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Abstract. In this paper we propose a new method to deal with the problem of automatic human skin segmentation in RGB 
color space model. The problem is modeled as a minimum cost graph cut problem on a graph whose vertices represent the 
image color characteristics. Skin and non-skin elements are assigned by evaluating label costs of vertices associated to the 
weight edges of the graph. A novel approach based on an energy function defined in terms of a database of skin and non-skin 
tones is used to define the costs of the edges of the graph. Finally, the graph cut problem is solved in Graphics Processing 
Units (GPU) using the Compute Unified Device Architecture (CUDA) technology yielding very promising skin segmentation 
results for standard resolution video sequences. Our method was evaluated under several conditions, indicating when correct or 
incorrect results are generated. The overall experiments have shown that this automatic method is simple, efficient, and yields 
very reliable results.  
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1.  Introduction 

Color Segmentation is an important problem in 
image processing [38] that presents a great number of 
applications as encoding [9] and identification. Hu-
man identification is mainly based in skin segmenta-
tion, which is a research field with many applications 
such as video surveillance, face or hand gesture rec-
ognition, content-based visual information retrieval 
(CBVIR), filtering on the web among others. It is a 
fundamental task for any application that searches for 
human sequences on image and video streams. In 
many situations, very little human intervention must 
occur (as when the data to be processed is 
represented by a huge database).  

Most skin segmentation methods use a color based 
approach and introduce a color metric which consid-

ers the distance of the color of a pixel to a specific 
color [1, 3, 18, 24, 38, 42, 49, 51]. It is not a trivial 
problem to solve, since objects and backgrounds exist 
in a large variety of colors, including skin tones.  

In our previous work, we presented a new auto-
matic per-pixel human skin segmentation method, 
which is highly customizable and yields good results 
[34]. It is based on the premise that skin colors form a 
small and unique subset of the RGB color space, 
which makes it easier to solve this specific case of 
segmentation [49]. The segmentation problem is 
modeled as the minimization of a new energy func-
tion with an intuitive semantics, being automatically 
computed from a database of skin tones. The minimi-
zation solution is done by employing the Graph Cuts 
method which guarantees the robustness and good 
quality of the results. 



However, the main flaw of our previous solution is 
the inefficiency of our energy function computation 
based on database user marked seeds when it is done 
sequentially. The main contribution of this paper is 
an implementation and adaptation of our original 
method in [34] for Graphics Processing Units using 
Compute Unified Device Architecture, improving the 
speed of the algorithm convergence. With a faster 
convergence it is possible to compute the automatic 
human skin segmentation efficiently not only for im-
ages, but also videos with adequate frames per 
second for standard video resolution. 

Differently from the previous work in which we 
used a sequential Boykov and Kolmogorov algorithm 
[4] to compute the minimization of the energy func-
tion, we implemented a GPU version of another algo-
rithm based on Vineet et al [53], called Push-Relabel 
algorithm. This also improves significantly the time 
efficiency of our solution. 

We obtained good segmentation results for stan-
dard resolution video sequences in near 16 frames per 
second using a Nvidia Tesla C1060 with 240 stream 
processors. All issues concerning the implementation 
with the acceleration strategies used to increase the 
algorithm performance are detailed in the paper. 

Another contribution of this work is a more com-
plete study of the behavior of our method proposed in 
[34] when we modify some energy function parame-
ters, as the total number of mean colors of object and 
background regions of images in the input database. 
More accurate visual results can be obtained when it 
is appropriately adjusted. We evaluate in our experi-
mental results the accuracy of our solution by check-
ing the results with user marked ground truth images. 
A comparison of our method with a classic skin seg-
mentation based on RGB [32] is also performed in 
this paper. 

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the main works related to ours. 
Section 3 describes the basis of the segmentation 
based on Graph Cuts, a fundamental issue in our pa-
per. The main algorithms used to solve the maxi-
mum-flow problem associated to the Graph Cuts me-
thod are described in section 4. The parallel version 
of the Push-Relabel method used in our implementa-
tion is shown in the Section 5. In Section 6, we de-
scribe how the energy function is defined in terms of 
the database and how it is used in our model. The 
methodology is explained in the Section 7. Our re-
sults are presented in Section 8 and finally, in Section 
9, conclusions and future works are outlined. 

2.  Related Works 

This work is related to three main topics: models 
and methods for skin segmentation, segmentation 
methods based on graph-cuts and acceleration strate-
gies for implementing graph-cuts in Graphics 
Processing Units. We summarize below some of the 
main contributions associated to such subjects. 

 

2.1. Models for skin segmentation 

 
Many methods and models have been proposed to 

segment human skin. Hu et al [57] obtained skin re-
gions after a detection step based on a single Gaus-
sian Model and a Gaussian Mixture Model, 
representing respectively skin and non-skin. After 
that, three main steps are applied to produce the final 
result: noise suppression, segmentation and filtering. 
The segmentation method used in Hu’s work is based 
on Graph Cuts, similarly to our work. Their results 
are very good, even when illumination varies.  

Color analysis of skin and non-skin regions is 
widely used. Cheddad et al [10] presented a novel 
color space for skin tone detection that works mostly 
with the luminance of the RGB image. The hypothe-
sis of this work is that luminance inclusion does in-
crease separability of skin and non-skin clusters. The 
data of this new space admits a distribution that could 
be fit into a Gaussian curve using Expectation Max-
imization. Their results are compared with three other 
methods and showed lower false negative rates.  

