Reconstruction using surface dedicated tensorial fields
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Abstract. We propose in this paper a new strategy to estimate surface normals from sparse data for reconstruction.
Our approach is based on tensorial fields morphologically adapted to infer normals forming smooth surfaces.
They act as three-dimensional structuring elements for finding precise normals. Robust orientation inference is
performed by an enhanced accumulation process using the tensorial fields. The surface dedicated aspects of our
propositions are suitable for smooth surface inference from noisy data. We present qualitative and quantitative
results to show the behavior of the original methods and ours. A comparative discussion of these results remarks
the efficiency of our extensions.

1 Introduction ¢ n(D, Q) is the estimation of a normal iIQ repre-
senting a surface that presumably struct@pes con-

Surface reconstruction concerns the problem of retrievin : . " . .
P g junction with its neighborhood in D;

three-dimensional shapes which, in general, represent a
physical object. In most cases, only points distributed over e (D, Q) is the pertinence, or relevance degree of
the object are known. Obtaining precise 3D models of real the normal estimate in comparison with the original
objects has applications in reverse engineering, shape anal- object represented by D.

ysis, computer graphics, computer vision, among others.

The most important works on surface reconstruction Set D may have points, points with associated nor-
classify sparse data as anorganized point sdt., 2]. In mal (surfels) and points with associated tangent (curvels).
Gopi & Krishman [3], a set of points is classifiedyanized Based on continuation constraints, Guy defined a three-
if it has additional information about the original surface.  dimensional field of tensors for each input class.

However, we remark that any sparse set of points is at Using these fields, the structural contributions of each
least assumed to leplicitly organizedsince the points, or  element are accumulated to infer norma{®, P) and per-

a subset of them, asgructuredover an object. In our work,  tinencess(D, P) for everyP € D. Next, the field for surfels
organized points are those that, within their neighborhood, is aligned with the inferred normal in every input point and
are structured over a surface. the contributions are accumulated in the subspace contain-

The spatial organization effectively allows the extrac- ing D. Resulted tensors representing the subspace are de-
tion of the original structuring object. However, surface composed and the surface and curves formed by the input
reconstruction is a harder problem when information about points are retrieved by a local maxima extraction algorithm.

the points organization is limited or missing. Precise nor- Lee & Medioni [6] extended Guy's method using ori-
mals associated to points, for example, make the recon-entation tensors [7]. The main difference is that fields and
struction task easier. accumulation processes are based on tensor spectral decom-

Sparse data representing objects may have outliersposition rather than input classes. Curves formed by input
and additive noise in real applications. In Gideon Guy’s points are retrieved using surface uncertainty obtained in
paradigm [4, 5], surface reconstruction is made by evaluat-tensors. This new approach gives better results than the
ing the sparse data organization. More precisely, Guy pro-original method but uncertainty propagation interferes on
vides two functions(D,Q) — R? ands(D,Q) — R, surface reconstruction.
where D is a sparse data set a@de R3 is an arbitrary Guy’s method and its extensions are defined for sur-
point, in such a way that face and curve reconstruction in the same process. We ar-



gue that one may obtain much better results if the tensor3 Accumulation method for finding normals
coding, the tensorial fields morphology and the accumula- In the method described in [8], the procedures and mathe-

tion process are specific for the desired structure. In this Pa-matical notions originally proposed by Guy are adapted for
per, we present new tensorial fields and accumulation Pro-ohust normal inference.

cesses for surface reconstruction. More precisely, we propose new tensorial fields that
are treated as surface spectficucturing elements an ac-
cumulation method. These fields are composed by symetric
Surface reconstruction is achieved in two steps (Fig. 1). second ordeorientation tensor$7]

Firstly, normals and associated pertinences are computed (1)
for every input element. We propose an enhancement

method that gives better estimates due to the surface dedwhere orientations are coded in eigenvecyrsl e L
icated tensorial fields and accumulation process. It is alsoe; with their respective eigenvalueg > X > A3 > 0

2 Method overview

T=Neel + el + el

robust to additive noise and outliers.
In the second step, the contribution of each point is ac-

representing pertinences.
Aligned with an input element, a tensorial field defines

cumulated in subspace containing the input elements usinghormal contributions in space. The contributions of every

the tensorial field for normals. This field is morphologi-

input are then accumulated for normal inference. In our

cally adapted to infer normals forming smooth surfaces. As method, the secondary information in resultant tensors is
in Guy’s method, the final surface is obtained by local max- interpreted as indecision of normal estimation [9].
ima extraction using resulting tensors.

