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Abstract. We propose in this paper a new strategy to estimate surface normals from sparse data for reconstruction.
Our approach is based on tensorial fields morphologically adapted to infer normals forming smooth surfaces.
They act as three-dimensional structuring elements for finding precise normals. Robust orientation inference is
performed by an enhanced accumulation process using the tensorial fields. The surface dedicated aspects of our
propositions are suitable for smooth surface inference from noisy data. We present qualitative and quantitative
results to show the behavior of the original methods and ours. A comparative discussion of these results remarks
the efficiency of our extensions.

1 Introduction

Surface reconstruction concerns the problem of retrieving
three-dimensional shapes which, in general, represent a
physical object. In most cases, only points distributed over
the object are known. Obtaining precise 3D models of real
objects has applications in reverse engineering, shape anal-
ysis, computer graphics, computer vision, among others.

The most important works on surface reconstruction
classify sparse data as anunorganized point set[1, 2]. In
Gopi & Krishman [3], a set of points is classifiedorganized
if it has additional information about the original surface.

However, we remark that any sparse set of points is at
least assumed to beimplicitly organizedsince the points, or
a subset of them, arestructuredover an object. In our work,
organized points are those that, within their neighborhood,
are structured over a surface.

The spatial organization effectively allows the extrac-
tion of the original structuring object. However, surface
reconstruction is a harder problem when information about
the points organization is limited or missing. Precise nor-
mals associated to points, for example, make the recon-
struction task easier.

Sparse data representing objects may have outliers
and additive noise in real applications. In Gideon Guy’s
paradigm [4, 5], surface reconstruction is made by evaluat-
ing the sparse data organization. More precisely, Guy pro-
vides two functionsn(D, Q) → R3 ands(D, Q) → R+,
where D is a sparse data set andQ ∈ R3 is an arbitrary
point, in such a way that

• n(D, Q) is the estimation of a normal inQ repre-
senting a surface that presumably structuresQ in con-
junction with its neighborhood in D;

• s(D, Q) is the pertinence, or relevance degree of
the normal estimate in comparison with the original
object represented by D.

Set D may have points, points with associated nor-
mal (surfels) and points with associated tangent (curvels).
Based on continuation constraints, Guy defined a three-
dimensional field of tensors for each input class.

Using these fields, the structural contributions of each
element are accumulated to infer normalsn(D, P) and per-
tinencess(D, P) for everyP ∈ D. Next, the field for surfels
is aligned with the inferred normal in every input point and
the contributions are accumulated in the subspace contain-
ing D. Resulted tensors representing the subspace are de-
composed and the surface and curves formed by the input
points are retrieved by a local maxima extraction algorithm.

Lee & Medioni [6] extended Guy’s method using ori-
entation tensors [7]. The main difference is that fields and
accumulation processes are based on tensor spectral decom-
position rather than input classes. Curves formed by input
points are retrieved using surface uncertainty obtained in
tensors. This new approach gives better results than the
original method but uncertainty propagation interferes on
surface reconstruction.

Guy’s method and its extensions are defined for sur-
face and curve reconstruction in the same process. We ar-



gue that one may obtain much better results if the tensor
coding, the tensorial fields morphology and the accumula-
tion process are specific for the desired structure. In this pa-
per, we present new tensorial fields and accumulation pro-
cesses for surface reconstruction.

2 Method overview

Surface reconstruction is achieved in two steps (Fig. 1).
Firstly, normals and associated pertinences are computed
for every input element. We propose an enhancement
method that gives better estimates due to the surface ded-
icated tensorial fields and accumulation process. It is also
robust to additive noise and outliers.

In the second step, the contribution of each point is ac-
cumulated in subspace containing the input elements using
the tensorial field for normals. This field is morphologi-
cally adapted to infer normals forming smooth surfaces. As
in Guy’s method, the final surface is obtained by local max-
ima extraction using resulting tensors.

Note that the second step is absolutely dependent of
the information inferred in the first one. Thus, our enhance-
ment process augments considerably the reconstruction re-
sult.