Sigal et al [49] considered time-varying illumina-
tion with multiple sources and colors, using a Markov 
model to predict the evolution of skin histogram on 
HSV color space over time also obtaining good re-
sults.  

 Also with a clustering method, Ravichandran and 
Ananthi [43] obtained skin segmentation using K-
means. The idea is to convert the RGB image into a 
Lab color space and then find K color regions. The 
skin detection is made using simple boolean decision 
rules for each K region. The results presented in [57] 
seem to be more robust in terms of segmentation 
quality. However, the Ravichandran and Ananthi’s 
work proposes a more efficient approach in terms of 
the computational cost. 

Jedynak et al [23] compared three approaches for 
skin detection. Each one relies on a maximum entro-
py model based on constraints. The first is a baseline 
model in which pixels are considered independent 
and measured by a Receiver Operating Characteristic 
curve. The second is a Markov Random Field that 



forces smoothness in the solution. The final model 
used is based in color gradient. The MRF and the 
color gradient approaches were better, resulting in 
approximately 84% true positive detection rate. 

 

2.2. Energy minimization via Graph-cuts 

 
One of the first works solving global minimiza-

tion energies for computer vision was the one pro-
posed by Greig et al [17] for image restoration. It was 
the first work to discover that powerful graph-based 
algorithms for combinatorial optimization can be 
used to minimize certain important energies in com-
puter vision. They created an image-based two ter-
minal s-t graph whose construction is based on the 
Gibbs Energy [3, 4, 6, 15, 17, 21, 22, 28, 31, 33, 35, 
37, 41, 44, 45, 46, 53, 54] such that the minimum 
cost graph cut gives the optimal binary labeling solu-
tion. Previously, such energies could not be solved by 
exact minimization methods. One alternative was to 
use metaheuristics like Simulated Annealing [27].  

The Graph Cuts concept was preceded by a num-
ber of graph-based methods for image clustering that 
used combinatorial optimization algorithms or ap-
proximate spectral analysis techniques, like norma-
lized cuts [48]. These works are mentioned in Boy-
kov and Funka-Lea [2]. The goal of some of these 
approaches is to produce a completely automatic 
high-level grouping of image pixels. This means that 
they divide an image into “blobs” or “clusters” using 
only generic cues of coherence or a measure of affini-
ty between pixels. Differently, Graph Cuts integrate 
more appropriately model-specific visual cues and 
contextual information in order to define more accu-
rately particular objects of interest. This is also re-
lated to other categories of segmentation methods 
like Snakes [26], Active Contours [55], Intelligent 
Scissors [20] and Level-Sets [47]. 

Researchers have been creating or comparing ap-
proaches for the minimization step. Well known ex-
amples are Snakes [26], Intelligent Scissors [55] and 
Level-Sets [47]. Techniques like Gradient Descent [8, 
56] can be applied to any energy function of conti-
nuous variables and others like Simulated Annealing 
can be used in any function of discrete variables. 
However, these generalities can imply in very poor 
results since they get stuck in the local minima or 
take an extremely long time to converge. 

Boykov and Jolly [3] developed a technique to 
solve binary image segmentation by minimizing the 

Gibbs Energy using Graph Cuts. It was the first effi-
cient work for N-dimensional applications, compris-
ing region and boundary properties of elements. It is 
a general-purpose segmentation, needing initial user 
mark cues to characterize which elements probably 
belong to an object or a background set. Their solu-
tions allows new additional user marks even after the 
initial segmentation, without recalculating them from 
scratch. It was tested with 2D images and 3D vo-
lumes giving good and stable results even when ini-
tial seeds were changed after the final result, per-
forming with good speed. They motivated other 
works to approach different problems with similar 
methods. 

However, one of the main problems of the Graph 
Cuts approach is the computational complexity of its 
execution. Some of these minimization algorithms 
are very expensive for instances with a large number 
of pixels. Many works have studied the practical effi-
ciency of it in Computer Vision and proposed major 
improvements [4]. 

Boykov and Kolmogorov [4] provided an experi-
mental comparison between different Graph Cuts 
algorithms for computer vision applications. They 
analyzed the complexity of methods based on Gold-
berg and Tarjan [16, 19], Ford and Fulkerson [13, 14] 
and a new method created by them. Their method 
was significantly faster than the previous ones. It is 
based on the original Ford and Fulkerson algorithm 
but it builds two simultaneous search trees for ter-
minal nodes, reusing data at each iteration. Their im-
plementation is the current sequential state-of-art 
method for Computer Vision implementations of 
Graph Cuts. 

Other works have proposed improvements on the 
cost function task of the energy minimization frame-
work. Li et al [35] developed a method for interactive 
image cutout, focused on user usability without loss 
of performance. Their method consists of two steps: 
an object marking task, like presented in [3] and a 
pre-segmentation computation, followed by a simple 
boundary editing process, creating the output seg-
mentation. The nodes from the graph are not single 
pixels, but similar color regions generated by a Wa-
tershed algorithm [52] and becoming superpixels. 
Their experiments yielded remarkable results in usa-
bility case studies, where users took overall less than 
60% of the time using their software than traditional 
Magnetic Lasso feature present at common image 
processing software. The energy function used in our 
work is related to the one they proposed. 



