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Abstract. In this paper we propose a new method to deal thighproblem of automatic human skin segmentatioR@B
color space model. The problem is modeled as anmimi cost graph cut problem on a graph whose vertiepresent the
image color characteristics. Skin and non-skin elet) are assigned by evaluating label costs ofcesrassociated to the
weight edges of the graph. A novel approach baseahoenergy function defined in terms of a datalediskin and non-skin
tones is used to define the costs of the edgebeoftaph. Finally, the graph cut problem is solire@raphics Processing
Units (GPU) using the Compute Unified Device Arelture (CUDA) technology yielding very promisingrsisegmentation
results for standard resolution video sequencesni@thod was evaluated under several conditiodg;ating when correct or
incorrect results are generated. The overall ewparis have shown that this automatic method islsingfficient, and yields
very reliable results.

Keywords: graph cuts, skin segmentation, GPU comgupixel-based classification; RGB color space hpredabel algo-
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ers the distance of the color of a pixel to a dpeci
color [1, 3, 18, 24, 38, 42, 49, 51]. It is notraial
problem to solve, since objects and backgroundst exi
in a large variety of colors, including skin tones.

1. Introduction

Color Segmentation is an important problem in
image processing [38] that presents a great nuotber

applications as encoding [9] and identification.-Hu
man identification is mainly based in skin segmenta
tion, which is a research field with many applioas
such as video surveillance, face or hand gesture re
ognition, content-based visual information retrieva
(CBVIR), filtering on the web among others. It is a
fundamental task for any application that seardbes

In our previous work, we presented a new auto-
matic per-pixel human skin segmentation method,
which is highly customizable and yields good result
[34]. It is based on the premise that skin colorsifa
small and unique subset of the RGB color space,
which makes it easier to solve this specific cake o
segmentation [49]. The segmentation problem is

human sequences on image and video streams. Inmodeled as the minimization of a new energy func-

many situations, very little human intervention mus
occur (as when the data to be processed
represented by a huge database).

tion with an intuitive semantics, being automatical

is computed from a database of skin tones. The minimi-

zation solution is done by employing the Graph Cuts

Most skin segmentation methods use a color based method which guarantees the robustness and good

approach and introduce a color metric which consid-
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quality of the results.



However, the main flaw of our previous solution is
the inefficiency of our energy function computation

2. Related Works

based on database user marked seeds when it is done This work is related to three main topics: models

sequentially. The main contribution of this paper i
an implementation and adaptation of our original
method in [34] for Graphics Processing Units using
Compute Unified Device Architecture, improving the
speed of the algorithm convergence. With a faster
convergence it is possible to compute the automatic
human skin segmentation efficiently not only for-im
ages, but also videos with adequate frames per
second for standard video resolution.

Differently from the previous work in which we
used a sequential Boykov and Kolmogorov algorithm
[4] to compute the minimization of the energy func-
tion, we implemented a GPU version of another algo-
rithm based on Vineet et al [53], calldsh-Relabel
algorithm. This also improves significantly the &m
efficiency of our solution.

We obtained good segmentation results for stan-
dard resolution video sequences in near 16 frarees p
second using a Nvidia Tesla C1060 with 240 stream
processors. All issues concerning the implementatio
with the acceleration strategies used to increbse t
algorithm performance are detailed in the paper.

Another contribution of this work is a more com-
plete study of the behavior of our method propased
[34] when we modify some energy function parame-
ters, as the total number of mean colors of olgadt
background regions of images in the input database.
More accurate visual results can be obtained when i
is appropriately adjusted. We evaluate in our exper
mental results the accuracy of our solution by khec
ing the results with user marked ground truth insage
A comparison of our method with a classic skin seg-
mentation based on RGB [32] is also performed in
this paper.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the main works related to ours.

and methods for skin segmentation, segmentation
methods based on graph-cuts and acceleration-strate
gies for implementing graph-cuts in Graphics
Processing Units. We summarize below some of the
main contributions associated to such subjects.

2.1.Models for skin segmentation

Many methods and models have been proposed to
segment human skin. Hu et al [57] obtained skin re-
gions after a detection step based on a single -Gaus
sian Model and a Gaussian Mixture Model,
representing respectively skin and non-skin. After
that, three main steps are applied to produceitia f
result: noise suppression, segmentation and filgeri
The segmentation method used in Hu's work is based
on Graph Cuts, similarly to our work. Their results
are very good, even when illumination varies.

Color analysis of skin and non-skin regions is
widely used. Cheddad et al [10] presented a novel
color space for skin tone detection that works tgost
with the luminance of the RGB image. The hypothe-
sis of this work is that luminance inclusion doss i
crease separability of skin and non-skin clust€he
data of this new space admits a distribution toatd
be fit into a Gaussian curve using Expectation Max-
imization. Their results are compared with thremeot
methods and showed lower false negative rates.

Sigal et al [49] considered time-varying illumina-
tion with multiple sources and colors, using a Mark
model to predict the evolution of skin histogram on
HSV color space over time also obtaining good re-
sults.

Also with a clustering method, Ravichandran and
Ananthi [43] obtained skin segmentation usiKg

Section 3 describes the basis of the segmentation means. The idea is to convert the RGB image into a
based on Graph Cuts, a fundamental issue in our pa-Lab color space and then firitl color regions. The

per. The main algorithms used to solve the maxi-
mum-flow problem associated to the Graph Cuts me-
thod are described in section 4. The parallel versi
of the Push-Relabel method used in our implementa-
tion is shown in the Section 5. In Section 6, we de
scribe how the energy function is defined in tewhs
the database and how it is used in our model. The
methodology is explained in the Section 7. Our re-
sults are presented in Section 8 and finally, ictia

9, conclusions and future works are outlined.

skin detection is made using simple boolean detisio
rules for eactK region. The results presented in [57]
seem to be more robust in terms of segmentation
quality. However, the Ravichandran and Ananthi’s
work proposes a more efficient approach in terms of
the computational cost.