Note that the second step is absolutely dependent of3 1 Normal tensorial field
the information inferred in the first one. Thus, our enhance-
ment process augments considerably the reconstruction re
sult.

The normal field is the most important in the accumulation
method. Its trajectories define the expected curvature for
Tensorial fields are constructed with a suitable tensor SUrface reconstruction. We chose the vectorial and force

coding and appropriated continuation constraints to obtainfields _with identical connecting trajectories converging to
better normal estimates. See that indecision information the origin.
about normals obtained in tensors is discarded in all steps.

We describe in Section 3 the fields and the accumu-
lation process for finding enhanced normal vectors. The
dense accumulation for surface reconstruction is presented
in Section 4. In Section 5, we show some experimen-
tal quantitative and qualitative results for comparison pur-
poses.
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Figure 1: Method overview.



and can be easily controlled by the ratio of axis sizes wherea.;;;, is the maximal connection angle. The 3D vec-
torial field for normals is defined by

_ 2kt ty 3) i i
%K, 1L, VN ((P,K), Q) = (i cos 0+ jserd) cos (5 + 5) +ksen(5 + 5) ®)
that is the same for all ellipses of a family. Figure 2 shows where the addition ofr/2 to 3 defines vectors normal to
some ellipse families with different values @f The circu- the ellipsoids.
lar continuity is obtained witldl = 1. The force gradient field should define the same trajec-

Given a poinP € R? with polar coordinatep, #), the tory of the vectorial field. Thus, the equipotential surfaces
inclination of the line tangent to the ellipse (Eq. 2) passing of force must be orthogonal trajectories to the ellipsoids.
by Pis The farthest distance from the origin of the orthogonal tra-

92 tan 0 jectory passing b is given by
d? —tan?0’ d2
with 3 being the angle between this line arduxis (Fig. s((P,K), Q) = pcos ¢ (1 + <2 _ 12> tan2 ¢>) 2d2 — 1
2). When|tan 6| = d, the tangent line is perpendicular to d
thex axis (8 = 90°), mvs_;lll_datlng Eq. 4. One pomt cannot forming the attenuated scalar field
be connected to the origin beyond these ellipse extremes.

They form the maximal connection angle;;, (Fig. 2) that —s((P,k), Q)2
defines the ellipse family assignin —
P y assigning In((P,k),Q) =e o

tan 3 = cosf #0 and d # |tan | (4)

d = tan aep. %) . . . .
whose gradient vectors define the same trajectories of the

vectorial field (Eq. 6). The normal tensorial field defining
tk elliptical connections for a surféP, k) in 3D is

. rVVT, |f g Omax
Q CN((P7 k)’Q) = { 0 if :Z > ama% ’

Omaz < Qelip, I = fN(<Pa k)aQ>7 V= VN((P7 k)’Q)

@
<y

wherea,;;, defines the maximal angle and the curvature.
| The a,,., parameter can be used to define fields with
smaller influence than.;;,.

Figure 3: Spherical coordinates o

of a pointQ in the coordinate 3.2 Tangent tensorial field

system of a surfe(P, k). Acurvel (P,t) € R? x R? defines a straight line that can be
interpreted as an intersection of planes in space. Thus, there

Consider asurfe(IP, k) S Rg XRB and the unit vectors is On|y ohe p|ane passing uy'.)’ t) and a pointQ having
i L j,allarbitrary but perpendicular to The normalvector  pgormal

k defines the planig represented by the surfel. The poiht vr((P,1),Q) = ﬂ7
and the orthonormal bagg, j, k} form a coordinate system Iwi

in R? (Fig. 3). The spherical coordinatés, ¢, 6) of apoint  that represents the vectorial field for curvels.
Q € R? are: The force field should be radial and stronger for points

nearP:
_k ane=? - |PQP?
VEET i L(P.Q=c o | ®)
whereo is the attenuation factor. The tangent tensorial field
for curvelsin 3D is

w=tx PQ, )

p=1PQl, tan¢ =

wherei = i-PQ, 7 = j-PQandk = k-PQare the cartesian
coordinates of) in the system (Fig. 3). Eq. 4 can be used

to compute the angl@ between the planig and the tangent cr((P,1),Q) =, r=£,(P,Q), v=vr((P,1),Q).
plane to the ellipsoid passing 6. e ’ ’

tan 8 2d? tan ¢ 3.3 Isotropic tensorial field
anff = ———5—, N , , . ;
d? — tan? ¢ A point with no associated orientatidh € R? has insuf-

cos ¢ # 0, d = tan aeip andd # |tan ¢ ficient information to induce normals directly on another
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Figure 4: Orientation inference with two enhancing accumulations.