2.3. Graph-cuts in GPUs 

 
Some works attempted to improve the efficiency 

of the Graph Cuts method proposing versions running 
in parallel processors. Our work belongs to this cate-
gory, running on Graphics Processing Units.  

Many parallel approaches were made using GPU 
Computing, after they became more popular and easy 
to use, mainly because of the development of pro-
gramming libraries like CUDA [40]. Examples of 
works in this area are the ones proposed by Vinnet 
and Narayanan [53], Hussein et al [20], Garret and 
Saito [15] and Yildiz and Akgul [56]. 

Hussein et al [20] proposed the first implementa-
tion of the Graph Cuts algorithm in CUDA for gener-
al graphs. It is a GPU version of the Push-Relabel 
algorithm, making two important changes: the only 
labeling scheme is the Global Relabeling heuristic 
[12] and sending flow from a node is an operation 
divided into two phases: Push and Pull. The first only 
sends flow, storing an amount on a temporary memo-
ry and the Pull updates all entire flow pushed before. 
This is necessary to avoid Read-After-Write hazards. 
They also introduced two optimizations. The first one 
is a lockstep Breadth-First Search which performs 
Prefix Sum Operations when traversing each depth 
level which is necessary for general graphs. It can be 
considered a lockstep operation because only a single 
direction is traversed at a time, while the others are 
blocked. The second optimization is basically the 
emulation of a cache. Instead of loading the data of a 
single node in the global memory, it loads a 2D tile 
which is added into a lattice, a data structure created 
during the Breadth-First Search stage containing only 
visited nodes. That strategy enables coalesced memo-
ry access, improving the algorithm speed. The spee-
dup obtained is in the range of 1.7-4.5 over the CPU 
version proposed in [4].  

Vinnet and Narayanan [53] proposed an imple-
mentation of Graph Cuts in CUDA for binary seg-
mentation using the Push-Relabel algorithm. They 
presented two versions of the same algorithm, using 
atomic and non-atomic operations. They also pro-
posed a new heuristic called Stochastic Cut. This 
heuristic relies on the fact that after a few iterations, 
the processing done on the majority of the nodes is 
finished. If at a given iteration, an entire thread block 
does not modify the residual graph by pushing flow,  
then the block is considered inactive and delayed for 
10 iterations. Their implementation is very similar to 
the one described in [20], including the use of GPU 
shared memory and Push-Pull operations. One of the 

characteristics of their work is that it does not use 
prefix sum operations. Finally, they defined a simple 
dynamic Graph Cuts implementation for video seg-
mentation, always reusing solutions from the pre-
vious frames. They achieved a level of performance 
10-12 times faster than [4] and approximately 3 times 
faster than [20] for images. However, their approach 
is only applicable for grid graphs and not for general 
maximum flow calculations. 

Some GPU-based works do not use the Graph Cuts 
method directly. Yildiz and Akgul [56] formulated 
the Graph Cuts optimization as a gradient descent 
solution on the GPU. Working differently from the 
previous Maximum Flow approaches, this solution is 
given by the Minimum Cut energy function formula-
tion, solving the labeling problem directly without 
graph processing. It is based in Linear Programming 
and decreases spatial complexity. It is modeled by a 
Lagrange dual model and a modified approximate 
objective function which is differentiable at any point. 
Their method needs less memory than the standard 
Maximum Flow methods, but gives some small errors 
at smooth regions because the used function is an 
approximation. For some examples, their method 
converges much faster than [4]. 

3. Segmentation by Graph Cuts 

The basic foundations of our solution are featured 
in this section.  

 

3.1. Energy Function 

 
It is possible to find a characteristic function of an 

object defined in a given domain by minimizing an 
objective function, i.e., given a set V, we have to find 
the characteristic function X which is the minimum 
argument of a function [3] and the partition sets. A 
widely used objective function in image segmentation 
is the Gibbs Energy [3, 17, 35] defined as  
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where ix and jx are elements of the set to be seg-

mented, V is the set of elements, ε is the set of con-

nected elements and λ is a weight. 1E  is the term 

that defines the cost for each ix to belong to one of 

the sets. Aiming to minimize the objective function, 



this cost should be inversely proportional to the prob-

ability of ix belonging to the set. It can be given as 
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where O is the set of object elements, B is the set of 
the background elements, N is the set of pixels whose 
labels are unknown and φ  is a function inversely 

proportional to its parameters terms oρ and bρ . 

2E  is a term that defines a penalty for labeling 

two connected elements with different labels. This 
penalty depends on the similarity of both elements: 
very similar elements have high probability of be-
longing to the same set. In this case the resulting cost 
must be high; otherwise it has a small value. 

The minimization of some classes of energy func-
tions can be considered a NP-Hard problem, needing 
special methods to efficiently solve it. In our work, 
we will minimize the Gibbs Energy using the Graph 
Cuts method. The next section describes how energy 
functions can be minimized in the context of Graph 
Cuts theory. For more details, see Boykov et al [6] 
and Kolmogorov and Zabih [31]. 

 

3.2. Graph-cuts 

 
The energy function in (2) is used to define the 

costs 0≥w  for each edge ( ) Evu ∈,  on a directed 

graph ( )EVG ,= [4]. Two terminal nodes are de-

fined: a source s and a sink t, corresponding to the 
labels that can be assigned to pixels. Each non-
terminal node in the graph will have an edge con-
nected to s and another edge to t. We assume that 
every vertex lies on some path from s to t. 