Jedynak et al [23] compared three approaches for
skin detection. Each one relies on a maximum entro-
py model based on constraints. The first is a lp@sel
model in which pixels are considered independent
and measured by a Receiver Operating Characteristic
curve. The second is a Markov Random Field that



forces smoothness in the solution. The final model Gibbs Energy using Graph Cuts. It was the firsit eff
used is based in color gradient. The MRF and the cient work forN-dimensional applications, compris-
color gradient approaches were better, resulting in ing region andboundaryproperties of elements. It is
approximately 84% true positive detection rate. a general-purpose segmentation, needing initial use
mark cues to characterize which elements probably
belong to an object or a background set. Their-solu
tions allows new additional user marks even after t
initial segmentation, without recalculating therarfr

~ One of the first works solving global minimiza-  scratch. It was tested with 2D images and 3D vo-
tion energies for computer vision was the one pro- |jymes giving good and stable results even when ini-
posed by Greig et al [17] for image restoratiorwats tial seeds were changed after the final result; per
the first work to discover that powerful graph-tdise forming with good speed. They motivated other

algorithms for combinatorial optimization can be works to approach different problems with similar
used to minimize certain important energies in com- methods.

puter vision. They created an image-based two ter- )

minal st graph whose construction is based on the _ However, one of the main problems of the Graph
Gibbs Energy [3, 4, 6, 15, 17, 21, 22, 28, 31,38, Cuts approach is the computa_thngl C(_)mpIeX|ty_$)f it
37, 41, 44, 45, 46, 53, 54] such that the minimum €Xxecution. Some of these minimization algorithms
cost graph cut gives the optimal binary labelinpso ~ are very expensive for instances with a large numbe
tion. Previously, such energies could not be sobwed  ©f pixels. Many works have studied the practicét ef
exact minimization methods. One alternative was to Ciéncy of it in Computer Vision and proposed major
use metaheuristics like Simulated Annealing [27]. improvements [4].

The Graph Cuts concept was preceded by a num-  Boykov and Kolmogorov [4] provided an experi-
ber of graph-based methods for image clustering tha Mental comparison between different Graph Cuts
used combinatorial optimization algorithms or ap- algorithms for computer vision applications. They
proximate spectral analysis techniques, like norma- analyzed the complexity of methods based on Gold-
lized cuts [48]. These works are mentioned in Boy- Pergand Tarjan [16, 19], Ford and Fulkerson [13, 1
kov and Funka-Lea [2]. The goal of some of these and a new method created by them. Their method
approaches is to produce a completely automatic Was 5|gn|f|cantly. fgster than the previous oness It
high-level grouping of image pixels. This means tha basgd on the ongmal Ford and Fulkerson algorithm
they divide an image into “blobs” or “clusters” ngi but it builds two simultaneous search trees for ter
only generic cues of coherence or a measure ofiaffi ~Minal nodes, reusing data at each iteration. Tingir
ty between pixels. Differently, Graph Cuts integrat ~Plementation is the current sequential state-of-art
more appropriately model-specific visual cues and method for Computer Vision implementations of
contextual information in order to define more accu  Graph Cuts. _
rately particular objects of interest. This is atee Other works have proposed improvements on the
lated to other categories of segmentation methods cost function task of the energy minimization frame

like Snakes [26], Active Contours [55], Intelligent WOrk. Li et al [35] developed a method for inteaet
Scissors [20] and Level-Sets [47]. image cutout, focused on user usability withouslos

. ) of performance. Their method consists of two steps:

Researchers have been creating or comparing ap-an object marking task, like presented in [3] and a
proaCheS for the minimization_step. We” known ex- pre_segmentation Computation’ followed by a Simp|e
amples are Snakes [26], Intelligent Scissors [38] @  poundary editing process, creating the output seg-
Level-Sets [47]. Techniques like Gradient Desc8nt[  mentation. The nodes from the graph are not single
56] can be applied to any energy function of conti- pixels, but similar color regions generated by a-Wa
nuous variables and others like Simulated Annealing tershed algorithm [52] and becomirsyperpixels
can be used in any function of discrete variables. Their experiments yielded remarkable results in usa
However, these generalities can imply in very poor \jjity case studies, where users took overall thas
results since they get stuck in the local minima or g0 of the time using their software than tradition
take an extremely long time to converge. Magnetic Lasso feature present at common image

Boykov and Jolly [3] developed a technique to proce_ssing software. The energy function used n ou
solve binary image segmentation by minimizing the Work s related to the one they proposed.

2.2.Energy minimization via Graph-cuts



2.3.Graph-cuts in GPUs

Some works attempted to improve the efficiency
of the Graph Cuts method proposing versions running
in parallel processors. Our work belongs to thieca
gory, running on Graphics Processing Units.

Many parallel approaches were made using GPU

characteristics of their work is that it does nseu
prefix sum operations. Finally, they defined a damp
dynamic Graph Cuts implementation for video seg-
mentation, always reusing solutions from the pre-
vious frames. They achieved a level of performance
10-12 times faster than [4] and approximately 3e8m
faster than [20] for images. However, their apphoac

Computing, after they became more popular and easy IS only applicable for grid graphs and not for gahe
to use, mainly because of the development of pro- Maximum flow calculations.

gramming libraries like CUDA [40]. Examples of
works in this area are the ones proposed by Vinnet
and Narayanan [53], Hussein et al [20], Garret and
Saito [15] and Yildiz and Akgul [56].

Hussein et al [20] proposed the first implementa-
tion of the Graph Cuts algorithm in CUDA for gener-
al graphs. It is a GPU version of the Push-Relabel
algorithm, making two important changes: the only
labeling scheme is the Global Relabeling heuristic
[12] and sending flow from a node is an operation
divided into two phase®ushandPull. The first only
sends flow, storing an amount on a temporary memo-
ry and thePull updates all entire flow pushed before.
This is necessary to avoRlead-After-Writehazards.
They also introduced two optimizations. The firaeo
is a lockstep Breadth-First Search which performs
Prefix Sum Operations when traversing each depth
level which is necessary for general graphs. Itlean
considered a lockstep operation because only desing
direction is traversed at a time, while the othamns
blocked. The second optimization is basically the
emulation of a cache. Instead of loading the déta o
single node in the global memory, it loads a 2B til
which is added into a lattice, a data structuratem
during the Breadth-First Search stage containidg on
visited nodes. That strategy enables coalesced memo
ry access, improving the algorithm speed. The spee-
dup obtained is in the range of 1.7-4.5 over th& CP
version proposed in [4].

