
Using graph cuts in GPUs for color based
human skin segmentation

Lucas Lattari*, Anselmo Montenegro, Aura Conci, Esteban Cluaa, Virginia Mota, Marcelo Bernardes
Vieirab, Gabriel Lizarragac

aInstituto de Computação, Universidade Federal Fluminense, llattari@ic.uff.br, anselmo@ic.uff.br ,
aconci@ic.uff.br, esteban@ic.uff.br, Niterói, Rio de Janeiro, Brazil.
bDepartamento de Ciência da Computação, Universidade Federal de Juiz de Fora,
virginia.fernandes@ice.ufjf.br, marcelo.bernardes@ice.ufjf.br, Juiz de Fora, Minas Gerais, Brazil.
c Computer Science Department, Florida International University, gamaliz@gmail.com, Miami, USA.

Abstract. In this paper we propose a new method to deal with the problem of automatic human skin segmentation in RGB
color space model. The problem is modeled as a minimum cost graph cut problem on a graph whose vertices represent the
image color characteristics. Skin and non-skin elements are assigned by evaluating label costs of vertices associated to the
weight edges of the graph. A novel approach based on an energy function defined in terms of a database of skin and non-skin
tones is used to define the costs of the edges of the graph. Finally, the graph cut problem is solved in Graphics Processing
Units (GPU) using the Compute Unified Device Architecture (CUDA) technology yielding very promising skin segmentation
results for standard resolution video sequences. Our method was evaluated under several conditions, indicating when correct or
incorrect results are generated. The overall experiments have shown that this automatic method is simple, efficient, and yields
very reliable results.

Keywords: graph cuts, skin segmentation, GPU computing, pixel-based classification; RGB color space, push-relabel algo-
rithm, seeds database;

*
Corresponding author. E-mail: llattari@ic.uff.br.

1. Introduction

Color Segmentation is an important problem in
image processing [38] that presents a great number of
applications as encoding [9] and identification. Hu-
man identification is mainly based in skin segmenta-
tion, which is a research field with many applications
such as video surveillance, face or hand gesture rec-
ognition, content-based visual information retrieval
(CBVIR), filtering on the web among others. It is a
fundamental task for any application that searches for
human sequences on image and video streams. In
many situations, very little human intervention must
occur (as when the data to be processed is
represented by a huge database).

Most skin segmentation methods use a color based
approach and introduce a color metric which consid-

ers the distance of the color of a pixel to a specific
color [1, 3, 18, 24, 38, 42, 49, 51]. It is not a trivial
problem to solve, since objects and backgrounds exist
in a large variety of colors, including skin tones.

In our previous work, we presented a new auto-
matic per-pixel human skin segmentation method,
which is highly customizable and yields good results
[34]. It is based on the premise that skin colors form a
small and unique subset of the RGB color space,
which makes it easier to solve this specific case of
segmentation [49]. The segmentation problem is
modeled as the minimization of a new energy func-
tion with an intuitive semantics, being automatically
computed from a database of skin tones. The minimi-
zation solution is done by employing the Graph Cuts
method which guarantees the robustness and good
quality of the results.

However, the main flaw of our previous solution is
the inefficiency of our energy function computation
based on database user marked seeds when it is done
sequentially. The main contribution of this paper is
an implementation and adaptation of our original
method in [34] for Graphics Processing Units using
Compute Unified Device Architecture, improving the
speed of the algorithm convergence. With a faster
convergence it is possible to compute the automatic
human skin segmentation efficiently not only for im-
ages, but also videos with adequate frames per
second for standard video resolution.

Differently from the previous work in which we
used a sequential Boykov and Kolmogorov algorithm
[4] to compute the minimization of the energy func-
tion, we implemented a GPU version of another algo-
rithm based on Vineet et al [53], called Push-Relabel
algorithm. This also improves significantly the time
efficiency of our solution.

We obtained good segmentation results for stan-
dard resolution video sequences in near 16 frames per
second using a Nvidia Tesla C1060 with 240 stream
processors. All issues concerning the implementation
with the acceleration strategies used to increase the
algorithm performance are detailed in the paper.

Another contribution of this work is a more com-
plete study of the behavior of our method proposed in
[34] when we modify some energy function parame-
ters, as the total number of mean colors of object and
background regions of images in the input database.
More accurate visual results can be obtained when it
is appropriately adjusted. We evaluate in our experi-
mental results the accuracy of our solution by check-
ing the results with user marked ground truth images.
A comparison of our method with a classic skin seg-
mentation based on RGB [32] is also performed in
this paper.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the main works related to ours.
Section 3 describes the basis of the segmentation
based on Graph Cuts, a fundamental issue in our pa-
per. The main algorithms used to solve the maxi-
mum-flow problem associated to the Graph Cuts me-
thod are described in section 4. The parallel version
of the Push-Relabel method used in our implementa-
tion is shown in the Section 5. In Section 6, we de-
scribe how the energy function is defined in terms of
the database and how it is used in our model. The
methodology is explained in the Section 7. Our re-
sults are presented in Section 8 and finally, in Section
9, conclusions and future works are outlined.

2. Related Works

This work is related to three main topics: models
and methods for skin segmentation, segmentation
methods based on graph-cuts and acceleration strate-
gies for implementing graph-cuts in Graphics
Processing Units. We summarize below some of the
main contributions associated to such subjects.

2.1. Models for skin segmentation

Many methods and models have been proposed to

segment human skin. Hu et al [57] obtained skin re-
gions after a detection step based on a single Gaus-
sian Model and a Gaussian Mixture Model,
representing respectively skin and non-skin. After
that, three main steps are applied to produce the final
result: noise suppression, segmentation and filtering.
The segmentation method used in Hu’s work is based
on Graph Cuts, similarly to our work. Their results
are very good, even when illumination varies.

Color analysis of skin and non-skin regions is
widely used. Cheddad et al [10] presented a novel
color space for skin tone detection that works mostly
with the luminance of the RGB image. The hypothe-
sis of this work is that luminance inclusion does in-
crease separability of skin and non-skin clusters. The
data of this new space admits a distribution that could
be fit into a Gaussian curve using Expectation Max-
imization. Their results are compared with three other
methods and showed lower false negative rates.

Sigal et al [49] considered time-varying illumina-
tion with multiple sources and colors, using a Markov
model to predict the evolution of skin histogram on
HSV color space over time also obtaining good re-
sults.

 Also with a clustering method, Ravichandran and
Ananthi [43] obtained skin segmentation using K-
means. The idea is to convert the RGB image into a
Lab color space and then find K color regions. The
skin detection is made using simple boolean decision
rules for each K region. The results presented in [57]
seem to be more robust in terms of segmentation
quality. However, the Ravichandran and Ananthi’s
work proposes a more efficient approach in terms of
the computational cost.

Jedynak et al [23] compared three approaches for
skin detection. Each one relies on a maximum entro-
py model based on constraints. The first is a baseline
model in which pixels are considered independent
and measured by a Receiver Operating Characteristic
curve. The second is a Markov Random Field that

forces smoothness in the solution. The final model
used is based in color gradient. The MRF and the
color gradient approaches were better, resulting in
approximately 84% true positive detection rate.

2.2. Energy minimization via Graph-cuts

One of the first works solving global minimiza-

tion energies for computer vision was the one pro-
posed by Greig et al [17] for image restoration. It was
the first work to discover that powerful graph-based
algorithms for combinatorial optimization can be
used to minimize certain important energies in com-
puter vision. They created an image-based two ter-
minal s-t graph whose construction is based on the
Gibbs Energy [3, 4, 6, 15, 17, 21, 22, 28, 31, 33, 35,
37, 41, 44, 45, 46, 53, 54] such that the minimum
cost graph cut gives the optimal binary labeling solu-
tion. Previously, such energies could not be solved by
exact minimization methods. One alternative was to
use metaheuristics like Simulated Annealing [27].

