Pi, Qm) +
∑

j

CN ((Nj , nj), Qm)

+
∑

k

CT ((Tk, tk), Qm)

whereQm is them-esime point of Q. Every tensorTm con-
tains the inferred orientation for its corresponding pointQm

from every input elements of D. This is primary informa-
tion because the tangent and isotropic tensorial fields do
not define smooth surfaces. Besides, noisy elements have
the same weight of more precise elements.

2.5 Enhancing the primary inference

We propagate the information of normal contained inTm

using the normal tensorial field to enhance the primary in-
ference. We argue that:

• the normal field is morphologically adapted to
infer normals forming smooth surfaces and balanced
pertinences;

• the use of the pertinence obtained in primary in-
ference reduces the effect of less structured elements.
We hope that noisy elements have lower pertinence;

• the information repropagation allows an extended
evaluation of normal vectors.



The normal information of an orientation tensorA =
λ1e1eT

1 + λ2e2eT
2 + λ3e3eT

3 is given by functions

vn(A) = e1, s(A) = λ1 − λ2

wherevn is the normal vector ands is its pertinence.
A new tensor setUm ∈ {U1, · · · , Un} is associated to

the set of input points Q and defined by the propagation of
the normal information contained inTm:

Um =
n∑

l=1

s(Tl)γ CN ((Ql, vn(Tl)), Qm) (10)

where(Ql, vn(Tl)) is the tuple composed byn input points
and their estimated normals.

The factorγ is used for pertinence regularization. If
γ > 1, the difference among them is amplified. Elements
with low pertinence tends to have lower influence, favoring
noise filtering. This may generate holes in regions with low
point density. Ifγ < 1, the difference between pertinences
is reduced, inducing an influence equalization. In presence
of noise, this may disturb reconstruction processes.

For general applications, we suggest propagating nor-
mal information twice (Fig. 3). The first time, we estimate
Um with γ > 1 (Eq. 10) to filter the primary orientations.
Associating the tensor setVm ∈ {V1, · · · , Vn} to the set
of input points Q, the second normal propagation is given
by

Vm =
n∑

l=1

s(Ul)ω CN ((Ql, vn(Ul)), Qm) (11)

whereω < 1 is the regularization factor. This second ac-
cumulation reduces the difference among the pertinences
obtained inUm, also reducing the filtering effect in regions
with low point density.

Two accumulations were effective to enhace the nor-
mal estimation but the process may be modified. Experi-
ments performed show thatγ = 1 andω = 1/2 give good
results in general applications.

3 Sparse data filtering

We assume sparse data formed byne points structured on
surfaces andnd unorganized points that were incorrectly
sampled or have strong additive noise. The filtering process
should be able to segment thene pontos, labeling them as
organized.

The symmetric matricesM i = λ1e1eT
1 + λ2e2eT

2 +
λ3e3eT

3 , resulted from the sparse accumulation above, give
the normal pertinence

s(M i) = λ1 − λ2

to each input pointPi. With this organization indicator,
one may establish hypothesis to detect points structured on
surfaces.

Obviously, it depends on the accumulation methods
ability for retrieving consistent pertinences. Successive en-
hancements, as proposed in [6], infer better orientations and
perform efficient sparse data filtering.

Ideally, the sparse accumulation should assign maxi-
mal pertinence to the structured points and minimal to the
unorganized. The original methods of Guy, Lee [9] and the
method described here tend to give greater pertinences to
the organized points. This bimodal aspect of pertinence dis-
tribution enable the use of a threshold for segmenting both
sets.

Given a set D withn elements and their respective si-
metric matricesM i resulted from sparse accumulation, one
may define a thresholdl that segments the pointsPi ∈ D as
follows:

• if s(M i) > l, Pi is organized on a surface;

• otherwise,Pi is not organized.

The pertinence values normalized between 0 and 1
makes the empirical choose ofl easier. This segmentation
criterion can be applied iteratively, discarding points with
very low pertinence each step. In this paper, we evaluate
the ability of original and proposed methods in segmenting
points in one step.

As an index of filtering accuracy, we propose onein-
dex of points correctly classified

ipc =
nec

2 · ne
+

ndc
2 · nd

,

wherenecandndcare the number of points correctly classi-
fied among thenestructured points and thend unorganized
respectively. This index range from 0.50 to 1 in function of
pertinence thresholdl.

4 Experimental results

Figure 4 shows an ellipsoid and an open surface. Their high
level of noise makes the filtering process more difficult.

(a) (b)

Figure 4: Sparse data for filtering evaluation. Both models are
composed by 250 points with additive noise with normal distribu-
tionN (0; 0.022) and by 1250 incorrect points.
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Figure 5:Filtering results of ellipsoid and open surface withl=0.30 anddmax=0.30. Shown points are classified as organized.

However, all methods obtained good results withl=0.30.
This threshold was choosen from pertinence distributions
(Fig. 6).

The filtering results for the ellipsoid and the open sur-
face are shown in Figure 5. Visually, we can verify that
the proposed accumulation method for orientation infer-
ence gives better results. Note that the number of incor-
rect points classified as organized is greater in the methods
of Guy and Lee. The greateripc values of the proposed
method indicate its better performance.

We observe that the proposed method obtains perti-
nence distributions that favors the filtering (Fig. 6). Note
that this method assigns lower pertinences to the incorrect
points and greater to the structured points. Consequently,
both sets are more separated than in the other methods. The
standard deviations of the methods of Guy and Lee indi-
cate a greater intersection of the pertinence distributions. It
makes the filtering by threshold more difficult.

5 Conclusions

We have presented a method for sparse data filtering based
on tensorial field accumulation. The accumulation process
presented in [6] is used for finding precise normals and per-
tinence values. Filtering is performed by a simple but ef-
fective threshold segmentation of these pertinences.

Our results show a robust behavior of this filtering
technique with sparse data having high noise rates. Almost
all outliers have been correctly detected even with additive

noise in the points sampled from objects. Our orientation
enhancement step augments considerably the filtering pre-
cision. We also apply the Guy’s and Lee’s original methods
for comparison purposes.

In [10], we propose the use of this filtering method
in altimetry data to find vegetation regions. Further infor-
mation about our accumulation method and its applications
can be found in [6].
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