Vinnet and Narayanan [53] proposed an imple-
mentation of Graph Cuts in CUDA for binary seg-
mentation using the Push-Relabel algorithm. They
presented two versions of the same algorithm, using
atomic and non-atomic operations. They also pro-
posed a new heuristic calleStochastic Cut This
heuristic relies on the fact that after a few iterss,
the processing done on the majority of the nodes is
finished. If at a given iteration, an entire thrdddck
does not modify the residual graph by pushing flow,
then the block is considered inactive and delayped f
10 iterations. Their implementation is very simitar
the one described in [20], including the use of GPU
shared memory andushPull operations. One of the

Some GPU-based works do not use the Graph Cuts
method directly. Yildiz and Akgul [56] formulated
the Graph Cuts optimization as a gradient descent
solution on the GPU. Working differently from the
previous Maximum Flow approaches, this solution is
given by the Minimum Cut energy function formula-
tion, solving the labeling problem directly without
graph processing. It is based in Linear Programming
and decreases spatial complexity. It is modeleé by
Lagrange dual model and a modified approximate
objective function which is differentiable at angimt.
Their method needs less memory than the standard
Maximum Flow methods, but gives some small errors
at smooth regions because the used function is an
approximation. For some examples, their method
converges much faster than [4].

3. Segmentation by Graph Cuts

The basic foundations of our solution are featured
in this section.

3.1.Energy Function

It is possible to find a characteristic functionaof
object defined in a given domain by minimizing an
objective function, i.e., given a s¢f we have to find
the characteristic functioX which is the minimum
argument of a function [3] and the partition sets.
widely used objective function in image segmentatio
is the Gibbs Energy [3, 17, 35] defined as

EX)= Y EMXX )+ YEXX) XX). @

xv %% e

where X; and X; are elements of the set to be seg-
mented,V is the set of elementg; is the set of con-
nected elements and is a weight.E, is the term
that defines the cost for each to belong to one of
the sets. Aiming to minimize the objective function



this cost should be inversely proportional to thebp
ability of X; belonging to the set. It can be given as

E(X(x)=1)=0 E(X(x)=0)=e 0Ox 0O
E(X(x)=1)=w E(x(x)=0)=0 ox0B @
E(X(x)=1)=dp,) E(X(x)=0)=¢g,) Ox ON

whereO is the set of object elemen,is the set of
the background elementy,is the set of pixels whose

labels are unknown ang is a function inversely

proportional to its parameters terrgg and 0, .

E, is a term that defines a penalty for labeling

two connected elements with different labels. This
penalty depends on the similarity of both elements:
very similar elements have high probability of be-
longing to the same set. In this case the resuttosy
must be high; otherwise it has a small value.

The minimization of some classes of energy func-

used maximum flow algorithms to solve the mini-
mum cut problem.

In the next section, we summarize the main algo-
rithms used to solve the minimum cut/maximum flow
problem.

4, Minimum Cut / Maximum Flow Algorithms

Two most known classes of algorithms were pro-
posed to solve the maximum flow problem for Graph
Cuts minimization. One category is based on the& For
and Fulkerson original idea [14] which enforceswflo
conservation during the whole process. Another one
formulated by Goldberg and Tarjan [16] breaks the
flow conservation rule until convergence. Examples
of these will be described below.

4.1. Algorithms based on augmenting paths

The classical maximum flow algorithm based on

tions can be considered a NP-Hard problem, needing the notion of augmenting paths was proposed by Ford

special methods to efficiently solve it. In our kpr
we will minimize the Gibbs Energy using the Graph

and Fulkerson [14].
Boykov and Kolmogorov [4] proposed a new me-

Cuts method. The next section describes how energy thod to solve the maximum flow associated to Com-
functions can be mlnlmlzed_ln the context of Graph puter Vision problems using an approach based on
Cuts theory. For more details, see Boykov et al [6] the Ford and Fulkerson algorithm. It uses two searc

and Kolmogorov and Zabih [31].

3.2.Graph-cuts

The energy function in (2) is used to define the
costsw= 0 for each edge(u,V)D E on a directed

graph G = (V, E) [4]. Two terminal nodes are de-

fined: a sources and a sinkt, corresponding to the
labels that can be assigned to pixels. Each non-
terminal node in the graph will have an edge con-
nected tos and another edge tb We assume that
every vertex lies on some path fratot.

Two types of edges are then definddlinks and
N-links T-links connects pixels to terminalbl-links
connects pairs of neighbor pixels. Their costs are

based in the termk; and E, , respectively.

The minimum cut of a graph is the set of edges
that removed fronG creates two disjoint subsets: a

trees on the residual graph, one with its roothat t
sources and another starting at the sinkeach tree
grows from its own terminal node.

When the two trees touch each other, an augment-
ing path is found. Flow is sent in this path as mas
possible. After that, the residual graph is updaed
new paths are searched, reusing the trees. The algo
rithm is finished when no other path can be found.

This algorithm outperforms Ford-Fulkerson when
grid-based graphs are used. This occurs because the
search trees are reused during algorithm iteration.
However, the critical point of this algorithm lies
the management of the trees, for example, in grgwin
or updating it to obtain a short augmenting path. |
does not guarantee to find the shortest path ases
some heuristics to search for the shortest oneugbe
of such heuristics produces good quality paths evhil
keeping the efficiency of the overall process.fact,
the method has a compromise between choosing any

setSand a set T. These sets are subgraphs disposedpath or the shortest one. The theoretical time doun

so thats[]S andt LJT [12]. An important theorem

due to Ford and Fulkerson [14] states that the-solu
tion of the minimum cut of a graph is equivalent to
the maximum flow problem. Considering this, it is

complexity of this algorithm i©(VE|C]|), but in prac-
tice it is almost linear.

Boykov-Kolmogorov is considered the best me-
thod to compute Graph Cuts in Computer Vision for



sequential machines. However, new parallel ap- once the paths tb are saturated. Here we describe

proaches using Push-Relabel approaches have giventwo heuristics: theGlobal Relabelingand theGap

best times over it. Relabeling These heuristics check the entire residual
graph and correct heights globally.

The Global Relabelingoperation updates the dis-
tance function defined on the residual graph by-com
puting shortest path distances in the residualtwap

The Push-Relabel algorithm works in a more loca- from all nodes to the sink. This can be done iedin
lized manner than the augmenting-paths methods time by using a Backwards Breadth-First Search

4.2.Algorithms based on Preflow

making it a strong candidate for parallelization- | starting at the sink node, adjusting exactly all
stead of examining the entire residual netwGk= heights.