The Graph Cuts concept was preceded by a num-
ber of graph-based methods for image clustering that
used combinatorial optimization algorithms or ap-
proximate spectral analysis techniques, like norma-
lized cuts [48]. These works are mentioned in Boy-
kov and Funka-Lea [2]. The goal of some of these
approaches is to produce a completely automatic
high-level grouping of image pixels. This means that
they divide an image into “blobs” or “clusters” using
only generic cues of coherence or a measure of affini-
ty between pixels. Differently, Graph Cuts integrate
more appropriately model-specific visual cues and
contextual information in order to define more accu-
rately particular objects of interest. This is also re-
lated to other categories of segmentation methods
like Snakes [26], Active Contours [55], Intelligent
Scissors [20] and Level-Sets [47].

Researchers have been creating or comparing ap-
proaches for the minimization step. Well known ex-
amples are Snakes [26], Intelligent Scissors [55] and
Level-Sets [47]. Techniques like Gradient Descent [8,
56] can be applied to any energy function of conti-
nuous variables and others like Simulated Annealing
can be used in any function of discrete variables.
However, these generalities can imply in very poor
results since they get stuck in the local minima or
take an extremely long time to converge.

Boykov and Jolly [3] developed a technique to
solve binary image segmentation by minimizing the

Gibbs Energy using Graph Cuts. It was the first effi-
cient work for N-dimensional applications, compris-
ing region and boundary properties of elements. It is
a general-purpose segmentation, needing initial user
mark cues to characterize which elements probably
belong to an object or a background set. Their solu-
tions allows new additional user marks even after the
initial segmentation, without recalculating them from
scratch. It was tested with 2D images and 3D vo-
lumes giving good and stable results even when ini-
tial seeds were changed after the final result, per-
forming with good speed. They motivated other
works to approach different problems with similar
methods.

However, one of the main problems of the Graph
Cuts approach is the computational complexity of its
execution. Some of these minimization algorithms
are very expensive for instances with a large number
of pixels. Many works have studied the practical effi-
ciency of it in Computer Vision and proposed major
improvements [4].

Boykov and Kolmogorov [4] provided an experi-
mental comparison between different Graph Cuts
algorithms for computer vision applications. They
analyzed the complexity of methods based on Gold-
berg and Tarjan [16, 19], Ford and Fulkerson [13, 14]
and a new method created by them. Their method
was significantly faster than the previous ones. It is
based on the original Ford and Fulkerson algorithm
but it builds two simultaneous search trees for ter-
minal nodes, reusing data at each iteration. Their im-
plementation is the current sequential state-of-art
method for Computer Vision implementations of
Graph Cuts.

Other works have proposed improvements on the
cost function task of the energy minimization frame-
work. Li et al [35] developed a method for interactive
image cutout, focused on user usability without loss
of performance. Their method consists of two steps:
an object marking task, like presented in [3] and a
pre-segmentation computation, followed by a simple
boundary editing process, creating the output seg-
mentation. The nodes from the graph are not single
pixels, but similar color regions generated by a Wa-
tershed algorithm [52] and becoming superpixels.
Their experiments yielded remarkable results in usa-
bility case studies, where users took overall less than
60% of the time using their software than traditional
Magnetic Lasso feature present at common image
processing software. The energy function used in our
work is related to the one they proposed.

2.3. Graph-cuts in GPUs

Some works attempted to improve the efficiency

of the Graph Cuts method proposing versions running
in parallel processors. Our work belongs to this cate-
gory, running on Graphics Processing Units.

Many parallel approaches were made using GPU
Computing, after they became more popular and easy
to use, mainly because of the development of pro-
gramming libraries like CUDA [40]. Examples of
works in this area are the ones proposed by Vinnet
and Narayanan [53], Hussein et al [20], Garret and
Saito [15] and Yildiz and Akgul [56].

Hussein et al [20] proposed the first implementa-
tion of the Graph Cuts algorithm in CUDA for gener-
al graphs. It is a GPU version of the Push-Relabel
algorithm, making two important changes: the only
labeling scheme is the Global Relabeling heuristic
[12] and sending flow from a node is an operation
divided into two phases: Push and Pull. The first only
sends flow, storing an amount on a temporary memo-
ry and the Pull updates all entire flow pushed before.
This is necessary to avoid Read-After-Write hazards.
They also introduced two optimizations. The first one
is a lockstep Breadth-First Search which performs
Prefix Sum Operations when traversing each depth
level which is necessary for general graphs. It can be
considered a lockstep operation because only a single
direction is traversed at a time, while the others are
blocked. The second optimization is basically the
emulation of a cache. Instead of loading the data of a
single node in the global memory, it loads a 2D tile
which is added into a lattice, a data structure created
during the Breadth-First Search stage containing only
visited nodes. That strategy enables coalesced memo-
ry access, improving the algorithm speed. The spee-
dup obtained is in the range of 1.7-4.5 over the CPU
version proposed in [4].

Vinnet and Narayanan [53] proposed an imple-
mentation of Graph Cuts in CUDA for binary seg-
mentation using the Push-Relabel algorithm. They
presented two versions of the same algorithm, using
atomic and non-atomic operations. They also pro-
posed a new heuristic called Stochastic Cut. This
heuristic relies on the fact that after a few iterations,
the processing done on the majority of the nodes is
finished. If at a given iteration, an entire thread block
does not modify the residual graph by pushing flow,
then the block is considered inactive and delayed for
10 iterations. Their implementation is very similar to
the one described in [20], including the use of GPU
shared memory and Push-Pull operations. One of the

characteristics of their work is that it does not use
prefix sum operations. Finally, they defined a simple
dynamic Graph Cuts implementation for video seg-
mentation, always reusing solutions from the pre-
vious frames. They achieved a level of performance
10-12 times faster than [4] and approximately 3 times
faster than [20] for images. However, their approach
is only applicable for grid graphs and not for general
maximum flow calculations.

Some GPU-based works do not use the Graph Cuts
method directly. Yildiz and Akgul [56] formulated
the Graph Cuts optimization as a gradient descent
solution on the GPU. Working differently from the
previous Maximum Flow approaches, this solution is
given by the Minimum Cut energy function formula-
tion, solving the labeling problem directly without
graph processing. It is based in Linear Programming
and decreases spatial complexity. It is modeled by a
Lagrange dual model and a modified approximate
objective function which is differentiable at any point.
Their method needs less memory than the standard
Maximum Flow methods, but gives some small errors
at smooth regions because the used function is an
approximation. For some examples, their method
converges much faster than [4].

3. Segmentation by Graph Cuts

The basic foundations of our solution are featured
in this section.

3.1. Energy Function

It is possible to find a characteristic function of an

object defined in a given domain by minimizing an
objective function, i.e., given a set V, we have to find
the characteristic function X which is the minimum
argument of a function [3] and the partition sets. A
widely used objective function in image segmentation
is the Gibbs Energy [3, 17, 35] defined as

()() () ()()∑∑
∈∈

+=
ε

λ
jii xx

ji
Vx

i xXxXExXEXE
,

21 ,)(, (1)

where ix and jx are elements of the set to be seg-

mented, V is the set of elements, ε is the set of con-

nected elements and λ is a weight. 1E is the term

that defines the cost for each ix to belong to one of

the sets. Aiming to minimize the objective function,

this cost should be inversely proportional to the prob-

ability of ix belonging to the set. It can be given as

()()
()()
()() ()oi

i

i

xXE

xXE

xXE

ρφ==
∞==

==

1

1

01

1

1

1 ()()
()()
()() ()bi

i

i

xXE

xXE

xXE

ρφ==
==

∞==

0

00

0

1

1

1

Nx

Bx

Ox

i

i

i

∈∀
∈∀
∈∀

 (2)

where O is the set of object elements, B is the set of
the background elements, N is the set of pixels whose
labels are unknown and φ is a function inversely

proportional to its parameters terms oρ and bρ .