Tensorial fields are constructed with a suitable tensor
coding and appropriated continuation constraints to obtain
better normal estimates. See that indecision information
about normals obtained in tensors is discarded in all steps.

We describe in Section 3 the fields and the accumu-
lation process for finding enhanced normal vectors. The
dense accumulation for surface reconstruction is presented
in Section 4. In Section 5, we show some experimen-
tal quantitative and qualitative results for comparison pur-
poses.
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Figure 1: Method overview.

3 Accumulation method for finding normals

In the method described in [8], the procedures and mathe-
matical notions originally proposed by Guy are adapted for
robust normal inference.

More precisely, we propose new tensorial fields that
are treated as surface specificstructuring elementsin an ac-
cumulation method. These fields are composed by symetric
second orderorientation tensors[7]

T = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3 , (1)

where orientations are coded in eigenvectorse1 ⊥ e2 ⊥
e3 with their respective eigenvaluesλ1 > λ2 > λ3 > 0
representing pertinences.

Aligned with an input element, a tensorial field defines
normal contributions in space. The contributions of every
input are then accumulated for normal inference. In our
method, the secondary information in resultant tensors is
interpreted as indecision of normal estimation [9].

3.1 Normal tensorial field

The normal field is the most important in the accumulation
method. Its trajectories define the expected curvature for
surface reconstruction. We chose the vectorial and force
fields with identical connecting trajectories converging to
the origin.
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Figure 2: Ellipses with different shapes.

The trajectory curvature may be controlled by using
ellipses centered in they axis and tangent to thex axis

x2

t2xk2 +
(−ty + y

k )2

t2y
= 1 (2)

wheretx andty are constants andk define the ellipse having
axis parallel tox and toy with sizes2ktx and2kty respec-
tively. The ellipses shape defines the connections curvature



and can be easily controlled by the ratio of axis sizes

d =
2kty
2ktx

=
ty
tx

(3)

that is the same for all ellipses of a family. Figure 2 shows
some ellipse families with different values ofd. The circu-
lar continuity is obtained withd = 1.

Given a pointP ∈ R2 with polar coordinates(ρ, θ), the
inclination of the line tangent to the ellipse (Eq. 2) passing
by P is

tanβ =
2d2 tan θ

d2 − tan2 θ
, cos θ 6= 0 and d 6= |tan θ| (4)

with β being the angle between this line andx axis (Fig.
2). When|tan θ| = d, the tangent line is perpendicular to
thex axis(β = 90◦), invalidating Eq. 4. One point cannot
be connected to the origin beyond these ellipse extremes.
They form the maximal connection angleαelip (Fig. 2) that
defines the ellipse family assigning

d = tanαelip. (5)

q

f

k

j

i

Q

j
P

i

k

r

Figure 3: Spherical coordinates
of a point Q in the coordinate
system of a surfel(P, k).

Consider a surfel(P, k) ∈ R3×R3 and the unit vectors
i ⊥ j, all arbitrary but perpendicular tok. The normal vector
k defines the planeij represented by the surfel. The pointP
and the orthonormal base{i, j, k} form a coordinate system
inR3 (Fig. 3). The spherical coordinates(ρ, φ, θ) of a point
Q ∈ R3 are:

ρ = |PQ| , tan φ =
k√

i2 + j2
, tan θ =

j

i

wherei = i ·PQ, j = j ·PQandk = k ·PQare the cartesian
coordinates ofQ in the system (Fig. 3). Eq. 4 can be used
to compute the angleβ between the planeij and the tangent
plane to the ellipsoid passing byQ:

tan β =
2d2 tanφ

d2 − tan2 φ
,

cosφ 6= 0, d = tan αelip andd 6= |tan φ|

whereαelip is the maximal connection angle. The 3D vec-
torial field for normals is defined by

vN ((P, k), Q) = (i cos θ + jsenθ) cos
�
β +

π

2

�
+ ksen

�
β +

π

2

�
(6)

where the addition ofπ/2 to β defines vectors normal to
the ellipsoids.