(V,E) to find an augmenting path, generic Push- o _ ]

Relabel algorithms work on one vertex at a time-an The Gap Relabelingtries to find disconnected

lyzing and operating at its neighbors in the residu  nodes front in the graplG. Itis based on the follow-
network. Furthermore, unlike the augmenting-paths ing statement. Suppose tigat] N and 0 < g <V||.
based methods, it does not maintain the flow censer At a certain stage of the algorithm there may be no
vation property throughout the execution. nodesn O V with distanceh(n) = g, but there are

The basic intuition of this method is very diffeten nodesu with g < h(u) < V|, a situation defmed_ as a
gap. These nodes are converging ts, and the sink

from those based on augmenting paths. Each node s no more reachable from anv of these vertices
has two additional properties, definedeasess flow Therefore, the label of such noytljes may be increased
andheight label All nodes start with a height and an to M +1 directl y

excess flow equal to zero, except the height of the y:

source s that is fixed at |V| and the excesswlfich The addition of th&ap Relabelindheuristic to the

is infinite. Push-Relabel outperforms the practical efficien€y o
the pure Push-Relabel method, although usually not
as much as by adding the Global Relabeling hegristi
These heuristics are not independent, considekiaig t
the Global Relabeling discovers nodes disconnected
from t and makes gaps less likely. However, the Gap
Relabeling iteration has small overhead compared to
the Global Relabeling. Thus even if no gaps are dis
covered in a run of an implementation that useh bot
heuristics, the running time is almost the saméas
the implementation that uses only Global Relabeling
In some graphs instances, many gaps are found and
the former implementation is faster than the latter

Consider the nodesuf} [0 G;. Two operations are
also defined: the one that pushes excess flow of a
nodeu into a neighbow 00 N, is calledPush Even-
tually, the algorithm will try to push the exce$sw
of u into its neighbors, but none of these nodé&sN
has height label below the heightwfTo rid an over-
flowing vertexu of its excess flow, it is necessary to
increase its height. Such operation is calledal Re-
label. The height ol is increased by one unit above
the height of the lowest neighbor that has an unsat
rated edge connecting them. After the local opanati
the excess afl can be pushed. When all paths tore
saturated, the algorithm has to send the remaining The Push-Relabel algorithm is one of the most ef-
excess flow in the system back to the souscey ficient algorithms to compute a maximum flow. The

continuously increasing height of the vertices with general algorithm hasO(VzE) theoretical time

excess flow until they achieve |V]. After this noilh_ne complexity. As evaluated by [4], the Push-Relabel
preflow becomes a legal flow and also a maximum method behaves more efficiently for dense graphs,
flow. differently from augmenting-path based approaches
The Local Relabelnd thePushare the operations  that converges rapidly for sparse graphs.
done in the basic Push-Relabel algorithm, but the
procedure as described above has poor practical per more adequate to Use Boykov-Kolmogorov algorithm
formance [12]. Much unnecessary processing is done for grid-based sparse graphs and Push-Relabel ap-
until convergence, because the heights are only up- proach for grid-based dense graphs, like basedin 3
dated locally, not considering the global pictufe 0 gaia “However, the computational power of manycore
the distances. However, heuristics can be employed g cpjtectures like GPUs makes appropriate the fise o
to discharge the excess nodes to the sirflster, Push-Relabel approaches even for sparse graphs with

Considering only sequential architectures, it is



very competitive results. This is detailed in thexin
section.

5. Graph Cutsin GPU

In this section we describe in details our frame-
work that implements the Push-Relabel algorithm in
the GPU. First we explain the idiosyncrasies of GPU
that we had to consider in our implementation.hia t
sequel, we describe how the graph is constructed, h
the algorithms are implemented and which heuristics
were applied to accelerate the overall performance.
Our implementation is loosely based in the [15, 20,
53] works and was developed with the CUDA archi-
tecture.

5.1.GPU Computing

Graphics Processing Units were initially developed
as devices dedicated to graphics processing, improv
ing the efficiency and the power of the graphicepip
line. With the advent of the new GPU models after
the GeForce series 8 and the architectures like £UD
the implementation of GPU computing applications
became easier to be done.

This architecture consists on a unified arrangement
of cores, which simplifies the GPU programming
model by treating it as a typical manycore processo
Further it improves the GPU model by removing
memory restrictions or graphical idiosyncrasies for
each processor. Data representation is also imgrove
by providing friendly data structures to the progra
mer. The memories available in the CUDA device
can be accessed by all processors with no restricti

block and runs on the same multiprocessor at angive
time. The threads of each block have access to a
small amount of common shared memory. Synchro-
nization barriers are also available for all thieafla
block. A group of blocks can be assigned to a sing|
multiprocessor but their execution is time-shared.
The available shared memory and registers are split
equally among all blocks that timeshare a multipro-
cessor. Multiple groups of blocks are also timeastia

on the multiprocessor for execution. The collectién

all blocks in a single execution is called a grid.

Each thread executes a single instruction setctalle
kernel. For each thread and block is given a unique
ID that can be accessed within the thread durisg it
execution. An algorithm may use multiple kernels,
which share data through the global memory and
synchronize their execution at the end of eachdtern
Threads from multiple blocks can only synchronize a
the end of the kernel execution by all threads.

5.2.Maximum Flow/Minimum Cut in GPUs

The first challenge to implement Graph Cuts in the
GPU is to devise a way to implement the graph
neighborhood. Considering that graphs based on im-
ages naturally have a grid structure, we can define
specific model to store their neighborhood strugtur
in the GPU. This is important not only to simplife
algorithm, but also to reduce the total use of glob
memory and the number of accesses, improving our
solution.

It is recommendable to reduce the use of global
memory as much as possible. Creating auxiliary data

on its representation, though the access times may structures to represent neighborhood, like adjacenc

vary depending on the memory type used.

The CUDA environment is based on the SIMD pa-
rallel architecture, where program kernels process
data grids, dividing multiple blocks in threads.idt
important to obtain maximum performance by ex-
ecuting the same operation simultaneously on differ
ent data elements, avoiding code flow divergence.

lists or adjacency matrices can impose excessige us
of memory and increase the number of accesses and
the processing times.

The Graph Cuts model is well suited to the GPU
architectures, because each thread can operate on
exactly one pixel in a SIMD fashion. Images have a
grid format, making the mapping to this architeetur

Divergent code produces poor performance becausevery simple. Each vertex can have a 4 or 8-

the CUDA model cannot deal efficiently with differ-
ent instruction flows at a given moment. Another
important fact is the lack of GPU memory lock. This
brings restrictions on how threads can modify sthare
memory space.

Neighborhood System connectivity. Two schemes are
usually employed in GPUs for neighborhood repre-
sentation: adjacency lists and grid structuresthls
work we use only grid structures.