Two types of edges are then defined: T-links and 
N-links. T-links connects pixels to terminals. N-links 
connects pairs of neighbor pixels. Their costs are 

based in the terms 1E  and 2E , respectively. 

The minimum cut of a graph is the set of edges 
that removed from G creates two disjoint subsets: a 
set S and a set T. These sets are subgraphs disposed 
so that Ss∈  and Tt ∈ [12]. An important theorem 
due to Ford and Fulkerson [14] states that the solu-
tion of the minimum cut of a graph is equivalent to 
the maximum flow problem. Considering this, it is 

used maximum flow algorithms to solve the mini-
mum cut problem. 

In the next section, we summarize the main algo-
rithms used to solve the minimum cut/maximum flow 
problem. 

4. Minimum Cut / Maximum Flow Algorithms 

Two most known classes of algorithms were pro-
posed to solve the maximum flow problem for Graph 
Cuts minimization. One category is based on the Ford 
and Fulkerson original idea [14] which enforces flow 
conservation during the whole process. Another one 
formulated by Goldberg and Tarjan [16] breaks the 
flow conservation rule until convergence. Examples 
of these will be described below. 

 

4.1. Algorithms based on augmenting paths 

 
The classical maximum flow algorithm based on 

the notion of augmenting paths was proposed by Ford 
and Fulkerson [14].  

Boykov and Kolmogorov [4] proposed a new me-
thod to solve the maximum flow associated to Com-
puter Vision problems using an approach based on 
the Ford and Fulkerson algorithm. It uses two search 
trees on the residual graph, one with its root at the 
source s and another starting at the sink t. Each tree 
grows from its own terminal node. 

When the two trees touch each other, an augment-
ing path is found. Flow is sent in this path as much as 
possible. After that, the residual graph is updated and 
new paths are searched, reusing the trees. The algo-
rithm is finished when no other path can be found. 

This algorithm outperforms Ford-Fulkerson when 
grid-based graphs are used. This occurs because the 
search trees are reused during algorithm iteration. 
However, the critical point of this algorithm lies on 
the management of the trees, for example, in growing 
or updating it to obtain a short augmenting path. It 
does not guarantee to find the shortest path as it uses 
some heuristics to search for the shortest one. The use 
of such heuristics produces good quality paths while 
keeping the efficiency of the overall process.  In fact, 
the method has a compromise between choosing any 
path or the shortest one. The theoretical time bound 
complexity of this algorithm is O(VE|C|), but in prac-
tice it is almost linear. 

Boykov-Kolmogorov is considered the best me-
thod to compute Graph Cuts in Computer Vision for 



sequential machines. However, new parallel ap-
proaches using Push-Relabel approaches have given 
best times over it. 

 

4.2. Algorithms based on Preflow 

 
The Push-Relabel algorithm works in a more loca-

lized manner than the augmenting-paths methods 
making it a strong candidate for parallelization. In-
stead of examining the entire residual network Gf  = 
(V,E) to find an augmenting path, generic Push-
Relabel algorithms work on one vertex at a time, ana-
lyzing and operating at its neighbors in the residual 
network. Furthermore, unlike the augmenting-paths 
based methods, it does not maintain the flow conser-
vation property throughout the execution.  

The basic intuition of this method is very different 
from those based on augmenting paths. Each node 
has two additional properties, defined as excess flow 
and height label. All nodes start with a height and an 
excess flow equal to zero, except the height of the 
source s that is fixed at |V| and the excess of s which 
is infinite.  

Consider the nodes {u,v}  ∈ Gf . Two operations are 
also defined: the one that pushes excess flow of a 
node u into a neighbor v ∈ Nu is called Push. Even-
tually, the algorithm will try to push the excess flow 
of u into its neighbors, but none of these nodes v ∈ Nu 

has height label below the height of u. To rid an over-
flowing vertex u of its excess flow, it is necessary to 
increase its height. Such operation is called Local Re-
label. The height of u is increased by one unit above 
the height of the lowest neighbor that has an unsatu-
rated edge connecting them. After the local operation, 
the excess of u can be pushed. When all paths to t are 
saturated, the algorithm has to send the remaining 
excess flow in the system back to the source s, by 
continuously increasing height of the vertices with 
excess flow until they achieve |V|. After this point, the 
preflow becomes a legal flow and also a maximum 
flow. 

The Local Relabel and the Push are the operations 
done in the basic Push-Relabel algorithm, but the 
procedure as described above has poor practical per-
formance [12]. Much unnecessary processing is done 
until convergence, because the heights are only up-
dated locally, not considering the global picture of 
the distances. However, heuristics can be employed 
to discharge the excess nodes to the sink s faster, 

once the paths to t are saturated. Here we describe 
two heuristics: the Global Relabeling and the Gap 
Relabeling. These heuristics check the entire residual 
graph and correct heights globally. 

The Global Relabeling operation updates the dis-
tance function defined on the residual graph by com-
puting shortest path distances in the residual graphs 
from all nodes to the sink. This can be done in linear 
time by using a Backwards Breadth-First Search 
starting at the sink t node, adjusting exactly all 
heights.  