2E is a term that defines a penalty for labeling

two connected elements with different labels. This
penalty depends on the similarity of both elements:
very similar elements have high probability of be-
longing to the same set. In this case the resulting cost
must be high; otherwise it has a small value.

The minimization of some classes of energy func-
tions can be considered a NP-Hard problem, needing
special methods to efficiently solve it. In our work,
we will minimize the Gibbs Energy using the Graph
Cuts method. The next section describes how energy
functions can be minimized in the context of Graph
Cuts theory. For more details, see Boykov et al [6]
and Kolmogorov and Zabih [31].

3.2. Graph-cuts

The energy function in (2) is used to define the

costs 0≥w for each edge () Evu ∈, on a directed

graph ()EVG ,= [4]. Two terminal nodes are de-

fined: a source s and a sink t, corresponding to the
labels that can be assigned to pixels. Each non-
terminal node in the graph will have an edge con-
nected to s and another edge to t. We assume that
every vertex lies on some path from s to t.

Two types of edges are then defined: T-links and
N-links. T-links connects pixels to terminals. N-links
connects pairs of neighbor pixels. Their costs are

based in the terms 1E and 2E , respectively.

The minimum cut of a graph is the set of edges
that removed from G creates two disjoint subsets: a
set S and a set T. These sets are subgraphs disposed
so that Ss∈ and Tt ∈ [12]. An important theorem
due to Ford and Fulkerson [14] states that the solu-
tion of the minimum cut of a graph is equivalent to
the maximum flow problem. Considering this, it is

used maximum flow algorithms to solve the mini-
mum cut problem.

In the next section, we summarize the main algo-
rithms used to solve the minimum cut/maximum flow
problem.

4. Minimum Cut / Maximum Flow Algorithms

Two most known classes of algorithms were pro-
posed to solve the maximum flow problem for Graph
Cuts minimization. One category is based on the Ford
and Fulkerson original idea [14] which enforces flow
conservation during the whole process. Another one
formulated by Goldberg and Tarjan [16] breaks the
flow conservation rule until convergence. Examples
of these will be described below.

4.1. Algorithms based on augmenting paths

The classical maximum flow algorithm based on

the notion of augmenting paths was proposed by Ford
and Fulkerson [14].

Boykov and Kolmogorov [4] proposed a new me-
thod to solve the maximum flow associated to Com-
puter Vision problems using an approach based on
the Ford and Fulkerson algorithm. It uses two search
trees on the residual graph, one with its root at the
source s and another starting at the sink t. Each tree
grows from its own terminal node.

When the two trees touch each other, an augment-
ing path is found. Flow is sent in this path as much as
possible. After that, the residual graph is updated and
new paths are searched, reusing the trees. The algo-
rithm is finished when no other path can be found.

This algorithm outperforms Ford-Fulkerson when
grid-based graphs are used. This occurs because the
search trees are reused during algorithm iteration.
However, the critical point of this algorithm lies on
the management of the trees, for example, in growing
or updating it to obtain a short augmenting path. It
does not guarantee to find the shortest path as it uses
some heuristics to search for the shortest one. The use
of such heuristics produces good quality paths while
keeping the efficiency of the overall process. In fact,
the method has a compromise between choosing any
path or the shortest one. The theoretical time bound
complexity of this algorithm is O(VE|C|), but in prac-
tice it is almost linear.

Boykov-Kolmogorov is considered the best me-
thod to compute Graph Cuts in Computer Vision for

sequential machines. However, new parallel ap-
proaches using Push-Relabel approaches have given
best times over it.

4.2. Algorithms based on Preflow

The Push-Relabel algorithm works in a more loca-

lized manner than the augmenting-paths methods
making it a strong candidate for parallelization. In-
stead of examining the entire residual network Gf =
(V,E) to find an augmenting path, generic Push-
Relabel algorithms work on one vertex at a time, ana-
lyzing and operating at its neighbors in the residual
network. Furthermore, unlike the augmenting-paths
based methods, it does not maintain the flow conser-
vation property throughout the execution.

The basic intuition of this method is very different
from those based on augmenting paths. Each node
has two additional properties, defined as excess flow
and height label. All nodes start with a height and an
excess flow equal to zero, except the height of the
source s that is fixed at |V| and the excess of s which
is infinite.

Consider the nodes {u,v} ∈ Gf . Two operations are
also defined: the one that pushes excess flow of a
node u into a neighbor v ∈ Nu is called Push. Even-
tually, the algorithm will try to push the excess flow
of u into its neighbors, but none of these nodes v ∈ Nu

has height label below the height of u. To rid an over-
flowing vertex u of its excess flow, it is necessary to
increase its height. Such operation is called Local Re-
label. The height of u is increased by one unit above
the height of the lowest neighbor that has an unsatu-
rated edge connecting them. After the local operation,
the excess of u can be pushed. When all paths to t are
saturated, the algorithm has to send the remaining
excess flow in the system back to the source s, by
continuously increasing height of the vertices with
excess flow until they achieve |V|. After this point, the
preflow becomes a legal flow and also a maximum
flow.

The Local Relabel and the Push are the operations
done in the basic Push-Relabel algorithm, but the
procedure as described above has poor practical per-
formance [12]. Much unnecessary processing is done
until convergence, because the heights are only up-
dated locally, not considering the global picture of
the distances. However, heuristics can be employed
to discharge the excess nodes to the sink s faster,

once the paths to t are saturated. Here we describe
two heuristics: the Global Relabeling and the Gap
Relabeling. These heuristics check the entire residual
graph and correct heights globally.

The Global Relabeling operation updates the dis-
tance function defined on the residual graph by com-
puting shortest path distances in the residual graphs
from all nodes to the sink. This can be done in linear
time by using a Backwards Breadth-First Search
starting at the sink t node, adjusting exactly all
heights.

The Gap Relabeling tries to find disconnected
nodes from t in the graph G. It is based on the follow-

ing statement. Suppose that g ∈ N and 0 < g < |V|.
At a certain stage of the algorithm there may be no
nodes n ∈ V with distance h(n) = g, but there are
nodes u with g < h(u) < |V|, a situation defined as a
gap. These nodes u are converging to s, and the sink t
is no more reachable from any of these vertices u.
Therefore, the label of such nodes may be increased
to |V| + 1 directly.

The addition of the Gap Relabeling heuristic to the
Push-Relabel outperforms the practical efficiency of
the pure Push-Relabel method, although usually not
as much as by adding the Global Relabeling heuristic.
These heuristics are not independent, considering that
the Global Relabeling discovers nodes disconnected
from t and makes gaps less likely. However, the Gap
Relabeling iteration has small overhead compared to
the Global Relabeling. Thus even if no gaps are dis-
covered in a run of an implementation that uses both
heuristics, the running time is almost the same as in
the implementation that uses only Global Relabeling.
In some graphs instances, many gaps are found and
the former implementation is faster than the latter.

The Push-Relabel algorithm is one of the most ef-
ficient algorithms to compute a maximum flow. The

general algorithm has)(2EVO theoretical time

complexity. As evaluated by [4], the Push-Relabel
method behaves more efficiently for dense graphs,
differently from augmenting-path based approaches
that converges rapidly for sparse graphs.

Considering only sequential architectures, it is
more adequate to use Boykov-Kolmogorov algorithm
for grid-based sparse graphs and Push-Relabel ap-
proach for grid-based dense graphs, like based in 3D
data. However, the computational power of manycore
architectures like GPUs makes appropriate the use of
Push-Relabel approaches even for sparse graphs with

very competitive results. This is detailed in the next
section.

5. Graph Cuts in GPU

In this section we describe in details our frame-
work that implements the Push-Relabel algorithm in
the GPU. First we explain the idiosyncrasies of GPUs
that we had to consider in our implementation. In the
sequel, we describe how the graph is constructed, how
the algorithms are implemented and which heuristics
were applied to accelerate the overall performance.
Our implementation is loosely based in the [15, 20,
53] works and was developed with the CUDA archi-
tecture.