The data associated to the vertices and edges is

Each thread can use a number of private registers represented by arrays, where each array indéores

for its computation. A collection of threads isledla

the data referent to a single nad&his data structure



is appropriate to the SIMD model, which may be

treated as an array of processors. Memory coales-
cence and data manipulation efficiency is improved

considering that all threads will access and handle
contiguous data. The array size of the non-terminal
vertices and the edges’ data is always |V|.

In order to represent the vertices, two arrays are
necessary: one to store the excess flow and antmther
represent the height labels that estimate therdista
to the target node. To represent edges, six astays
ing residual capacities are sufficient, two for regu
and sink capacities, and four to the north, sowtst
and east directions. Even nodes in the border will
have a total of six edges represented in the arrays
However, the edges that do not exist for the border
nodes will have a residual capacity equal to zero.
This is done to guarantee memory coalescence.

The same format can be extended to represent
non-grid graphs for SIMD architectures. This is éon
by modifying the original graph to become regular,
inserting null edges until all nodes have the same
number of neighbors as the node with the highest
degree. This is necessary to represent the graph in
more friendly SIMD format [15], being able to per-
form the same operation across multiple data loca-
tions. These null edges inserted in the originatesy
do not modify the graph solution, because their- res
dual capacities will always be zero.

The implementation described in this section is
based in the ideas presented in [15] and [53] with
few modifications. The size of the CUDA grid is
equal to the image dimensions, where each single
thread is mapped by a pixel or a graph vertex.

Each node has the following data: excess flow
and height, the same attributes defined in thermlg

rallel Push stage (Figure 1) is divided into twagpés,
defined asPushandPull. This is necessary because
of the potential Read-After-Write hazard. The Paral
lel Push stage is implemented in a kernel in which
each node sends flow to its neighbors but only mod-
ifies the edges residual capacities and not thessxc
of the neighbor nodes. The updated flow is stored
temporarily in an auxiliary array. Thiearallel Pull
stage (Figure 2) is executed in another kernelliysu
implemented together with the relabel operation.

Parallel Push Operation Kernel on a node u

Load /() and e(u) from the global memory to the
shared memory of the block.

Synchronize threads to ensure load completion.

Push flow from e(x) to the neighbors v £ N, that satis-
fies height properties and without violating ¢/(u.1') ca-
pacities.

Update the residual capacities of edges (u.1).

Update the excess flow e(u).

Store the flow pushed to each edge in a temporary glob-
al array F.

Fig. 1. Parallel Push operation in pseudocode.

Parallel PullRelabel Operation Kernel on a node u

Load 7i(u) and e() from the global memory to the
shared memory of the block.

Synchronize threads to ensure load completion.
Update excess flow e(u) of each vertex and the re-
sidual capacities ¢/ (i, v) with the flow from global
array F.

Synchronize threads to ensure completion load.
Compute the minimmun height of NV,,.

Write the new height to global memory h(u).

Fig. 2. Parallel Pull and Relabel operations irupseode.

The Parallel Pull function updates the excess of
the Parallel Push phase from the temporary arrtey da

sequential implementation. These are stored as ap- 1he Push and Pull stages implemented in two differ-

propriate-sized arrays in the GPU global memory,
becoming accessible to all threads. Auxiliary memo-
ries are also used, principally shared memorys H i
simple tiny memory available at each multiprocessor
Each multiprocessor handles a thread block with 512
threads. This value can vary with the specific hard
ware.

Two kernels are implementeBarallel Pushand
Parallel Local Relabel These two kernels do the
same as the Push and Relabpérations of the se-
quential Push-Relabel algorithm. Respectively, one

ent kernels are unnecessary when Atomic Operations
are employed, because this prevents the occurgnce
the RAW inconsistency in the hardware level.

The first basic necessary optimization adds null
edges in the image boundary nodes, similar to the
idea in [15]. This is necessary because boundary
nodes have fewer neighbors than central nodes.
Moreover, the CUDA Model is SIMD, restricting
single instructions execution in a massive datd. dti
is important to execute the same operations in each
thread in a block, avoiding divergence. Divergence

updates the excess and pushes flow to its neighborsresults in serialization of the instructions ancduc-

and the other applies a local relabeling operation
adjust height labels. For parallel correctness,Rhe

tion in performance. It is appropriate for the Pask
Relabel kernels to check six edges in each nodm ev



if the boundary nodes do not contain six neighbors. to the maximum limit if they are disconnected from
Obviously, the null edges will make no difference i the residual graph. We maintain a binary list with

the final result. size of all possible heights that the nodes cosld a
sume, storing binary values if there is at least on
node with that height. All positions of this listea
checked simultaneously by a Gap Relabel kernel and
if there is at least one position with 0 data, the
next position is 1, a gap is found and this indethie
gap height. Another kernel is executed, where all

A Parallel Global Relabelkernel based on the
original work from [12], [14] and [53] is also nexe
sary to accelerate the algorithm (Figure 3). basi-
cally a Breadth-First Search starting from the dink
node and the only nodes that are visited are those

With ungaturated neighl_:)or gdges adjacent tmd_ nodes with height greater than this gap are chatmed
E]hoedlresn(heg\?eb%rr?éag;gtefgs;inltke:aagg:s Cgﬁglﬁsm\)’\étghar é[he maximum instantly. This heuristic_ improves the
added to a list of nodes to be visited ' convergence of the method. The main advantage of
' this compared to the Global Relabel is the small

For each iteration, all nodes in this list haveithe overhead and speed of a single iteration.
heights updated based on the distance frofrhen,

. = Gap Relabeling kernel operati aph Gf
they are removed from the list and their neighlaoes ap Relabeling kernel cperation on a graph Gf

added. Each node is also marked as a visited mode i Start a binary gap array G, with false and a gap
another list. Only nodes never visited and added as variable with zero.
new node to be visited have their heights updated. Check all ii(u).¥u e V. If exists af least one node
This heuristic helps on quickly Push-Relabel conver h(u) = n, then G, [n] = true.
gence, but every execution of it is very slow.dt i Synchronize all threads. ,
important to execute it only a few times during the Fiml the:misimimm i suchias &, [n] = one and G,
execution. [+ 1] = false.
gap <« 1.
Global Relabeling kernel starting on a node r on a if gap > 0 then
graph Gy for each v = Grin parallel do
If h(v) > ga}) then

Start a frontier array F, a temporary array F,, and

a visited nodes array V. Mf'-} < his)+ 1.
F.[t] « tue. mﬂe;l;:_'f
LevelBFS « (). i
N end if
while 5 F_ [x]|= nrue. such thar x € I do
for each 1 € ¥ in parallel do Fig. 4. Gap Relabeling operation in pseudocode.
if F, [u] = true and ¥, [«] = false then
V, [u] < true.
F, [u] « false. 6. Human Skin Database
for each v £ N, do
if c(v.ur) > 0 then In this section we present our color database which
Hfv) < LevelBFS + I. is crucial to obtain the automatic seeds necessary
F,, [v] « true. define the weights of the edgesGn
end if In order to define an energy function for skin de-
end for tection, we propose the use mimages where skin
end if regions and non-skin regions are explicitly markgd
end for some user. The idea is to use these multiple imiages
LevelBFS «—LevelBFS + 1. infer the likelihood of a pixel color to represenskin
FoeFp or non-skin region.
end while

In each imagd,, 0 <i <n, of the database,

ixels are marked as skin, forming an object re-
Fig. 3. Global Relabeling operation in pseudocode. I"IO P 9 !