The force gradient field should define the same trajec-
tory of the vectorial field. Thus, the equipotential surfaces
of force must be orthogonal trajectories to the ellipsoids.
The farthest distance from the origin of the orthogonal tra-
jectory passing byQ is given by

s((P, k), Q) = ρ cos φ

(
1 +

(
2− 1

d2

)
tan2 φ

) d2

2d2 − 1

forming the attenuated scalar field

fN ((P, k), Q) = e

−s((P, k), Q)2

σ2

whose gradient vectors define the same trajectories of the
vectorial field (Eq. 6). The normal tensorial field defining
elliptical connections for a surfel(P, k) in 3D is

CN ((P, k), Q) =
{

rvvT , if φ 6 αmax

0, if φ > αmax
,

αmax 6 αelip, r = fN ((P, k), Q), v = vN ((P, k), Q)

whereαelip defines the maximal angle and the curvature.
The αmax parameter can be used to define fields with
smaller influence thanαelip.

3.2 Tangent tensorial field

A curvel(P, t) ∈ R3×R3 defines a straight line that can be
interpreted as an intersection of planes in space. Thus, there
is only one plane passing by(P, t) and a pointQ having
normal

vT ((P, t), Q) =
w
|w| , w = t× PQ, (7)

that represents the vectorial field for curvels.
The force field should be radial and stronger for points

nearP:

fI(P, Q) = e

− |PQ|2
σ2 , (8)

whereσ is the attenuation factor. The tangent tensorial field
for curvels in 3D is

CT ((P, t), Q) = rvvT , r = fI(P, Q), v = vT ((P, t), Q).

3.3 Isotropic tensorial field

A point with no associated orientationP ∈ R3 has insuf-
ficient information to induce normals directly on another
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point Q. Any plane passing by the straight linePQ is valid.
The vectorial field defining this line

vI(P, Q) =
PQ
|PQ|

should be used to code this planar indecision for normals.
Using the scalar force of Eq. 8, the isotropic tensorial

field in 3D is

CI(P, Q) = r (I − vvT ), r = fI(P, Q), v = vI(P, Q)

whereI is the identity matrix. The plane estimated to have
the normal is coded ine1e2 with e3 = vI(P, Q) (Eq. 1).
The force is coded inλ1 = λ2 = fI(P, Q) with λ3 = 0.

3.4 Primary orientation inference

The primary inference is performed by the accumulation of
influences of all input points. Consider an input set D com-
posed ofn = i+ j +k elements. To infer their orientations,
every element of the total input points

Q = {P1, · · · , Pi} ∪ {N1, · · · , Nj} ∪ {T1, · · · , Tk}, (9)

has an associated orientation tensorTm ∈ {T1, · · · , Tn}
representing the total influence of sparse data

Tm =
∑

i

CI(Pi, Qm) +
∑

j

CN ((Nj , nj), Qm)

+
∑

k

CT ((Tk, tk), Qm)

whereQm is them-th point of Q. Every tensorTm contains
the inferred orientation for its corresponding pointQm from
every input elements of D. This is primary information be-
cause the tangent and isotropic tensorial fields do not define
smooth surfaces. Besides, noisy elements have the same
weight of more precise elements.

3.5 Enhancing the primary inference

We propagate the information of normal contained inTm

using the normal tensorial field to enhance the primary in-
ference. We argue that:

• the normal field is morphologically adapted to
infer normals forming smooth surfaces and balanced
pertinences;

• the use of the pertinence obtained in primary in-
ference reduces the effect of less structured elements.
We hope that noisy elements have lower pertinence;

• the information repropagation allows an extended
evaluation of normal vectors.

The normal information of an orientation tensorA =
λ1e1eT

1 + λ2e2eT
2 + λ3e3eT

3 is given by functions

vn(A) = e1, s(A) = λ1 − λ2

wherevn is the normal vector ands is its pertinence.
A new tensor setUm ∈ {U1, · · · , Un} is associated to

the set of input points Q and defined by the propagation of
the normal information contained inTm:

Um =
n∑

l=1

s(Tl)γ CN ((Ql, vn(Tl)), Qm) (10)

where(Ql, vn(Tl)) is the tuple composed byn input points
and their estimated normals.