5.1. GPU Computing

Graphics Processing Units were initially developed

as devices dedicated to graphics processing, improv-
ing the efficiency and the power of the graphic pipe-
line. With the advent of the new GPU models after
the GeForce series 8 and the architectures like CUDA,
the implementation of GPU computing applications
became easier to be done.

This architecture consists on a unified arrangement
of cores, which simplifies the GPU programming
model by treating it as a typical manycore processor.
Further it improves the GPU model by removing
memory restrictions or graphical idiosyncrasies for
each processor. Data representation is also improved
by providing friendly data structures to the program-
mer. The memories available in the CUDA device
can be accessed by all processors with no restriction
on its representation, though the access times may
vary depending on the memory type used.

The CUDA environment is based on the SIMD pa-
rallel architecture, where program kernels process
data grids, dividing multiple blocks in threads. It is
important to obtain maximum performance by ex-
ecuting the same operation simultaneously on differ-
ent data elements, avoiding code flow divergence.
Divergent code produces poor performance because
the CUDA model cannot deal efficiently with differ-
ent instruction flows at a given moment. Another
important fact is the lack of GPU memory lock. This
brings restrictions on how threads can modify shared
memory space.

Each thread can use a number of private registers
for its computation. A collection of threads is called a

block and runs on the same multiprocessor at a given
time. The threads of each block have access to a
small amount of common shared memory. Synchro-
nization barriers are also available for all threads of a
block. A group of blocks can be assigned to a single
multiprocessor but their execution is time-shared.
The available shared memory and registers are split
equally among all blocks that timeshare a multipro-
cessor. Multiple groups of blocks are also time shared
on the multiprocessor for execution. The collection of
all blocks in a single execution is called a grid.

Each thread executes a single instruction set called
kernel. For each thread and block is given a unique
ID that can be accessed within the thread during its
execution. An algorithm may use multiple kernels,
which share data through the global memory and
synchronize their execution at the end of each kernel.
Threads from multiple blocks can only synchronize at
the end of the kernel execution by all threads.

5.2. Maximum Flow/Minimum Cut in GPUs

The first challenge to implement Graph Cuts in the

GPU is to devise a way to implement the graph
neighborhood. Considering that graphs based on im-
ages naturally have a grid structure, we can define a
specific model to store their neighborhood structure
in the GPU. This is important not only to simplify the
algorithm, but also to reduce the total use of global
memory and the number of accesses, improving our
solution.

It is recommendable to reduce the use of global
memory as much as possible. Creating auxiliary data
structures to represent neighborhood, like adjacency
lists or adjacency matrices can impose excessive use
of memory and increase the number of accesses and
the processing times.

The Graph Cuts model is well suited to the GPU
architectures, because each thread can operate on
exactly one pixel in a SIMD fashion. Images have a
grid format, making the mapping to this architecture
very simple. Each vertex can have a 4 or 8-
Neighborhood System connectivity. Two schemes are
usually employed in GPUs for neighborhood repre-
sentation: adjacency lists and grid structures. In this
work we use only grid structures.

The data associated to the vertices and edges is
represented by arrays, where each array index i stores
the data referent to a single node i. This data structure

is appropriate to the SIMD model, which may be
treated as an array of processors. Memory coales-
cence and data manipulation efficiency is improved
considering that all threads will access and handle
contiguous data. The array size of the non-terminal
vertices and the edges’ data is always |V|.

In order to represent the vertices, two arrays are
necessary: one to store the excess flow and another to
represent the height labels that estimate the distances
to the target node. To represent edges, six arrays stor-
ing residual capacities are sufficient, two for source
and sink capacities, and four to the north, south, west
and east directions. Even nodes in the border will
have a total of six edges represented in the arrays.
However, the edges that do not exist for the border
nodes will have a residual capacity equal to zero.
This is done to guarantee memory coalescence.

The same format can be extended to represent
non-grid graphs for SIMD architectures. This is done
by modifying the original graph to become regular,
inserting null edges until all nodes have the same
number of neighbors as the node with the highest
degree. This is necessary to represent the graph in a
more friendly SIMD format [15], being able to per-
form the same operation across multiple data loca-
tions. These null edges inserted in the original system
do not modify the graph solution, because their resi-
dual capacities will always be zero.

The implementation described in this section is
based in the ideas presented in [15] and [53] with a
few modifications. The size of the CUDA grid is
equal to the image dimensions, where each single
thread is mapped by a pixel or a graph vertex.

Each node has the following data: excess flow
and height, the same attributes defined in the original
sequential implementation. These are stored as ap-
propriate-sized arrays in the GPU global memory,
becoming accessible to all threads. Auxiliary memo-
ries are also used, principally shared memory. It is a
simple tiny memory available at each multiprocessor.
Each multiprocessor handles a thread block with 512
threads. This value can vary with the specific hard-
ware.

Two kernels are implemented: Parallel Push and
Parallel Local Relabel. These two kernels do the
same as the Push and Relabel operations of the se-
quential Push-Relabel algorithm. Respectively, one
updates the excess and pushes flow to its neighbors
and the other applies a local relabeling operation to
adjust height labels. For parallel correctness, the Pa-

rallel Push stage (Figure 1) is divided into two phases,
defined as Push and Pull. This is necessary because
of the potential Read-After-Write hazard. The Paral-
lel Push stage is implemented in a kernel in which
each node sends flow to its neighbors but only mod-
ifies the edges residual capacities and not the excess
of the neighbor nodes. The updated flow is stored
temporarily in an auxiliary array. The Parallel Pull
stage (Figure 2) is executed in another kernel, usually
implemented together with the relabel operation.

Fig. 1. Parallel Push operation in pseudocode.

Fig. 2. Parallel Pull and Relabel operations in pseudocode.

The Parallel Pull function updates the excess of
the Parallel Push phase from the temporary array data.
The Push and Pull stages implemented in two differ-
ent kernels are unnecessary when Atomic Operations
are employed, because this prevents the occurrence of
the RAW inconsistency in the hardware level.

The first basic necessary optimization adds null
edges in the image boundary nodes, similar to the
idea in [15]. This is necessary because boundary
nodes have fewer neighbors than central nodes.
Moreover, the CUDA Model is SIMD, restricting
single instructions execution in a massive data grid. It
is important to execute the same operations in each
thread in a block, avoiding divergence. Divergence
results in serialization of the instructions and a reduc-
tion in performance. It is appropriate for the Push and
Relabel kernels to check six edges in each node, even

if the boundary nodes do not contain six neighbors.
Obviously, the null edges will make no difference in
the final result.

A Parallel Global Relabel kernel based on the
original work from [12], [14] and [53] is also neces-
sary to accelerate the algorithm (Figure 3). It is basi-
cally a Breadth-First Search starting from the sink t
node and the only nodes that are visited are those
with unsaturated neighbor edges adjacent to t and
their neighbors. The first iteration checks which
nodes have unsaturated sink edges. Such nodes are
added to a list of nodes to be visited.

For each iteration, all nodes in this list have their
heights updated based on the distance from t. Then,
they are removed from the list and their neighbors are
added. Each node is also marked as a visited node in
another list. Only nodes never visited and added as a
new node to be visited have their heights updated.
This heuristic helps on quickly Push-Relabel conver-
gence, but every execution of it is very slow. It is
important to execute it only a few times during the
execution.

Fig. 3. Global Relabeling operation in pseudocode.