Another heuristic implemented in our GPU Push- 9'°" OLl;, andn, pixels are marked as back-
Relabel is a parallel version of the Gap Relab@-(F  ground, forming a regionB[Lll, . Note that
ure 4), based on the original heuristic from [18@].

this heuristic, we change in parallel the nodeglei OUB s not necessarily a partition df . This



means that the user does not have to label allspdte n d.
the image. Zﬁ
—~d +d .

The database is then defined ibyets, each one  @(p,) = E,(X(p) =0) = =—L_bL

composed byk, colors of O and k, colors ofB, .

(%)
n

Thesek, and k, colors are colors computed using a

quantization method capable of finding the besbisol X -X

that represents each gamut subregion of each iinage EZ(X(D), X (Q)) = M

database. Each image will be represented by mean HCP —CqH +1 (6)
colors that try to represent the entire user marked

gion. In our work, we use the K-means method [36]

for simplicity. 1=1

7. Proposed M ethod where C, and C, are the colors of the neighbor pix-

No_w we describe how our color database is used els p and g. The term |X(p)— X(q)| makes
to define the energy terms in our problem. E,(X(p), X (q)) = 0 wheneverp andq belong to

Let CO,,, be am™" object color defined by the ~ he Same set. -
: The energy terms are used for defining costs for

each edge in the grapk, defines costs for a pixel
belonging to a foreground (4) or background (5) re-

quantization method of thie” image of the database
and CB; be thel-" background color of the samé

quantized image of the database, where 0 < kg, gion andE, set penalties whep and g nodes are
0 <l <k, and 0 <i <N. Itis possible to define the  assigned with different labels (6). The=1 term is
similarities by the following functions an empirical value that associates a penalty to the
boundary termE,. Increasing this constant, we pe-
d. =min HC -CO H nalize adjacent pixels grouped in different sedis-r
o0, m|[~p m,i . i . .
©) ing the possibility of neighbor tones being
d,, =min, HCP -CB 'H represented in the same set.

It is not necessary to mark pixels as object or
background in the image to be segmented. The ener-
where C  is the color of the pixep that we need to gy terms were conceived to gather skin and non-skin
information only from the database images. Thus, th
user presents an image which is segmented automati-

distance betweeEp and the colors of the™ object cally by the method based on the database colors.
set and the colors of thie" background set in the

database, respectively.
Similar to [35], our energy terms for (2) are then

label as skin or notfl,; and d,; are the minimum

8. Experimental Results

defined as S .
Our tests were evaluated considering time compu-
i do,i tation and visual quality of the output segmentatio
~d  +d . They will be presented separately in this section.
Ap,) =E(X(p)=1)=———- @
n 8.1.Visual quality

The tests featured in this section were obtained
with different k, and k, mean colors parameters.

On the database, 20 images are user marked with ski
and non-skin regions. Some examples of user marks
are presented in Figure 5. Some images of our data-



base belong to the Berkeley Image Segmentation
Database [39]. Naturally, when more images and
consequently skin and non-skin colors are stored,
more samples of different tones are considered, im-
proving the average energy and leading to better re
sults. However, with the increase of the databihee,
time computation of the energy terms increases sig-
nificantly.

Fig. 5. Examples of user marks on the databasedstorages.

Our method was applied to images of people be-
longing to different ethnic groups. The results are

(b)

% - %

(©) (d)

Fig. 6. Example of segmentation results with skie-tones in the
background. Figure 6(a) is the original image. Fég6(b) is a

consistent because the possible skin colors forms a segmentation witkb = 64, Figure 6(c) hakb = 128 and Figure

small subset of the RGB space. Consequently, a skin

pixel tends to have small distances for all imaiges
the database, minimizing the cost in Equation (4).
The segmentation performs better when the data-

base has an adequate number of images with hetero-

geneous color tones. When more background pixels
are marked, fewer potential errors can occur in the
segmentation of an image. This is shown in Figure 6

In our tests, the object color parameteKijs= 32.

In other words, each user marked image in the data-

6(d) haskj, = 256.

The method is dependent on the database images.
It is important to mark well the different backgral
tones as much as possible, to reduce segmentation
mismatch. The distance metric is appropriate to re-
duce errors, because if a background color of the
segmented image is not well represented in the data
base background set, then probably its Euclidesn di
tance to another database background color will be

base has 32 mean colors computed by a quantizationsmall. However, errors may occur when a back-

method that belong to the @t It is not necessary to
increase this value because the skin color set moes
vary significantly along with the database samples.
However, the entire RGB color space can be stared i
the background set, including even the skin coftr s
Consequently, it is recommendable to use a higher

background color parametly, . Many tests were

evaluated withk, = 64, k= 128 andk, = 256.

Figure 6 shows an image with examples of their
automatic human skin segmentation. Figure 6(a) is
the original image of a soldier, where cloth toés
background can be confused with human skin colors.

In Figure 6(b) the parametdq, = 64 was insufficient
to represent many skin-like background regions. In-
creasing this value t&, = 128 reduces the errors, as

depicted in Figure 6(c), because more background
tones similar to cloth are considered. Finally, hwit

k, = 256 in Figure 6(d) the errors are reduced.

ground skin-like tone on the segmented image is not
well represented in the database. A similar example
of skin-like background region is shown in the flow
ers of Figure 7.

e (a) L2
R %
v ¥

)

Fig. 7. Other examples of segmentation results skth-like tones
in the background. Figure 7(a) is the original imagigure 7(b),

7(c) and 7(d) has respectivd()é =64, kb =128 andkb = 256.