The factorγ is used for pertinence regularization. If
γ > 1, the difference among them is amplified. Elements
with low pertinence tends to have lower influence, favoring
noise filtering. This may generate holes in regions with low
point density. Ifγ < 1, the difference between pertinences
is reduced, inducing an influence equalization. In presence
of noise, this may disturb reconstruction processes.

For general applications, we suggest propagating nor-
mal information twice (Fig. 4). The first time, we estimate
Um with γ > 1 (Eq. 10) to filter the primary orientations.
Associating the tensor setVm ∈ {V1, · · · , Vn} to the set
of input points Q, the second normal propagation is given
by

Vm =
n∑

l=1

s(Ul)ω CN ((Ql, vn(Ul)), Qm) (11)

whereω < 1 is the regularization factor. This second ac-
cumulation reduces the difference among the pertinences



obtained inUm, also reducing the filtering effect in regions
with low point density.

Two accumulations were effective to enhace the nor-
mal estimation but the process may be modified. Experi-
ments performed show thatγ = 1 andω = 1/2 give good
results in general applications.

The orientation inference above evaluates the spatial
organization of sparse data in terms of surfaces. It has sev-
eral applications.

Ideally, the sparse accumulation should assign maxi-
mal pertinence to the structured points and minimal to the
unorganized. The more precise pertinence values provided
by our functions tend to give greater pertinences to the orga-
nized points. This bimodal aspect of pertinence distribution
enables the use of a threshold for segmenting both sets.

In [10], we propose a method for sparse data filtering
suitable for preprocessing purposes. In [11], we show the
use of this filtering method in altimetry data to find vegeta-
tion regions.

4 Accumulation process for reconstruction

For surface reconstruction, the normal tensorial field is used
to propagate the normal information obtained for each in-
put element into subspace containing all elements. More
precisely, the original surface normals are inferred for ev-
ery pointP ∈ S of a subspace S⊂ R3 containing the input
set D by the following accumulation function:

I (D, P) =
n∑

l=1

s(Vl) CN ((Ql, vn(Vl)), P)

whereQl is thel-th input point (Eq. 9) andVl is its orien-
tation tensor obtained in enhanced inference (Eq. 11).

Actually, subspace S is represented by a discrete
grid of tensorsGi,j,k with dimensionsr × t × u with
i, j, k, r, t, u ∈ Z+. Thus, the dense accumulation given
the subset D is defined by

Gi,j,k = I (D, H(i, j, k)), i 6 r, j 6 t, k 6 u

where functionH : Z+3 → R3 represents the transforma-
tion of discrete coordinates(i, j, k) in real coordinates cor-
responding to subspace S.

4.1 Surface extraction

The discrete gridGi,j,k is decomposed in pertinence maps
of dimensionsr × t× u as defined by Guy:

• surface map:s = λ1 − λ2, e = e1;

• simple surface intersection map:s = λ2 − λ3,
e = e3. In best case, the planar indecision of normals
indicates intersection of planes forming curves;

• complex surface intersection map:s = λ3, e
e = 0. Isotropic indecision reflects absence of dom-
inating normal. High reponses may indicate complex
intersections of planes.

The structures are extracted from local maxima in each
map. In surface map, a pointH(i, j, k) is over a surface if
its pertinences is a local maxima in direction of estimated
normal vectore. Guy defined a variation of marching cubes
algorithm to extract these localities as closed surfaces.

The extraction of curves and closed regions from inter-
section maps may give surface intersections. However, high
reponses of pertinence in these maps may indicate noise
presence. Thus, their names are merely suggestive.

5 Experimental results

We present qualitative and quantitative experiments to put
in evidence the key differences between the original meth-
ods and ours. Qualitative results allow the evaluation of re-
construction visual quality. In other hand, quantitative ex-
periments show the evolution of precision evaluations for
comparing all methods.