Another heuristic implemented in our GPU Push-
Relabel is a parallel version of the Gap Relabel (Fig-
ure 4), based on the original heuristic from [16]. In
this heuristic, we change in parallel the nodes height

to the maximum limit if they are disconnected from
the residual graph. We maintain a binary list with the
size of all possible heights that the nodes could as-
sume, storing binary values if there is at least one
node with that height. All positions of this list are
checked simultaneously by a Gap Relabel kernel and
if there is at least one position with 0 data, but the
next position is 1, a gap is found and this index is the
gap height. Another kernel is executed, where all
nodes with height greater than this gap are changed to
the maximum instantly. This heuristic improves the
convergence of the method. The main advantage of
this compared to the Global Relabel is the small
overhead and speed of a single iteration.

Fig. 4. Gap Relabeling operation in pseudocode.

6. Human Skin Database

In this section we present our color database which
is crucial to obtain the automatic seeds necessary to
define the weights of the edges in G.

In order to define an energy function for skin de-
tection, we propose the use of n images where skin
regions and non-skin regions are explicitly marked by
some user. The idea is to use these multiple images to
infer the likelihood of a pixel color to represent a skin
or non-skin region.

In each image iI , 0 < i ≤ n, of the database,

on pixels are marked as skin, forming an object re-

gion iIO ⊂ , and bn pixels are marked as back-

ground, forming a region iIB ⊂ . Note that

BO∪ is not necessarily a partition of iI . This

means that the user does not have to label all pixels of
the image.

The database is then defined by n sets, each one
composed by ok colors of iO and bk colors of iB .

These ok and bk colors are colors computed using a

quantization method capable of finding the best colors
that represents each gamut subregion of each image in
database. Each image will be represented by mean
colors that try to represent the entire user marked re-
gion. In our work, we use the K-means method [36]
for simplicity.

7. Proposed Method

Now we describe how our color database is used
to define the energy terms in our problem.

Let imCO , be a m-th object color defined by the

quantization method of the i-th image of the database

and ilCB, be the l-th background color of the same i-th

quantized image of the database, where 0 < m ok≤ ,

0 < l bk≤ and 0 < i n≤ . It is possible to define the

similarities by the following functions

ilplib

impmio

CBCd

COCd

,,

,,

min

min

−=

−=
 (3)

where pC is the color of the pixel p that we need to

label as skin or not, iod , and ibd , are the minimum

distance between pC and the colors of the i-th object

set and the colors of the i-th background set in the
database, respectively.

Similar to [35], our energy terms for (2) are then
defined as

()()
n

dd

d

pXE

n

i ibio

io

o

∑
= +

=== 1 ,,

,

1 1)(ρφ

(4)

()()
n

dd

d

pXE

n

i ibio

ib

b

∑
= +

=== 1 ,,

,

1 0)(ρφ

(5)

() ()() () ()
1

, 22
+−

−
=

qp CC

qXpX
qXpXE

(6)

1=λ ,

where pC and qC are the colors of the neighbor pix-

els p and q. The term () ()qXpX − makes

() ()() 0,2 =qXpXE whenever p and q belong to

the same set.
The energy terms are used for defining costs for

each edge in the graph. 1E defines costs for a pixel

belonging to a foreground (4) or background (5) re-

gion and 2E set penalties when p and q nodes are

assigned with different labels (6). The 1=λ term is
an empirical value that associates a penalty to the

boundary term 2E . Increasing this constant, we pe-

nalize adjacent pixels grouped in different sets, rais-
ing the possibility of neighbor tones being
represented in the same set.

It is not necessary to mark pixels as object or
background in the image to be segmented. The ener-
gy terms were conceived to gather skin and non-skin
information only from the database images. Thus, the
user presents an image which is segmented automati-
cally by the method based on the database colors.

8. Experimental Results

Our tests were evaluated considering time compu-
tation and visual quality of the output segmentation.
They will be presented separately in this section.

8.1. Visual quality

The tests featured in this section were obtained

with different ok and bk

mean colors parameters.

On the database, 20 images are user marked with skin
and non-skin regions. Some examples of user marks
are presented in Figure 5. Some images of our data-

base belong to the Berkeley Image Segmentation
Database [39]. Naturally, when more images and
consequently skin and non-skin colors are stored,
more samples of different tones are considered, im-
proving the average energy and leading to better re-
sults. However, with the increase of the database, the
time computation of the energy terms increases sig-
nificantly.

Fig. 5. Examples of user marks on the database stored images.

Our method was applied to images of people be-
longing to different ethnic groups. The results are
consistent because the possible skin colors forms a
small subset of the RGB space. Consequently, a skin
pixel tends to have small distances for all images in
the database, minimizing the cost in Equation (4).

The segmentation performs better when the data-
base has an adequate number of images with hetero-
geneous color tones. When more background pixels
are marked, fewer potential errors can occur in the
segmentation of an image. This is shown in Figure 6.

In our tests, the object color parameter is ok = 32.

In other words, each user marked image in the data-
base has 32 mean colors computed by a quantization
method that belong to the set O. It is not necessary to
increase this value because the skin color set does not
vary significantly along with the database samples.
However, the entire RGB color space can be stored in
the background set, including even the skin color set.
Consequently, it is recommendable to use a higher

background color parameterbk . Many tests were

evaluated with bk = 64, bk = 128 and bk = 256.

Figure 6 shows an image with examples of their
automatic human skin segmentation. Figure 6(a) is
the original image of a soldier, where cloth tones of
background can be confused with human skin colors.

In Figure 6(b) the parameter bk = 64 was insufficient

to represent many skin-like background regions. In-

creasing this value to bk = 128 reduces the errors, as

depicted in Figure 6(c), because more background
tones similar to cloth are considered. Finally, with

bk = 256 in Figure 6(d) the errors are reduced.

Fig. 6. Example of segmentation results with skin-like tones in the
background. Figure 6(a) is the original image. Figure 6(b) is a

segmentation with bk = 64, Figure 6(c) hasbk = 128 and Figure

6(d) has bk = 256.

The method is dependent on the database images.
It is important to mark well the different background
tones as much as possible, to reduce segmentation
mismatch. The distance metric is appropriate to re-
duce errors, because if a background color of the
segmented image is not well represented in the data-
base background set, then probably its Euclidean dis-
tance to another database background color will be
small. However, errors may occur when a back-
ground skin-like tone on the segmented image is not
well represented in the database. A similar example
of skin-like background region is shown in the flow-
ers of Figure 7.

Fig. 7. Other examples of segmentation results with skin-like tones
in the background. Figure 7(a) is the original image. Figure 7(b),

7(c) and 7(d) has respectivelybk = 64, bk = 128 and bk = 256.

In some cases it is practically impossible to re-
move errors because the background tones are iden-
tical to the skin tones represented in the database.
This is shown in some pieces of clothes in Figure 8.

 (a) (b)

 (c) (d)

(a) (b)

(c) (d)

Even including the image with background marks
could not be sufficient to solve this problem. This
means that color based segmentation may not be suf-
ficient for certain situations.

Increasing the bk value is highly recommended to

improve the visual results of our method, but it is not

adequate to use a huge value. A larger bk constant

compared to the ok

include more pixels to the back-

ground and not to the object skin set. Considering
that many possible background regions will have
skin-like tones, many correct skin regions will be
labeled incorrectly.

Fig. 8. Example of segmentation where some background píxels
are not removed even increasing the mean background color
parameter. Figure 8(a) is the original image. Figure 8(b), 8(c) and

8(d) has respectivelybk = 64, bk = 128 and bk = 256.

Figure 9 shows an example where the increase of

the bk parameter inserts errors in the correct skin

region, making the labelling inadequate.

Fig. 9. Example of segmentation where the errors would increase

with a huge bk . Figure 9(a) is the original image. Figure 9(b) is a

segmentation with bk = 64, Figure 9(c) hasbk = 128 and Figure

9(d) has bk = 256.

A comparison of our method with a classical skin
segmentation based on RGB threshold [32] is pre-
sented as follows. This method was chosen because it
is a standard technique very employed in this area.
Ten images with manually user marked ground truth
were used to evaluate tests comparing the method
from [32] with ours. The images used in this experi-
ment are presented in Figure 10.