In some cases it is practically impossible to re-
move errors because the background tones are iden-
tical to the skin tones represented in the database
This is shown in some pieces of clothes in Figure 8



Even including the image with background marks
could not be sufficient to solve this problem. This

means that color based segmentation may not be suf-

ficient for certain situations.

Increasing thek,, value is highly recommended to
improve the visual results of our method, but ihdt
adequate to use a huge value. A larlggronstant

compared to thé, include more pixels to the back-

ground and not to the object skin set. Considering
that many possible background regions will have

segmentation witI'Kb = 64, Figure 9(c) hakb = 128 and Figure

9(d) hask,, = 256.

A comparison of our method with a classical skin
segmentation based on RGB threshold [32] is pre-
sented as follows. This method was chosen bectuse i
is a standard technique very employed in this area.
Ten images with manually user marked ground truth
were used to evaluate tests comparing the method
from [32] with ours. The images used in this experi
ment are presented in Figure 10.

skin-like tones, many correct skin regions will be
labeled incorrectly.

“ (b

A

w W
" (c) < (d)

Fig. 8. Example of segmentation where some backgrqixels
are not removed even increasing the mean backgraatat
parameter. Figure 8(a) is the original image. Fégdb), 8(c) and

8(d) has respectivekb =64, kb =128 andkb = 256.

Figure 9 shows an example where the increase of|
the k, parameter inserts errors in the correct skin
region, making the labelling inadequate.

3

[ = [ =
AV\{L (c) AV\XL (d)

Fig. 9. Example of segmentation where the errorsldvincrease

with a hugekb . Figure 9(a) is the original image. Figure 9(bgis

Fig. 10. Ten images used in tests comparison ofrté#nod from
[32] with our method.

In order to compare the methods accuracy, all im-
ages of Figure 10 are analyzed by the corresponding
classification errors: True Positives (TP), Truggble



tives (TN), False Positives (FP) and False Negstive Table 1. Results generated by the method from ifB8jtal pixels

(FN). Four tables were generated based on these cla
sifiers. Some examples of images with Ground Truths

percent. The first column indicates the images Useah Figure
10. True positives, true negatives, false positieesl false
negatives are presented in percent in the nextreddu Sixth

segmentation results produced by our method and by column presents the total number of correct asdigeels in the

the method in [32] are depicted in Figures 11 add 1

image and the last one shows the total number ofgvassigned

These images are represented by binary colors, suchPXels in the segmented image.

thgt black colors are background and V\_/h|te tones ar TP ™ = =N el B
skin. Table 1 (_avaluates the tests checking theraecu (@) | 20.49 72,64 526 15d 9313 685
cy of RGB skin threshold of [32]. Table 2 presents | (b) 6.54 85.92 7.38 014 9246 752
the results of our proposed method consideK © 1.56 78.73 19.10 058 8029 19.68
. prop Kg= _ (d) [ 30097 67.31 1.09 0.60] 9878 1.9

64. Respectively, Table 3 and 4 shows the classifie (e) 7.73 62.16 28.00] 210 69.89 3010
; - - [6) 457 90.85 3.95 061 954p 45p

rates with kb 128 andkb 256. (9) 32.75 53.52 13.34 037 86.27 13[1
(hy [ 12.09 23.22 63.40 127 3531 64.57

[0) 2.25 92.20 5.29 024] 9445 558

j [0) 0.75 97.46 1.76 001] 9821 1.7F

(b) (©

=00

“ €))
“ (d)

Table 2. Results of our skin method V\klg = 64 in total pixels

percent. The first column indicates the images Useah Figure
10. True positives, true negatives, false positiesl false
negatives are presented in percent in the nexirewu The sixth
column presents the total number of correct asdigirels in the
image and the last one shows the total number ofgvassigned
pixels in the segmented image.

(e) Img TP TN FP FN Acc Err

(@) 21.07 71.84 6.07 1.0 9291 7.08
Fig. 11. Binary image segmentation of Figure 10BJack tones (b) 6.50 89.64 3.66 018 96.14 3.84
are identified as background and white tones atified as skin. c) 1.68 56.44 41.39 047 5812 41.86
Figure 11(a) is the user marked ground truth. FEgut(b) was (d) 28.81 67.70 0.71 2.7 9631 347
generated with image segmentation method of [3gurE 11(c) is (e) 6.04 76.15 14.00 3.79 82.19 17./9

. ] ) (U) 4.52 91.61 3.20 0.66] 96.13 3.8p

a segmentation using our method V\klg = 64, Figure 11(d) Q) 32.42 65.52 134 070 9744 244
vk, = 1283 e 110 sy = 256 e o e A

() 0.74 97.98 1.24 0.02| 98.7p 1.2p

Fig. 12. Binary image segmentation of Figure 10Biack tones
are identified as background and white tones atifiled as skin.
Figure 12(a) is the user marked ground truth. Egil2(b) was
generated with image segmentation method of [3BurE 12(c) is

a segmentation using our method V\klg = 64, Figure 12(d)

useskb =128 and Figure 12(e) usééo = 256.

Table 3. Results of our skin method V\klﬂ = 128 in total pixels

percent. The first column indicates the images Useah Figure
10. True positives, true negatives, false positiesl false
negatives are presented in percent in the nexirewu The sixth
column presents the total of correct assigned pikelthe image
and the last one shows the total of wrong assigneels in the
segmented image.

Img TP TN FP FN Acc Err
(@) 20.32 73.84 4.06 1.76 94.16 5.2
(b) 6.42 91.17 2.13 0.26) 97.59 2.39
(c) 1.45 89.76 8.07 0.700 91.21 8.97
(d) 25.22 68.07 0.34 6.35 9329 6.9
(e) 3.05 84.69 5.46 6.78 87.74 12.p4
® 4.21 93.43 1.37 0.96] 97.64 2.3B
(9) 31.77 66.15 0.71 135 9792 2.06
(h) 12.43 49.72 36.90 0.92 62.15 37.B2
() 1.96 96.97 0.51 0.54] 9898 1.0p
() 0.71 98.64 0.58 0.05 9936 0.6B




Table 4. Results of our skin method V\kg = 256 in total pixels

percent. The first column indicates the images Useah Figure
10. True positives, true negatives, false positieesl false
negatives are presented in percent in the nexnuwu The sixth
column presents the total number of correct asdigirels in the
image and the last one shows the total number ohgvassigned
pixels in the segmented image.