pointQ. Any plane passing by the straight liR& is valid. e the normal field is morphologically adapted to
The vectorial field defining this line infer normals forming smooth surfaces and balanced
PQ pertinences;

VI(Pa Q) = BAl

~ |PQ| e the use of the pertinence obtained in primary in-
ference reduces the effect of less structured elements.

should be used to code this planar indecision for normals. We hope that noisy elements have lower pertinence:

Using the scalar force of Eq. 8, the isotropic tensorial
fieldin 3D is e the information repropagation allows an extended

evaluation of normal vectors.
CI(Pa Q) =T (l - VVT)7 r= fI(P7 Q)a V= VI(P7 Q)
The normal information of an orientation tens®r=

wherel is the identity matrix. The plane estimated to have Arerel + el + Asesel is given by functions
the normal is coded ie;e; with e3 = v;(P,Q) (Eq. 1).
The force is coded in; = Ay = f;(P, Q) with A3 = 0. vn(A) =¢e;, S(A)=A1 — Ao

wherevn is the normal vector anslis its pertinence.

A new tensor set),,, € {U,,---,U,} is associated to
The primary inference is performed by the accumulation of the set of input points Q and defined by the propagation of
influences of all input points. Consider an input set D com- the normal information contained i, :
posed oh = i + j + k elements. To infer their orientations, n

every element of the total input points u,, = Z s(T))” Cx((Q,,vn(T))),Q,,) (10)

Q={Pi, -+ ,PJU{Ny, -+ N U{Ty, - T}, (9) !
where(Q,, vn(T;)) is the tuple composed byinput points
and their estimated normals.

The factory is used for pertinence regularization. If

Z Z > 1, the differen mong them is amplified. Elemen
Tm - CI(Pi? Qm) + CN((Nj) nj)’ Qm) ’Y t © d erence amo g t © sa p ed eme ts
i J

3.4 Primary orientation inference

has an associated orientation ten$qr € {T,,---,T,}
representing the total influence of sparse data

with low pertinence tends to have lower influence, favoring
noise filtering. This may generate holes in regions with low
+>Cr((Ths th), Q) point density. Ify < 1, the difference between pertinences
k is reduced, inducing an influence equalization. In presence
whereQ,, is them-th point of Q. Every tensoF,,, contains of noise, this may disturb reconstruction processes.
the inferred orientation for its corresponding pa@y, from For general applications, we suggest propagating nor-
every input elements of D. This is primary information be- mal information twice (Fig. 4). The first time, we estimate
cause the tangent and isotropic tensorial fields do not definéJm With v = 1 (Eq. 10) to filter the primary orientations.

smooth surfaces. Besides, noisy elements have the samAssociating the tensor s#t,, € {V1,---,V,} to the set

weight of more precise elements. of input points Q, the second normal propagation is given
by

3.5 Enhancing the primary inference V,, = ZS(Uz)“ Cn((Q,vn(U)),Q,,) (11)

We propagate the information of normal containedrin =1

using the normal tensorial field to enhance the primary in- wherew < 1 is the regularization factor. This second ac-
ference. We argue that: cumulation reduces the difference among the pertinences



obtained inJ,,,, also reducing the filtering effect in regions e complex surface intersection mag:. = A3, €

with low point density. e = 0. Isotropic indecision reflects absence of dom-
Two accumulations were effective to enhace the nor- inating normal. High reponses may indicate complex
mal estimation but the process may be modified. Experi- intersections of planes.

ments performed show that= 1 andw = 1/2 give good
results in general applications.

The orientation inference above evaluates the spatial
organization of sparse data in terms of surfaces. It has sev
eral applications.

The structures are extracted from local maximain each
|map. In surface map, a poihl(i, j, k) is over a surface if
its pertinences is a local maxima in direction of estimated
normal vectoe. Guy defined a variation of marching cubes

Ideally, the sparse accumulation should assign maxi- &lgorithm to extract these localities as closeq surface;.
mal pertinence to the structured points and minimal to the 1 n€ extraction of curves and closed regions from inter-
unorganized. The more precise pertinence values provided€ction maps may give surface intersections. However, high
by our functions tend to give greater pertinences to the orga-"éPONSes of pertinence in these maps may indicate noise
nized points. This bimodal aspect of pertinence distribution Presence. Thus, their names are merely suggestive.
enables the use of a threshold for segmenting both sets.