Fig. 10. Ten images used in tests comparison of the method from
[32] with our method.

In order to compare the methods accuracy, all im-
ages of Figure 10 are analyzed by the corresponding
classification errors: True Positives (TP), True Nega-

 (a) (b)

 (c) (d)

 (a) (b)

(c) (d)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

tives (TN), False Positives (FP) and False Negatives
(FN). Four tables were generated based on these clas-
sifiers. Some examples of images with Ground Truths,
segmentation results produced by our method and by
the method in [32] are depicted in Figures 11 and 12.
These images are represented by binary colors, such
that black colors are background and white tones are
skin. Table 1 evaluates the tests checking the accura-
cy of RGB skin threshold of [32]. Table 2 presents

the results of our proposed method considering bk =

64. Respectively, Table 3 and 4 shows the classifiers’

rates with bk = 128 and bk = 256.

Fig. 11. Binary image segmentation of Figure 10(g). Black tones
are identified as background and white tones are identified as skin.
Figure 11(a) is the user marked ground truth. Figure 11(b) was
generated with image segmentation method of [32]. Figure 11(c) is

a segmentation using our method withbk = 64, Figure 11(d)

uses bk = 128 and Figure 11(e) uses bk = 256.

Fig. 12. Binary image segmentation of Figure 10(h). Black tones
are identified as background and white tones are identified as skin.
Figure 12(a) is the user marked ground truth. Figure 12(b) was
generated with image segmentation method of [32]. Figure 12(c) is

a segmentation using our method withbk = 64, Figure 12(d)

uses bk = 128 and Figure 12(e) uses bk = 256.

Table 1. Results generated by the method from [32] in total pixels
percent. The first column indicates the images used from Figure
10. True positives, true negatives, false positives and false
negatives are presented in percent in the next columns. Sixth
column presents the total number of correct assigned pixels in the
image and the last one shows the total number of wrong assigned
pixels in the segmented image.

Img TP TN FP FN Acc Err
(a) 20.49 72.64 5.26 1.59 93.13 6.85
(b) 6.54 85.92 7.38 0.14 92.46 7.52
(c) 1.56 78.73 19.10 0.58 80.29 19.68
(d) 30.97 67.31 1.09 0.60 98.28 1.69
(e) 7.73 62.16 28.00 2.10 69.89 30.10
(f) 4.57 90.85 3.95 0.61 95.42 4.56
(g) 32.75 53.52 13.34 0.37 86.27 13.71
(h) 12.09 23.22 63.40 1.27 35.31 64.67
(i) 2.25 92.20 5.29 0.24 94.45 5.53
(j) 0.75 97.46 1.76 0.01 98.21 1.77

Table 2. Results of our skin method withbk = 64 in total pixels

percent. The first column indicates the images used from Figure
10. True positives, true negatives, false positives and false
negatives are presented in percent in the next columns. The sixth
column presents the total number of correct assigned pixels in the
image and the last one shows the total number of wrong assigned
pixels in the segmented image.

Img TP TN FP FN Acc Err
(a) 21.07 71.84 6.07 1.01 92.91 7.08
(b) 6.50 89.64 3.66 0.18 96.14 3.84
(c) 1.68 56.44 41.39 0.47 58.12 41.86
(d) 28.81 67.70 0.71 2.76 96.51 3.47
(e) 6.04 76.15 14.00 3.79 82.19 17.79
(f) 4.52 91.61 3.20 0.66 96.13 3.86
(g) 32.42 65.52 1.34 0.70 97.94 2.04
(h) 13.16 28.02 58.60 0.20 41.18 58.80
(i) 2.19 91.64 5.84 0.31 93.83 6.15
(j) 0.74 97.98 1.24 0.02 98.72 1.26

Table 3. Results of our skin method withbk = 128 in total pixels

percent. The first column indicates the images used from Figure
10. True positives, true negatives, false positives and false
negatives are presented in percent in the next columns. The sixth
column presents the total of correct assigned pixels in the image
and the last one shows the total of wrong assigned pixels in the
segmented image.

Img TP TN FP FN Acc Err
(a) 20.32 73.84 4.06 1.76 94.16 5.82
(b) 6.42 91.17 2.13 0.26 97.59 2.39
(c) 1.45 89.76 8.07 0.70 91.21 8.77
(d) 25.22 68.07 0.34 6.35 93.29 6.69
(e) 3.05 84.69 5.46 6.78 87.74 12.24
(f) 4.21 93.43 1.37 0.96 97.64 2.33
(g) 31.77 66.15 0.71 1.35 97.92 2.06
(h) 12.43 49.72 36.90 0.92 62.15 37.82
(i) 1.96 96.97 0.51 0.54 98.93 1.05
(j) 0.71 98.64 0.58 0.05 99.35 0.63

 (a) (b) (c)

 (d) (e)

(a) (b) (c)

 (d) (e)

Table 4. Results of our skin method withbk = 256 in total pixels

percent. The first column indicates the images used from Figure
10. True positives, true negatives, false positives and false
negatives are presented in percent in the next columns. The sixth
column presents the total number of correct assigned pixels in the
image and the last one shows the total number of wrong assigned
pixels in the segmented image.

Img TP TN FP FN Acc Err
(a) 18.07 75.02 2.89 4.01 93.09 6.9
(b) 6.29 91.93 1.37 0.39 98.22 1.76
(c) 1.30 95.01 2.82 0.85 96.31 3.67
(d) 23.17 68.23 0.18 8.40 91.40 8.58
(e) 0.84 87.87 2.26 8.99 88.71 11.25
(f) 3.81 94.04 0.77 1.37 97.85 2.14
(g) 30.58 66.50 0.36 2.54 97.08 2.90
(h) 11.90 81.37 5.25 1.45 93.27 6.70
(i) 1.80 97.31 0.17 0.70 99.11 0.87
(j) 0.69 98.86 0.36 0.07 99.55 0.43

We can draw some conclusions from the experi-

ments. Comparing Table 1 with Table 2, five seg-
mented images have fewer errors with our method
than with the classical one [32]. These images have
background pixels with yellow and red tones that are
skin-like tones. In our method, they are not easily
confused because the database stores a heterogeneous
set of background colors that reduces significantly
the overall error.

However, many false positives were detected with

bk = 64, as shown in the images from Figure 10(e)

and 10(h). This happened because many background
tones in the segmented images are not well
represented in the skin database. It is possible to re-

duce this error by increasing the total sample bk

of

background tones considered. Consequently, more
tones of image database will be considered, for in-
stance, these mismatched yellow and red skin-like
tones.

It can be easily seen that with the increase of the

parameter bk = 128, practically the total pixels errors

of all images is dramatically reduced. This is obvious,
because a more complete background description is
considered during the assignment of a given pixel.

However, it is not guaranteed that with the in-

crease of the background parameter to bk = 256 the

errors will be more reduced. As said before, the non-
skin database contains the whole RGB set, including

skin colors. With the increase of bk , more correct

skin pixels can be assigned to the database, because
the considered non-skin background set of the data-
base will be very huge compared to the skin object

set and the propensity of set assignment is to include
pixels to the background and not the object set, ex-
cept if the analyzed pixel has skin tones very similar
to the whole skin set. This situation occurs in some
considered images as, for instance, in Figures 10(a),
10(d), 10(g). But for some image examples this in-
crease can be extremely advantageous, as in Figure

12, where with the increase of the bk , many yellow

skin-like tones were removed, reducing the total er-
rors.

8.2. Time complexity

Another problem that can influence significantly
the final solution is the time complexity of the im-
plementation. The computation of the proposed ener-
gy can be very slow depending on the total number of

database images, user marks or on the bk

and ok

parameters. Considering these factors, it is very hard
to do real-time segmentation on sequential machines.
However, if we implement it on the GPU architecture,
we can obtain efficient segmentation even for videos.