The Gap Relabeling tries to find disconnected 
nodes from t in the graph G. It is based on the follow-

ing statement. Suppose that g ∈ N  and 0 < g < |V|. 
At a certain stage of the algorithm there may be no 
nodes n ∈ V with distance h(n) = g, but there are 
nodes u with g < h(u) < |V|, a situation defined as a 
gap. These nodes u are converging to s, and the sink t 
is no more reachable from any of these vertices u. 
Therefore, the label of such nodes may be increased 
to |V| + 1 directly.  

The addition of the Gap Relabeling heuristic to the 
Push-Relabel outperforms the practical efficiency of 
the pure Push-Relabel method, although usually not 
as much as by adding the Global Relabeling heuristic. 
These heuristics are not independent, considering that 
the Global Relabeling discovers nodes disconnected 
from t and makes gaps less likely. However, the Gap 
Relabeling iteration has small overhead compared to 
the Global Relabeling. Thus even if no gaps are dis-
covered in a run of an implementation that uses both 
heuristics, the running time is almost the same as in 
the implementation that uses only Global Relabeling. 
In some graphs instances, many gaps are found and 
the former implementation is faster than the latter. 

The Push-Relabel algorithm is one of the most ef-
ficient algorithms to compute a maximum flow. The 

general algorithm has )( 2EVO theoretical time 

complexity. As evaluated by [4], the Push-Relabel 
method behaves more efficiently for dense graphs, 
differently from augmenting-path based approaches 
that converges rapidly for sparse graphs.  

Considering only sequential architectures, it is 
more adequate to use Boykov-Kolmogorov algorithm 
for grid-based sparse graphs and Push-Relabel ap-
proach for grid-based dense graphs, like based in 3D 
data. However, the computational power of manycore 
architectures like GPUs makes appropriate the use of 
Push-Relabel approaches even for sparse graphs with 



very competitive results. This is detailed in the next 
section. 

5. Graph Cuts in GPU 

In this section we describe in details our frame-
work that implements the Push-Relabel algorithm in 
the GPU. First we explain the idiosyncrasies of GPUs 
that we had to consider in our implementation. In the 
sequel, we describe how the graph is constructed, how 
the algorithms are implemented and which heuristics 
were applied to accelerate the overall performance. 
Our implementation is loosely based in the [15, 20, 
53] works and was developed with the CUDA archi-
tecture.  

 

5.1. GPU Computing 

 
Graphics Processing Units were initially developed 

as devices dedicated to graphics processing, improv-
ing the efficiency and the power of the graphic pipe-
line. With the advent of the new GPU models after 
the GeForce series 8 and the architectures like CUDA, 
the implementation of GPU computing applications 
became easier to be done.  

This architecture consists on a unified arrangement 
of cores, which simplifies the GPU programming 
model by treating it as a typical manycore processor. 
Further it improves the GPU model by removing 
memory restrictions or graphical idiosyncrasies for 
each processor. Data representation is also improved 
by providing friendly data structures to the program-
mer. The memories available in the CUDA device 
can be accessed by all processors with no restriction 
on its representation, though the access times may 
vary depending on the memory type used. 

The CUDA environment is based on the SIMD pa-
rallel architecture, where program kernels process 
data grids, dividing multiple blocks in threads. It is 
important to obtain maximum performance by ex-
ecuting the same operation simultaneously on differ-
ent data elements, avoiding code flow divergence. 
Divergent code produces poor performance because 
the CUDA model cannot deal efficiently with differ-
ent instruction flows at a given moment. Another 
important fact is the lack of GPU memory lock. This 
brings restrictions on how threads can modify shared 
memory space.  

Each thread can use a number of private registers 
for its computation. A collection of threads is called a 

block and runs on the same multiprocessor at a given 
time. The threads of each block have access to a 
small amount of common shared memory. Synchro-
nization barriers are also available for all threads of a 
block. A group of blocks can be assigned to a single 
multiprocessor but their execution is time-shared. 
The available shared memory and registers are split 
equally among all blocks that timeshare a multipro-
cessor. Multiple groups of blocks are also time shared 
on the multiprocessor for execution. The collection of 
all blocks in a single execution is called a grid. 

Each thread executes a single instruction set called 
kernel. For each thread and block is given a unique 
ID that can be accessed within the thread during its 
execution. An algorithm may use multiple kernels, 
which share data through the global memory and 
synchronize their execution at the end of each kernel. 
Threads from multiple blocks can only synchronize at 
the end of the kernel execution by all threads. 

 

5.2. Maximum Flow/Minimum Cut in GPUs 

 
The first challenge to implement Graph Cuts in the 

GPU is to devise a way to implement the graph 
neighborhood. Considering that graphs based on im-
ages naturally have a grid structure, we can define a 
specific model to store their neighborhood structure 
in the GPU. This is important not only to simplify the 
algorithm, but also to reduce the total use of global 
memory and the number of accesses, improving our 
solution. 

It is recommendable to reduce the use of global 
memory as much as possible. Creating auxiliary data 
structures to represent neighborhood, like adjacency 
lists or adjacency matrices can impose excessive use 
of memory and increase the number of accesses and 
the processing times. 

The Graph Cuts model is well suited to the GPU 
architectures, because each thread can operate on 
exactly one pixel in a SIMD fashion. Images have a 
grid format, making the mapping to this architecture 
very simple. Each vertex can have a 4 or 8-
Neighborhood System connectivity. Two schemes are 
usually employed in GPUs for neighborhood repre-
sentation: adjacency lists and grid structures. In this 
work we use only grid structures. 