In [10], we propose a method for sparse data filtering 5 Experimental results

suitable for preprocessing purposes. In [11], we show the\ye present qualitative and quantitative experiments to put
use of this filtering method in altimetry data to find vegeta- i, evidence the key differences between the original meth-

tion regions. ods and ours. Qualitative results allow the evaluation of re-
construction visual quality. In other hand, quantitative ex-
4 Accumulation process for reconstruction periments show the evolution of precision evaluations for

For surface reconstruction, the normal tensorial field is usedcomparing all methods.

to propagate the normal information obtained for each in- o
put element into subspace containing all elements. More5.1 Qualitative results

precisely, the original surface normals are inferred for ev- The parameters of each method were adjusted by compari-
ery pointP € S of a subspace 8 R? containing the input o of several results. For our method, we used 1 (Eq.

set D by the following accumulation function: 10) andw = 1/2 (Eq. 11). Reconstructions with circular
" continuity ceessp = 45°, and elliptica.;;, = 60° are given.
1(D,P) =S s(V,) Cn((Q,,vn(V})),P Both with maximal anglev,,., = 45° (Eq. 7).
(P ; (V1) Cr((Q vn(V), P) For Guy’s method, we set = 3 andb = 1 to define

a normalized force field betweenl < =z < 1. Lee &
whereQ; is thel-th input point (Eq. 9) and/, is its orien-  Medioni method is applied wite = 0.02. See [5] for a
tation tensor obtained in enhanced inference (Eq 11) Comp|ete description of these methods.

Actually, subspace S is represented by a discrete  Fields should have finite extensions for performance
grid of tensorsG; ;. with dimensionsr x t x u with issues. The force may be considered null beyond a distance
i,j,k,mt,u € Z*. Thus, the dense accumulation given dmaxfrom field’s central point. To have coherent results,
the subset D is defined by the force field parameters of all methods are adjusted in

such a way that

Gi’j,kzl(D,H(Z',j,k)), ’ié’f‘, jgt, kéu

\ f(P,Q) < k VQeR?® | |PQ|>dmax (12)
where functionH : Z+~ — R? represents the transforma-
tion of discrete coordinat€s, j, k) in real coordinates cor-  whereP is the field’s central point. Every point at distance

responding to subspace S. dmaxcan havek as maximum force. In anisotropic fields,
the most aligned points have forke
4.1 Surface extraction Fig. 5 shows 250 points forming a Cassini’s oval with

1500 outliers uniformely distributed in the cube of side 15%
greater than the cube containing the oval. The two tori of
Fig. 6 are composed by 2000 points with tangents forming

The discrete grids; ; ., is decomposed in pertinence maps
of dimensions x ¢ x u as defined by Guy:

e surface maps = A1 — Ao, €= €1 rings. The topology is complex and several approaches fail
in reconstructing it. Both models were used in the original
e simple surface intersection mag:= s — As, methods.
e = e;. In best case, the planar indecision of normals For Cassini's oval, we usedmax = 0.22 for ours

indicates intersection of planes forming curves; and Guy methods andmax = 0.21 for Lee’s one. All



aelip = 60°

Lee Guy

Figure 5:Reconstruction of Cassini’s oval in a grid Figure 6: Reconstruction of the two tori in a grid
of dimensions50 x 50 x 50. of dimensions’5 x 100 x 75.

methods extracted the object (Fig. 5) but only our method and their parameters have the same meanings. It simplifies
could recontruct it entirely as a smooth surface. Note that athe development of a protocol to evaluate the reconstruction
smoother surface was obtained with;, = 60° due tothe  of specific models.

elliptic curvature. A reconstructed surface S is composedkbglistinct

For the two tori, we usedmax= 0.10 for our method ~ points{Vy,---,V,,} forming triangles. One may estimate
anddmax = 0.11 for Lee and Guy methods. As with the general quality by theean squared erromse
Cassini's oval example, more regular surfaces were ob-
tained withoey;, = 60°.

The cut views of Cassini’s oval grid show that our
method gives better results with noisy data (Fig. 7). It re-
duces considerably the pertinences of points not organizedvhered is the smallest euclidian distance between the point
over surfaces. This is due to our tensorial fields and the en-p; and the original surface U.
hancement of the primary normal inference. Note that Lee For precise error evaluation, it is necessary a great
& Medioni method is the most sensible to noise. numbern of samples D obtained in the same conditions

Our method also gives more balanced pertinence dis-and representing independent objectsdfithe same class.
tributions over the surfaces. Itis showed in the cut views of Expected error average for this class is computed by the av-

k
msgS, U) = — Y £, £ =d(P;,U) (13)
=1

el

the two tori (Fig. 7). erage of the individual errors of the reconstructiopf
D;:
5.2 Quantitative results E(msg = 1 ZWQSZ-, M;). (14)
n
=1

Evaluate the eficiency or precison of reconstruction meth-

ods is a hard task. In some situations it is not even possible Objects M may have different orientations and shapes

because of the difficulty in establishing viable criteria. but must represent the same structure. Samples should have
In our case, all methods are under the same paradigmhe same spatial features like density and distribution.
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Figure 7:Cut view of the discrete grids illustrating the normalized pertinence of normal inference. Darker
points have greater pertinences.