A comparison of the times to compute the cost
function terms is featured in Table 5 using the same
energy parameters both in the CPU and the GPU. It is
also featured the computation of the graph-cut in Ta-
ble 6. The CPU used is a Core 2 Duo with 2.53 Ghz
and the GPU used in this specific experiment is a
Nvidia Tesla C1060 with 240 stream processors. This
configuration gives a good visual result but is slow to
converge. This test was done using three different
images and dimensions. These images are depicted in
Figure 13.

Fig. 13. Images used in the energy terms construction experiments.

 (a) (b)

 (c)

Table 5. Comparison between CPU and GPU times for energy
construction.

Image Dimensions CPU Time GPU Time
(a) 188 x 205 29.5s 37ms
(b) 640 x 480 241.28s 239ms
(c) 1280 x 960 957.266s 897ms

Table 6. Comparison between CPU and GPU times for graph-cut
computation.

Image Dimensions CPU Time GPU Time
(a) 188 x 205 16ms 24ms
(b) 640 x 480 172ms 78ms
(c) 1280 x 960 1.73s 243ms

The construction of the energy terms for Figure 13

in Table 5 was extremely more efficient to compute
in the GPU when compared to the CPU. The con-
struction of the energy terms consists of only arith-
metic operations, becoming more appropriate to be
performed in the GPU than the CPU. A comparison
of the graph-cut computation of the images in Figure
13 using both the CPU and GPU approaches is de-
picted in Table 6. As it can be seen, the graph cut
computation in GPU is not as efficient as the energy
construction, but it is possible to obtain a significant
speedup.

Finally, we evaluate experiments with video seg-
mentation. For this we defined a different database to
improve the speed of the construction of the energy
terms. Tests were done with video sequences of sizes
equal to 320 x 240, 640 x 480 and 1280 x 720. Table
7 shows the results in terms of the number of frames
per second for these videos. Considering that the
energy construction is an expensive computational
step, it is not appropriate to compute it at each frame.
We did tests constructing the energy at every 5
frames, obtaining good visual results for low resolu-
tion video sequences (320 x 240), achieving approx-
imately 41 FPS. However, with the increase of the
resolution of the video, the number of frames per
second reduced significantly because the energy con-
struction and the graph-cut became more complex to
compute. For high resolution videos the computation
is slow, obtaining 6 FPS. We also computed the va-
riance of the data in order to show that the data dis-
persion data is not significant. An example of seg-
mented video sequences used in these tests is featured
in the Figure 14.

Fig. 14. Video Segmentation results.

Table 7. FPS analysis of video sequences of different dimensions.

Video Dimensions Mean
Time (ms)

Variance
Time(ms)

FPS

(a) 320 x 240 24 0.0001 41
(b) 640 x 480 67 0.0001 15
(c) 1280 x 960 176 0.0008 6

9. Conclusion and Future Works

This works presents a new approach for efficient
automatic human skin segmentation for image and
videos using Graph-Cuts in GPUs. On traditional
implementations of Graph Cuts, the energy function
needs to be assigned by user marked seeds, what in
this work it is not needed. The method uses a data-
base of marked images which gives clues for the al-
gorithm on what regions are skin or non-skin. As we
presented, our method can yield good results when
compared with traditional color segmentation tech-
niques.

On future works, we intend to use new color spac-
es with the Graph Cuts approach as the HSL and Lab.
This is necessary because the RGB color space, used
entirely in this work, cannot deal with drastic varia-
tions, for instance, due to illumination. Also as we
have shown, the color metric is sometimes not suffi-
cient to yield an exact segmentation. In those cases,
new features could be employed to our database ap-
proach, like textures.

Temporal coherence is another property that can
also be used to improve the overall performance of

the method. Reusing the results obtained in a pre-
vious frame calculation as an input to the next frame
can improve significantly the algorithm speed [25].
Also, real-time can be achieved by using GPU specif-
ic techniques like Loop Unrolling [40].

10. Acknowledgments

Anselmo Montenegro is grateful for the fund from
FAPERJ under process number E-26/171.208/2006.
Marcelo Bernardes Vieira is thankful for the fund
from FAPEMIG. Esteban Clua is grateful for the
fund from FAPERJ. The others authors are grateful to
CNPq and CAPES Projects Pro CAD 224/2007.

References

[1] Baozhu, W.; Xiuying, C.; Cuixiang L. A Robust Method for
Skin Detection and Segmentation of Human Face. In Proc.
the International Conf. Intelligent Networks and Intelligent
Systems, pp. 290-293, Tianjin, Nov. 2009.

[2] Boykov, Y.; Funka-Lea, G. Graph cuts and efficient n-d
image segmentation. Int. J. Comput. Vision, Kluwer
Academic Publishers, Hingham, MA, USA, v. 70, n. 2, pp.
109-131, 2006. ISSN 0920-5691.

[3] Boykov; Jolly. Interactive graph cuts for optimal boundary
and region segmentation of objects in n-d images. Proc. IEEE
Int. Conf. on Computer Vision, pp. I:105-112, 2001.

[4] Boykov, Y.; Kolmogorov, V. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in
vision. IEEE Trans. Pattern Anal. Mach. Intell., IEEE
Computer Society, Washington, USA, v. 26, n. 9, pp. 1124-
1137, 2004.

[5] Boykov, Y.; Veksler, O. Graph cuts in vision and graphics:
Theories and applications. Springer-Verlag, 2006. pp.79-96.

[6] Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 23, p. 2001, 1999.

[7] Bray, M.; Kohli, P.; Torr, P. H. S. Posecut: Simultaneous
segmentation and 3d pose estimation of humans using
dynamic graph-cuts. In: ECCV. [S.l.: s.n.], 2006. p. 642-655.

[8] Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.;
Hamilton, N.; Hullender, G. Learning to rank using gradient
descent. In: ICML '05: Proceedings of the 22nd international
conference on Machine learning. New York, NY, USA:
ACM, 2005. pp. 89-96.

[9] Carro-Calvo, L.; Salcedo-Sanz, S.; Ortiz-García, E. G. and
Portilla-Figueras A. An incremental-encoding evolutionary
algorithm for color reduction in images. In Journal of
Integrated Computed-Aided Engineering, IOS Pres, v. 17, n.
3/2010, pp.261-269, 2010.

[10] Cheddad, A. and Condell, J. and Curran, K. and Kevitt, P.M.
A new colour space for skin tone detection. ICIP, p. 497-500,
2009.

[11] Cherkassky, B. V. A fast algorithm for computing maximum
flow in a network. Collected Papers: Combinatorial Methods
for Flow Problems, v. 3, pp. 90-96, 1979.

[12] Cormen, T. H., Leiserson, C. E. and Rivest, L. R.
Introduction to Algorithms. MIT Press and McGraw-Hill,
1990.

[13] Edmonds, J.; Karp, R. M. Theoretical improvements in
algorithmic efficiency for network flow problems. J. ACM,
New York, NY, USA, v. 19, n. 2, pp. 248-264, 1972.

[14] Ford, L. R. and Fulkerson, A. D. R. Flows in Networks.
Princeton Univ. Pr. 1962.

[15] Garret, Z. A.; Saito, H. Real-time online video object
silhouette extraction using graph cuts on the gpu.
Proceedings of the 15th International Conference on Image
Analysis and Processing, p. 985-994, 2009.

[16] Goldberg, A. V.; Tarjan, R. E. A new approach to the
maximum flow problem. Journal of the ACM, v. 35, pp. 921-
940, 1988.

[17] Greig, D. M.; Porteous, B. T.; Seheult, A. H. Exact maximum
a posteriori estimation for binary images. Journal of the
Royal Statistical Society, 1989. Available in:
<http://www.jstor.org/stable/2345609>.

[18] Han, J.; Award, G.M.; Sutherland, A.; Wu, H.; Automatic
Skin Segmentation for Gesture Recognition Combining
Region and Support Vector Machine Active Learning. IEEE
International Conference on Automatic Face and Gesture
Recognition, pp. 237-242, 2006.