The data associated to the vertices and edges is 
represented by arrays, where each array index i stores 
the data referent to a single node i. This data structure 



is appropriate to the SIMD model, which may be 
treated as an array of processors. Memory coales-
cence and data manipulation efficiency is improved 
considering that all threads will access and handle 
contiguous data. The array size of the non-terminal 
vertices and the edges’ data is always |V|. 

In order to represent the vertices, two arrays are 
necessary: one to store the excess flow and another to 
represent the height labels that estimate the distances 
to the target node. To represent edges, six arrays stor-
ing residual capacities are sufficient, two for source 
and sink capacities, and four to the north, south, west 
and east directions. Even nodes in the border will 
have a total of six edges represented in the arrays. 
However, the edges that do not exist for the border 
nodes will have a residual capacity equal to zero. 
This is done to guarantee memory coalescence.  

The same format can be extended to represent 
non-grid graphs for SIMD architectures. This is done 
by modifying the original graph to become regular, 
inserting null edges until all nodes have the same 
number of neighbors as the node with the highest 
degree. This is necessary to represent the graph in a 
more friendly SIMD format [15], being able to per-
form the same operation across multiple data loca-
tions. These null edges inserted in the original system 
do not modify the graph solution, because their resi-
dual capacities will always be zero. 

The implementation described in this section is 
based in the ideas presented in [15] and [53] with a 
few modifications. The size of the CUDA grid is 
equal to the image dimensions, where each single 
thread is mapped by a pixel or a graph vertex.  

Each node has the following data: excess flow 
and height, the same attributes defined in the original 
sequential implementation. These are stored as ap-
propriate-sized arrays in the GPU global memory, 
becoming accessible to all threads. Auxiliary memo-
ries are also used, principally shared memory. It is a 
simple tiny memory available at each multiprocessor. 
Each multiprocessor handles a thread block with 512 
threads. This value can vary with the specific hard-
ware. 

Two kernels are implemented: Parallel Push and 
Parallel Local Relabel. These two kernels do the 
same as the Push and Relabel operations of the se-
quential Push-Relabel algorithm. Respectively, one 
updates the excess and pushes flow to its neighbors 
and the other applies a local relabeling operation to 
adjust height labels. For parallel correctness, the Pa-

rallel Push stage (Figure 1) is divided into two phases, 
defined as Push and Pull. This is necessary because 
of the potential Read-After-Write hazard. The Paral-
lel Push stage is implemented in a kernel in which 
each node sends flow to its neighbors but only mod-
ifies the edges residual capacities and not the excess 
of the neighbor nodes. The updated flow is stored 
temporarily in an auxiliary array. The Parallel Pull 
stage (Figure 2) is executed in another kernel, usually 
implemented together with the relabel operation. 

 
Fig. 1. Parallel Push operation in pseudocode.  

 
Fig. 2. Parallel Pull and Relabel operations in pseudocode.  

The Parallel Pull function updates the excess of 
the Parallel Push phase from the temporary array data. 
The Push and Pull stages implemented in two differ-
ent kernels are unnecessary when Atomic Operations 
are employed, because this prevents the occurrence of 
the RAW inconsistency in the hardware level.  

The first basic necessary optimization adds null 
edges in the image boundary nodes, similar to the 
idea in [15]. This is necessary because boundary 
nodes have fewer neighbors than central nodes. 
Moreover, the CUDA Model is SIMD, restricting 
single instructions execution in a massive data grid. It 
is important to execute the same operations in each 
thread in a block, avoiding divergence. Divergence 
results in serialization of the instructions and a reduc-
tion in performance. It is appropriate for the Push and 
Relabel kernels to check six edges in each node, even 



if the boundary nodes do not contain six neighbors. 
Obviously, the null edges will make no difference in 
the final result. 

A Parallel Global Relabel kernel based on the 
original work from [12], [14] and [53] is also neces-
sary to accelerate the algorithm (Figure 3). It is basi-
cally a Breadth-First Search starting from the sink t 
node and the only nodes that are visited are those 
with unsaturated neighbor edges adjacent to t and 
their neighbors. The first iteration checks which 
nodes have unsaturated sink edges. Such nodes are 
added to a list of nodes to be visited. 

For each iteration, all nodes in this list have their 
heights updated based on the distance from t. Then, 
they are removed from the list and their neighbors are 
added. Each node is also marked as a visited node in 
another list. Only nodes never visited and added as a 
new node to be visited have their heights updated. 
This heuristic helps on quickly Push-Relabel conver-
gence, but every execution of it is very slow. It is 
important to execute it only a few times during the 
execution. 

 
Fig. 3. Global Relabeling operation in pseudocode.  

Another heuristic implemented in our GPU Push-
Relabel is a parallel version of the Gap Relabel (Fig-
ure 4), based on the original heuristic from [16]. In 
this heuristic, we change in parallel the nodes height 

to the maximum limit if they are disconnected from 
the residual graph. We maintain a binary list with the 
size of all possible heights that the nodes could as-
sume, storing binary values if there is at least one 
node with that height. All positions of this list are 
checked simultaneously by a Gap Relabel kernel and 
if there is at least one position with 0 data, but the 
next position is 1, a gap is found and this index is the 
gap height. Another kernel is executed, where all 
nodes with height greater than this gap are changed to 
the maximum instantly. This heuristic improves the 
convergence of the method. The main advantage of 
this compared to the Global Relabel is the small 
overhead and speed of a single iteration. 