Img TP TN FP FN Acc Err
(a) 18.07 75.02 2.89 4.01 93.09 6.9
(b) 6.29 91.93 1.37 0.39] 9822 1.76
(c) 1.30 95.01 2.82 0.85| 96.31 3.7
(d) 23.17 68.23 0.18 8.400 9140 8.58
(e) 0.84 87.87 2.26 8.99 8871 11.p5
(f) 3.81 94.04 0.77 1.37 97.85 2.14
(9) 30.58 66.50 0.36 254 97.08 2.90
(h) 11.90 81.37 5.25 145 9327 6.70
(1) 1.80 97.31 0.17 0.70f 99.1p 0.8F
() 0.69 98.86 0.36 0.07| 9955 0.4B

We can draw some conclusions from the experi-
ments. Comparing Table 1 with Table 2, five seg-
mented images have fewer errors with our method
than with the classical one [32]. These images have
background pixels with yellow and red tones that ar
skin-like tones. In our method, they are not easily

confused because the database stores a heterogeneou

set of background colors that reduces significantly
the overall error.
However, many false positives were detected with

Kk, = 64, as shown in the images from Figure 10(e)

set and the propensity of set assignment is tadiecl
pixels to the background and not the object set, ex
cept if the analyzed pixel has skin tones very Igimi

to the whole skin set. This situation occurs in som
considered images as, for instance, in Figures)10(a
10(d), 10(g). But for some image examples this in-
crease can be extremely advantageous, as in Figure

12, where with the increase of thg, many yellow

skin-like tones were removed, reducing the total er
rors.

8.2.Time complexity

Another problem that can influence significantly
the final solution is the time complexity of the-im
plementation. The computation of the proposed ener-
gy can be very slow depending on the total number o

database images, user marks or on kjeand K,

parameters. Considering these factors, it is varg h

to do real-time segmentation on sequential machines
However, if we implement it on the GPU architecture
we can obtain efficient segmentation even for video
A comparison of the times to compute the cost
function terms is featured in Table 5 using the sam
energy parameters both in the CPU and the GP®B. Iti
also featured the computation of the graph-cutan T
ble 6. The CPU used is a Core 2 Duo with 2.53 Ghz
and the GPU used in this specific experiment is a

and 10(h). This happened because many backgroundNvidia Tesla C1060 with 240 stream processors. This

tones in the segmented images are not well
represented in the skin database. It is possible-to

duce this error by increasing the total samigjeof

configuration gives a good visual result but isasto
converge. This test was done using three different
images and dimensions. These images are depicted in
Figure 13.

background tones considered. Consequently, more
tones of image database will be considered, for in-
stance, these mismatched yellow and red skin-like
tones.

It can be easily seen that with the increase of the

parameterk, = 128, practically the total pixels errors

of all images is dramatically reduced. This is oo,

because a more complete background description ig

considered during the assignment of a given pixel.
However, it is not guaranteed that with the in-

crease of the background parametekto= 256 the

errors will be more reduced. As said before, the-no

skin database contains the whole RGB set, including
skin colors. With the increase &, , more correct

skin pixels can be assigned to the database, becaus
the considered non-skin background set of the data-
base will be very huge compared to the skin object

Fig. 13. Images used in the energy terms consbruetkperiments.



Table 5. Comparison between CPU and GPU times riergy

construction.

Image Dimensiong CPU Time| GPU Time

(a) 188 x 205 29.5s 37ms

(b) 640 x 480 241.28s 239ms

(c) 1280 x 960 | 957.266s 897ms
Table 6. Comparison between CPU and GPU times rigolgeut
computation.

Image Dimensiong CPU Time| GPU Time

(a) 188 x 205 16ms 24ms

(b) 640 x 480 172ms 78ms

(c) 1280 x960| 1.73s 243ms

The construction of the energy terms for Figure 13
in Table 5 was extremely more efficient to compute
in the GPU when compared to the CPU. The con-
struction of the energy terms consists of onlyharit
metic operations, becoming more appropriate to be
performed in the GPU than the CPU. A comparison
of the graph-cut computation of the images in Fégur

13 using both the CPU and GPU approaches is de-

picted in Table 6. As it can be seen, the graph cut
computation in GPU is not as efficient as the eperg
construction, but it is possible to obtain a sigpaift
speedup.

Finally, we evaluate experiments with video seg-
mentation. For this we defined a different dataliase
improve the speed of the construction of the energy
terms. Tests were done with video sequences o size
equal to 320 x 240, 640 x 480 and 1280 x 720. Table
7 shows the results in terms of the number of fame
per second for these videos. Considering that the
energy construction is an expensive computational
step, it is not appropriate to compute it at eaamé.

We did tests constructing the energy at every 5
frames, obtaining good visual results for low resol
tion video sequences (320 x 240), achieving approx-
imately 41 FPS. However, with the increase of the
resolution of the video, the number of frames per
second reduced significantly because the energy con
struction and the graph-cut became more complex to
compute. For high resolution videos the computation
is slow, obtaining 6 FPS. We also computed the va-
riance of the data in order to show that the dida d
persion data is not significant. An example of seg-
mented video sequences used in these tests isddatu
in the Figure 14.

Fig. 14. Video Segmentation results.

Table 7. FPS analysis of video sequences of diffetenensions.

Video Dimensions Mean Variance FPS
Time (ms) | Time(ms)
(a) 320 x 240 24 0.0001 41
(b) 640 x 480 67 0.0001 15
(c) 1280 x 960 176 0.0008 6

9. Conclusion and Future Works

This works presents a new approach for efficient
automatic human skin segmentation for image and
videos using Graph-Cuts in GPUs. On traditional
implementations of Graph Cuts, the energy function
needs to be assigned by user marked seeds, what in
this work it is not needed. The method uses a data-
base of marked images which gives clues for the al-
gorithm on what regions are skin or non-skin. As we
presented, our method can yield good results when
compared with traditional color segmentation tech-
nigues.

On future works, we intend to use new color spac-
es with the Graph Cuts approach as the HSL and Lab.
This is necessary because the RGB color space, used
entirely in this work, cannot deal with drastic iear
tions, for instance, due to illumination. Also ag w
have shown, the color metric is sometimes not suffi
cient to yield an exact segmentation. In those s;ase
new features could be employed to our database ap-
proach, like textures.

Temporal coherence is another property that can
also be used to improve the overall performance of



the method. Reusing the results obtained in a pre- [12] Cormen, T. H,

vious frame calculation as an input to the nextna
can improve significantly the algorithm speed [25].
Also, real-time can be achieved by using GPU specif
ic techniques like Loop Unrolling [40].
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