Mean squared error estimates (Eq. 13) are only valid mation does not affect the reconstructions. We use a dis-
for good approximations of the original object. Note that crete grid of dimension$0 x 40 x 40.

the closest point oP; is not necessarily its homologue in Fig. 8a shows the evolution of error in function of
the original surface. Besides; 8an be a partial reconstruc- dmax High values ofdmaxcan generate bad surfaces be-
tion of M; and still have low average error. cause the increase of cross-talking between distant points.

We observed that the number of triangles of invalid For ellipoid reconstruction, the high curvature regions get
reconstructions diverges from the average of all reconstruc-smoother, which explains the average error augmentation.
tions. These rare surfaces must be excluded from the ex- Our method withr,;, = 45° approximates better the
pected error calculation (Eq. 14). Thus, we use the averagehigh curvature regions obtaining smaller error estimates.
t and standard deviatiom(¢) of number of triangles ob-  For dmax > 0.03, the Guy, Lee andy.;;;, = 60° meth-
tained fromn samples ods have the same behavior. Note that Lee’s method does

not give good results with low values dfax

1 - Error evolution with number of outliers varying be-
- » #2—1%, (15  tween 250 and 1000 is showed in Fig. 8b. We uchehx—

i=1 0.30 for all methods. Clearly, the dedicated method gave
_ better results due to the primary inference enhancement.
to indicate the rangeé + bo(t) defining valid reconstruc-  Guy and Lee methods have the same behavior until 150%
tions. A surface $is rejected ift; < & —bo(t) or  of outliers. Beyond this limit, Lee's method gave better
t; > i+bo(t). The adaptative threshold with= 2 proved  esuits. With high noise rates, the tangent propagation of

f:

Zt o(t) =

3=

to be efficient to exclude invalid reconstructions. Lee's method enforces the location of surfaces.
Fig. 8c shows the error evolution in function of addi-
5.3 Evaluating ellipsoid reconstruction tive noise with normal distribution. We usethax= 0.30

for all methods. The evolution of Guy and Lee curves in-
5clicates that their methods have similar behavior. The dis-
placement of Lee’s curve does not mean lower sensibility
to noise. Our method presents a smaller evolution of error
average. The method witl.;;,, = 60° gives slightly better
elip = 45°.

Evaluation is made by reconstructing ellipsoids with sev-
eral shapes and orientations. The goal is to show method
behavior with surfaces having variable curvature.
Every sample is generated by the application of a lin-
ear operator on 250 points uniformly distributed over the .
unit sphere centered at (0, 0, 0). These linear operators aréesults than with
symmetric positive matrices. Eingenvalues indicate the size
of ellipsoid axis. The greatest eingenvalue is chosen ran-
domly in range{1, 1.4] and the smallest betweéf6, 1].
We fix the intermediary eigenvalue in 1. Eigenvectors de- We have presented a method dedicated to surface recon-
fine the axis orientation and are also determined randomly. struction based on a specific interpretation of tensor orien-
The change of points density caused by the transfor-tation, an appropriated construction of tensorial fields and

6 Conclusions
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Figure 8:Error evolution for ellipsoid reconstruction. (a) Varying the maximum distatmaax Average of 150 samples for

eachdmax (b) Varying the number of outliers. Average of 122 samples for each noise level. (c) Varying the standard-deviation
of additive noise. Average of 236 samples for each standard-deviation.

an enhanced normal inference. Our results show that it is
less sensible to noise and to parameters variation.

The Cassini’s oval reconstruction and the error evolu-
tion varying the number of outliers (Fig. 8b) demonstrate
the positive effects of the normal inference enhacement.
This process reduces the pertinence of point not structured
over surfaces. It explains the good performance of our [5]
method with noisy samples. Balanced pertinence estimates
are responsible for the lower sensibility of the method to
dmaxvariations (Fig. 8a).

Elliptic trajectories are proposed to adjust the method [6]
to different kinds of sparse data. The reconstruction results
of samples with additive noise (Fig. 8b) show that smaller
curvature connections are better in this case.

A dedicated method for curve reconstruction can be [7]
defined by the same ideas of this research. Also, efficiency
may be enhanced by developing new influence fields, itera-
tive processes and heuristics for organization inference.

Further information about our accumulation method
and its applications can be found in [8].
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