5.1 Qualitative results

The parameters of each method were adjusted by compari-
son of several results. For our method, we usedγ = 1 (Eq.
10) andω = 1/2 (Eq. 11). Reconstructions with circular
continuityαelip = 45◦, and ellipticαelip = 60◦ are given.
Both with maximal angleαmax = 45◦ (Eq. 7).

For Guy’s method, we seta = 3 andb = 1 to define
a normalized force field between−1 6 x 6 1. Lee &
Medioni method is applied withc = 0.02. See [5] for a
complete description of these methods.

Fields should have finite extensions for performance
issues. The force may be considered null beyond a distance
dmaxfrom field’s central point. To have coherent results,
the force field parameters of all methods are adjusted in
such a way that

f(P, Q) 6 k ∀Q ∈ R3 | |PQ| > dmax (12)

whereP is the field’s central point. Every point at distance
dmaxcan havek as maximum force. In anisotropic fields,
the most aligned points have forcek.

Fig. 5 shows 250 points forming a Cassini’s oval with
1500 outliers uniformely distributed in the cube of side 15%
greater than the cube containing the oval. The two tori of
Fig. 6 are composed by 2000 points with tangents forming
rings. The topology is complex and several approaches fail
in reconstructing it. Both models were used in the original
methods.

For Cassini’s oval, we useddmax = 0.22 for ours
and Guy methods anddmax = 0.21 for Lee’s one. All
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Figure 5:Reconstruction of Cassini’s oval in a grid
of dimensions50× 50× 50.

methods extracted the object (Fig. 5) but only our method
could recontruct it entirely as a smooth surface. Note that a
smoother surface was obtained withαelip = 60◦ due to the
elliptic curvature.

For the two tori, we useddmax= 0.10 for our method
and dmax = 0.11 for Lee and Guy methods. As with
Cassini’s oval example, more regular surfaces were ob-
tained withαelip = 60◦.

The cut views of Cassini’s oval grid show that our
method gives better results with noisy data (Fig. 7). It re-
duces considerably the pertinences of points not organized
over surfaces. This is due to our tensorial fields and the en-
hancement of the primary normal inference. Note that Lee
& Medioni method is the most sensible to noise.

Our method also gives more balanced pertinence dis-
tributions over the surfaces. It is showed in the cut views of
the two tori (Fig. 7).

5.2 Quantitative results

Evaluate the eficiency or precison of reconstruction meth-
ods is a hard task. In some situations it is not even possible
because of the difficulty in establishing viable criteria.

In our case, all methods are under the same paradigm

αelip = 45◦ αelip = 60◦

Lee Guy

Figure 6: Reconstruction of the two tori in a grid
of dimensions75× 100× 75.

and their parameters have the same meanings. It simplifies
the development of a protocol to evaluate the reconstruction
of specific models.

A reconstructed surface S is composed byk distinct
points{V1, · · · , Vn} forming triangles. One may estimate
the general quality by themean squared errormse:

mse(S, U) =
1
k

k∑

i=1

ε2, ε = d(Pi, U) (13)

whered is the smallest euclidian distance between the point
Pi and the original surface U.

For precise error evaluation, it is necessary a great
numbern of samples Di obtained in the same conditions
and representing independent objects Mi of the same class.
Expected error average for this class is computed by the av-
erage of the individual errors of the reconstructions Si of
Di:

E(mse) =
1
n

n∑

i=1

mse(Si, Mi). (14)

Objects Mi may have different orientations and shapes
but must represent the same structure. Samples should have
the same spatial features like density and distribution.
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Figure 7:Cut view of the discrete grids illustrating the normalized pertinence of normal inference. Darker
points have greater pertinences.

Mean squared error estimates (Eq. 13) are only valid
for good approximations of the original object. Note that
the closest point ofPi is not necessarily its homologue in
the original surface. Besides, Sj can be a partial reconstruc-
tion of Mj and still have low average error.