 
Fig. 4. Gap Relabeling operation in pseudocode.  

6. Human Skin Database 

In this section we present our color database which 
is crucial to obtain the automatic seeds necessary to 
define the weights of the edges in G. 

In order to define an energy function for skin de-
tection, we propose the use of n images where skin 
regions and non-skin regions are explicitly marked by 
some user. The idea is to use these multiple images to 
infer the likelihood of a pixel color to represent a skin 
or non-skin region.  

In each image iI , 0 < i ≤ n, of the database, 

on pixels are marked as skin, forming an object re-

gion iIO ⊂ , and bn pixels are marked as back-

ground, forming a region iIB ⊂ . Note that 

BO∪ is not necessarily a partition of iI . This 



means that the user does not have to label all pixels of 
the image. 

The database is then defined by n sets, each one 
composed by ok colors of iO and bk colors of iB . 

These ok and bk colors are colors computed using a 

quantization method capable of finding the best colors 
that represents each gamut subregion of each image in 
database. Each image will be represented by mean 
colors that try to represent the entire user marked re-
gion. In our work, we use the K-means method [36] 
for simplicity. 

7. Proposed Method 

Now we describe how our color database is used 
to define the energy terms in our problem. 

Let imCO ,  be a m-th object color defined by the 

quantization method of the i-th image of the database 

and ilCB, be the l-th background color of the same i-th 

quantized image of the database, where 0 < m ok≤ , 

0 < l bk≤  and 0 < i n≤ . It is possible to define the 

similarities by the following functions 
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1=λ , 

where pC and qC are the colors of the neighbor pix-

els p and q. The term ( ) ( )qXpX −  makes 

( ) ( )( ) 0,2 =qXpXE  whenever p and q belong to 

the same set. 
The energy terms are used for defining costs for 

each edge in the graph. 1E  defines costs for a pixel 

belonging to a foreground (4) or background (5) re-

gion and 2E  set penalties when p and q nodes are 

assigned with different labels (6). The 1=λ  term is 
an empirical value that associates a penalty to the 

boundary term 2E . Increasing this constant, we pe-

nalize adjacent pixels grouped in different sets, rais-
ing the possibility of neighbor tones being 
represented in the same set.  

It is not necessary to mark pixels as object or 
background in the image to be segmented. The ener-
gy terms were conceived to gather skin and non-skin 
information only from the database images. Thus, the 
user presents an image which is segmented automati-
cally by the method based on the database colors.  

8. Experimental Results 

Our tests were evaluated considering time compu-
tation and visual quality of the output segmentation. 
They will be presented separately in this section. 

8.1. Visual quality  

The tests featured in this section were obtained 

with different ok  and bk
 
mean colors parameters. 

On the database, 20 images are user marked with skin 
and non-skin regions. Some examples of user marks 
are presented in Figure 5. Some images of our data-



base belong to the Berkeley Image Segmentation 
Database [39]. Naturally, when more images and 
consequently skin and non-skin colors are stored, 
more samples of different tones are considered, im-
proving the average energy and leading to better re-
sults. However, with the increase of the database, the 
time computation of the energy terms increases sig-
nificantly. 

 
 
 
 
 
Fig. 5. Examples of user marks on the database stored images. 

Our method was applied to images of people be-
longing to different ethnic groups. The results are 
consistent because the possible skin colors forms a 
small subset of the RGB space. Consequently, a skin 
pixel tends to have small distances for all images in 
the database, minimizing the cost in Equation (4). 

The segmentation performs better when the data-
base has an adequate number of images with hetero-
geneous color tones. When more background pixels 
are marked, fewer potential errors can occur in the 
segmentation of an image. This is shown in Figure 6. 

In our tests, the object color parameter is ok  = 32. 

In other words, each user marked image in the data-
base has 32 mean colors computed by a quantization 
method that belong to the set O. It is not necessary to 
increase this value because the skin color set does not 
vary significantly along with the database samples. 
However, the entire RGB color space can be stored in 
the background set, including even the skin color set. 
Consequently, it is recommendable to use a higher 

background color parameterbk . Many tests were 

evaluated with bk  = 64, bk = 128 and bk = 256. 

Figure 6 shows an image with examples of their 
automatic human skin segmentation. Figure 6(a) is 
the original image of a soldier, where cloth tones of 
background can be confused with human skin colors. 

In Figure 6(b) the parameter bk  = 64 was insufficient 

to represent many skin-like background regions. In-

creasing this value to bk  = 128 reduces the errors, as 

depicted in Figure 6(c), because more background 
tones similar to cloth are considered. Finally, with 

bk  = 256 in Figure 6(d) the errors are reduced.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Example of segmentation results with skin-like tones in the 
background. Figure 6(a) is the original image. Figure 6(b) is a 

segmentation with bk = 64, Figure 6(c) hasbk = 128 and Figure 

6(d) has bk = 256.  

The method is dependent on the database images. 
It is important to mark well the different background 
tones as much as possible, to reduce segmentation 
mismatch. The distance metric is appropriate to re-
duce errors, because if a background color of the 
segmented image is not well represented in the data-
base background set, then probably its Euclidean dis-
tance to another database background color will be 
small. However, errors may occur when a back-
ground skin-like tone on the segmented image is not 
well represented in the database. A similar example 
of skin-like background region is shown in the flow-
ers of Figure 7. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Other examples of segmentation results with skin-like tones 
in the background. Figure 7(a) is the original image. Figure 7(b), 

7(c) and 7(d) has respectivelybk = 64, bk = 128 and bk  = 256. 