[19] Hochbaum S. D. The Pseudoflow Algorithm and the
Pseudoflow-Based Simplex for the Maximum Flow Problem.
In 6th IPCO, pp. 325-337, 1998.

[20] Hussein, A. V. M.; Davis, L. On implementing graph cuts on
cuda. First Workshop on General Purpose Processing on
Graphics Processing Units, 2007.

[21] Ishikawa, H. Exact optimization for markov random fields
with convex priors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, v. 25, pp. 1333-1336, 2003.

[22] Ishikawa, H.; Geiger, D. Segmentation by grouping
junctions. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference, Los Alamitos, CA, USA, v. 0,
p. 125, 1998.

[23] Jedynak, B.; Zheng, H.; Daoudi, M. “Skin detection using
pairwise models,” IVC(23), n. 13, 29 Nov. 2005, pp. 1122-
1130.

[24] Jones, M.; Rehg, J. Statistical color models with application
to skin detection. Int. J. Comp. Vision, vol. 46, pp. 81-96,
2002.

[25] Juan, O.; Boykov, Y. Active graph cuts. In: CVPR, 2006.
p.1023-1029.

[26] Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active
contour models. International Journal of Computer Vision, v.
1, n. 4, p. 321-331, 1988.

[27] Kirkpatrick, S.; Gelatt, D.; Vecchi, M. P. Optimization by
simulated annealing. Science, v. 220, No. 4598, pp. 671-680,
May 1983.

[28] Kohli, P.; Torr, P. H. S. Measuring uncertainty in graph cut
solutions – efficiently computing min-marginal energies
using dynamic graph cuts. In: ECCV. [S.l.: s.n.], 2006. pp.
30-43.

[29] Kolmogorov, V. Graph Based Algorithms For Scene
Reconstruction From Two Or More Views. Phd Thesis -
Cornell University, Ithaca, New York, USA, 2004.

[30] Kolmogorov, V.; Boykov, Y. What metrics can be
approximated by geo-cuts, or global optimization of
length/area and flux. Computer Vision, IEEE ICCV'05, v. 1,
p. 564-571, 2005.

[31] Kolmogorov, V.; Zabih, R. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 26, pp. 65-81, 2002.

[32] Kovac, P., Peer, P., and Solina, F. (2003). Human skin

colour clustering for face detection. In EUROCON 2003.

[33] Kumar, M. P.; Torr, P. H. S.; Zisserman, A. Obj cut. In:
CVPR '05: Proceedings of CVPR'05 Volume 1: IEEE, 2005.
pp. 18-25.

[34] Lattari, L.; Conci, A.; Montenegro, A.; Clua, E.; Mota V.;
Vieira, M. Colour based human skin segmentation using
graph-cuts. Proceedings of IWSSIP 2010, ISBN 978-85-228-
0565-5, Published by EdUFF, Editors F. R. Leta & A. Conci,
17-19 June 2010, Rio de Janeiro- Brazil. Number: 71,
pp.223-226.

[35] Li, Y.; Jian, S.; Tang, C.; Shum, H. Lazy snapping. ACM
Trans. Graph., ACM, New York, NY, USA, v. 23, n. 3, p.
303-308, 2004. ISSN 0730-0301.

[36] Lloyd, S. P. Least square quantization in PCM. IEEE
Transact. Information Theory, vol. 28, n. 2, pp. 129-137,
1982.

[37] Lombaert, H.; Yiyong, S.; Grady, L.; Chenyang, X. A
multilevel banded graph cuts method for fast image
segmentation. (ICCV'05) Volume 1. Washington, DC, USA:
IEEE Computer Society, 2005. pp. 259-265.

[38] López-Rubio, E.; Munõz-Pérez, J. and Gómez-Ruiz, J. A. A
four-stage system for blind colour image segmentation. In
Journal of Integrated Computed-Aided Engineering, IOS
Pres, v. 10, n. 2/2003, pp. 127-137, 2003.

[39] Martin, D.; Fowlkes, D.; Tal, D.; Malik, J. A Database of
Human Segmented Natural Images and Its Application to
Evaluating Segmentation Algorithms and Measuring
Ecological Statistics. Proc. Int’l Conf. Computer Vision,
2001.

[40] Nvidia. Nvidia CUDA Programming Guide. 2009.

[41] Park, A.; Jungwhan, K.; Seungki, M.; Sungju, Y.; Keechul J.
Graph Cuts-Based Automatic Color Image Segmentation. In
Proc. the International Conf. Digital Image Computing
:Techniques and Applications (DICTA), pp. 564 - 571,
Canberra，Dec. 2008

[42] Phung, S.; Bourzerdoum, A.; Chai, D. Skin Segmentation
using color and edge information. Proc. Int. Symposium on
Signal Processing and its Applications, pp.1-4, 2003.

[43] Ravichandran, K. S.; Ananthi , B.. Color Skin Segmentation
Using K-Means Cluster. International Journal of
Computational and Applied Mathematics, v. 4, n. 2, pp. 153-
157. 2009.

[44] Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive
foreground extraction using iterated graph cuts. ACM
Transactions on Graphics, v. 23, pp. 309-314, 2004.

[45] Roy, S.; Cox, I. A Maximum-Flow Formulation of the N-
camera Stereo Correspondence Problem. In International
Conference on Computer Vision, 1998.

[46] Sa, A.; Vieira, M.B.; Montenegro, A.A.; Carvalho,
P.C.; Velho, L. Actively illuminated objects using graph-
cuts. Computer Graphics and Image Processing, Brazilian
Symposium on, IEEE Comp. Society, Los Alamitos, v. 0, pp.
45-52, 2006.

[47] Sethian, J. A. Level Set Methods and Fast Marching Methods
- Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science.
Cambridge University Press, 1999.

[48] Shi, J. and Malik, J. Normalized Cuts and Image
Segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 888-906, 2000.

[49] Sigal, L.; Sclaroff, S.; Athistos, V. “Estimation and
prediction of evolving color distributions for skin
segmentation under varying illumination,” Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, vol. 2, pp. 152-
159, 2000.

[50] Stalling, D.; Hege, H; Fur; K. Intelligent Scissors For
Medical Image Segmentation. In B. Arnolds, H. Muller, D.
Saupe, and T. Tolxdorff, editors, Proceedings of 4th
Freiburger Workshop Digitale Bildverarbeitung in der
Medizin, Freiburg, pages 32–36, March 1996.

[51] Vanhamel, I.; Pratikakis, I.; Sahli, H. Nonlinear multiscale
graph theory based segmentation of color images, In Proc.
the 18th International Conf. Pattern Recognition, pp. 407-
411, Hong Kong, China, 2006.

[52] Vincent, L.; Soille, P. Watersheds in digital spaces: An
efficient algorithm based on immersion simulations. IEEE
Transactions on Pattern Analysis and Machine Int., v. 13, pp.
583-598, 1991.

[53] Vineet, V.; Narayanan, P. Cuda cuts: Fast graph cuts on the
gpu. CVPR'08 Workshops, p. 1-8, 2008.

[54] Veksler, O. Efficient Graph-Based Energy Minimization
Methods In Computer Vision. Phd Thesis - Cornell
University, Ithaca, New York, USA, 1999.

[55] Xu, N.; Ahuja, N.; Bansal, R. Object segmentation using
graph cuts based active contours. Comput. Vis. Image
Underst., Elsevier Science, New York, v. 107, n. 3, p. 210-
224, 2007.

[56] Yildiz, A.; Akgul, Y. S. A gradient descent approximation
for graph cuts. DAGM Symposium, pp. 312-321, 2009.

[57] Zhilan, H.; Wang, G.; Xinggang, L.; Hong Y. “Skin
Segmentation Based on Graph Cuts,” Tsinghua Science &
Technology, Volume 14, Issue 4, August 2009, pp. 478-486.