We observed that the number of triangles of invalid
reconstructions diverges from the average of all reconstruc-
tions. These rare surfaces must be excluded from the ex-
pected error calculation (Eq. 14). Thus, we use the average
t and standard deviationσ(t) of number of triangles ob-
tained fromn samples

t =
1
n

n∑

i=1

ti, σ(t) =

√√√√ 1
n

n∑

i=1

t2i − t, (15)

to indicate the ranget ± bσ(t) defining valid reconstruc-
tions. A surface Sj is rejected if tj < t − bσ(t) or
tj > t+bσ(t). The adaptative threshold withb = 2 proved
to be efficient to exclude invalid reconstructions.

5.3 Evaluating ellipsoid reconstruction

Evaluation is made by reconstructing ellipsoids with sev-
eral shapes and orientations. The goal is to show methods
behavior with surfaces having variable curvature.

Every sample is generated by the application of a lin-
ear operator on 250 points uniformly distributed over the
unit sphere centered at (0, 0, 0). These linear operators are
symmetric positive matrices. Eingenvalues indicate the size
of ellipsoid axis. The greatest eingenvalue is chosen ran-
domly in range[1, 1.4] and the smallest between[0.6, 1].
We fix the intermediary eigenvalue in 1. Eigenvectors de-
fine the axis orientation and are also determined randomly.

The change of points density caused by the transfor-

mation does not affect the reconstructions. We use a dis-
crete grid of dimensions40× 40× 40.

Fig. 8a shows the evolution of error in function of
dmax. High values ofdmaxcan generate bad surfaces be-
cause the increase of cross-talking between distant points.
For ellipoid reconstruction, the high curvature regions get
smoother, which explains the average error augmentation.

Our method withαelip = 45◦ approximates better the
high curvature regions obtaining smaller error estimates.
For dmax > 0.03, the Guy, Lee andαelip = 60◦ meth-
ods have the same behavior. Note that Lee’s method does
not give good results with low values ofdmax.

Error evolution with number of outliers varying be-
tween 250 and 1000 is showed in Fig. 8b. We useddmax=
0.30 for all methods. Clearly, the dedicated method gave
better results due to the primary inference enhancement.
Guy and Lee methods have the same behavior until 150%
of outliers. Beyond this limit, Lee’s method gave better
results. With high noise rates, the tangent propagation of
Lee’s method enforces the location of surfaces.

Fig. 8c shows the error evolution in function of addi-
tive noise with normal distribution. We useddmax= 0.30
for all methods. The evolution of Guy and Lee curves in-
dicates that their methods have similar behavior. The dis-
placement of Lee’s curve does not mean lower sensibility
to noise. Our method presents a smaller evolution of error
average. The method withαelip = 60◦ gives slightly better
results than withαelip = 45◦.

6 Conclusions

We have presented a method dedicated to surface recon-
struction based on a specific interpretation of tensor orien-
tation, an appropriated construction of tensorial fields and
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Figure 8:Error evolution for ellipsoid reconstruction. (a) Varying the maximum distancedmax. Average of 150 samples for
eachdmax. (b) Varying the number of outliers. Average of 122 samples for each noise level. (c) Varying the standard-deviation
of additive noise. Average of 236 samples for each standard-deviation.

an enhanced normal inference. Our results show that it is
less sensible to noise and to parameters variation.

The Cassini’s oval reconstruction and the error evolu-
tion varying the number of outliers (Fig. 8b) demonstrate
the positive effects of the normal inference enhacement.
This process reduces the pertinence of point not structured
over surfaces. It explains the good performance of our
method with noisy samples. Balanced pertinence estimates
are responsible for the lower sensibility of the method to
dmaxvariations (Fig. 8a).

Elliptic trajectories are proposed to adjust the method
to different kinds of sparse data. The reconstruction results
of samples with additive noise (Fig. 8b) show that smaller
curvature connections are better in this case.

A dedicated method for curve reconstruction can be
defined by the same ideas of this research. Also, efficiency
may be enhanced by developing new influence fields, itera-
tive processes and heuristics for organization inference.

Further information about our accumulation method
and its applications can be found in [8].
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