In some cases it is practically impossible to re-
move errors because the background tones are iden-
tical to the skin tones represented in the database. 
This is shown in some pieces of clothes in Figure 8. 

   

  (a)             (b) 

  (c)             (d) 

(a)       (b) 
 

(c)        (d) 



Even including the image with background marks 
could not be sufficient to solve this problem. This 
means that color based segmentation may not be suf-
ficient for certain situations. 

Increasing the bk  value is highly recommended to 

improve the visual results of our method, but it is not 

adequate to use a huge value. A larger bk constant 

compared to the ok
 
include more pixels to the back-

ground and not to the object skin set. Considering 
that many possible background regions will have 
skin-like tones, many correct skin regions will be 
labeled incorrectly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Example of segmentation where some background píxels 
are not removed even increasing the mean background color 
parameter. Figure 8(a) is the original image. Figure 8(b), 8(c) and 

8(d) has respectivelybk = 64, bk = 128 and bk  = 256. 

Figure 9 shows an example where the increase of 

the bk parameter inserts errors in the correct skin 

region, making the labelling inadequate. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Example of segmentation where the errors would increase 

with a huge bk . Figure 9(a) is the original image. Figure 9(b) is a 

segmentation with bk = 64, Figure 9(c) hasbk = 128 and Figure 

9(d) has bk  = 256. 

A comparison of our method with a classical skin 
segmentation based on RGB threshold [32] is pre-
sented as follows. This method was chosen because it 
is a standard technique very employed in this area. 
Ten images with manually user marked ground truth 
were used to evaluate tests comparing the method 
from [32] with ours. The images used in this experi-
ment are presented in Figure 10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Ten images used in tests comparison of the method from 
[32] with our method. 

In order to compare the methods accuracy, all im-
ages of Figure 10 are analyzed by the corresponding 
classification errors: True Positives (TP), True Nega-
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 (c)            (d) 
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(g) (h) 
 

(i) (j) 
 



tives (TN), False Positives (FP) and False Negatives 
(FN). Four tables were generated based on these clas-
sifiers. Some examples of images with Ground Truths, 
segmentation results produced by our method and by 
the method in [32] are depicted in Figures 11 and 12. 
These images are represented by binary colors, such 
that black colors are background and white tones are 
skin. Table 1 evaluates the tests checking the accura-
cy of RGB skin threshold of [32]. Table 2 presents 

the results of our proposed method considering bk  = 

64. Respectively, Table 3 and 4 shows the classifiers’ 

rates with bk = 128 and bk = 256. 

 
 

 

 

 

 

 

 

Fig. 11. Binary image segmentation of Figure 10(g). Black tones 
are identified as background and white tones are identified as skin. 
Figure 11(a) is the user marked ground truth. Figure 11(b) was 
generated with image segmentation method of [32]. Figure 11(c) is 

a segmentation using our method withbk = 64, Figure 11(d) 

uses bk = 128 and Figure 11(e) uses bk = 256. 

 

 

 

 

 

 

 

Fig. 12. Binary image segmentation of Figure 10(h). Black tones 
are identified as background and white tones are identified as skin. 
Figure 12(a) is the user marked ground truth. Figure 12(b) was 
generated with image segmentation method of [32]. Figure 12(c) is 

a segmentation using our method withbk = 64, Figure 12(d) 

uses bk = 128 and Figure 12(e) uses bk = 256. 

 

Table 1. Results generated by the method from [32] in total pixels 
percent. The first column indicates the images used from Figure 
10. True positives, true negatives, false positives and false 
negatives are presented in percent in the next columns. Sixth 
column presents the total number of correct assigned pixels in the 
image and the last one shows the total number of wrong assigned 
pixels in the segmented image. 

Img TP TN FP FN Acc Err 
(a) 20.49 72.64 5.26 1.59 93.13 6.85 
(b) 6.54 85.92 7.38 0.14 92.46 7.52 
(c) 1.56 78.73 19.10 0.58 80.29 19.68 
(d) 30.97 67.31 1.09 0.60 98.28 1.69 
(e) 7.73 62.16 28.00 2.10 69.89 30.10 
(f) 4.57 90.85 3.95 0.61 95.42 4.56 
(g) 32.75 53.52 13.34 0.37 86.27 13.71 
(h) 12.09 23.22 63.40 1.27 35.31 64.67 
(i) 2.25 92.20 5.29 0.24 94.45 5.53 
(j) 0.75 97.46 1.76 0.01 98.21 1.77 

Table 2. Results of our skin method withbk = 64 in total pixels 

percent. The first column indicates the images used from Figure 
10. True positives, true negatives, false positives and false 
negatives are presented in percent in the next columns. The sixth 
column presents the total number of correct assigned pixels in the 
image and the last one shows the total number of wrong assigned 
pixels in the segmented image. 

Img TP TN FP FN Acc Err 
(a) 21.07 71.84 6.07 1.01 92.91 7.08 
(b) 6.50 89.64 3.66 0.18 96.14 3.84 
(c) 1.68 56.44 41.39 0.47 58.12 41.86 
(d) 28.81 67.70 0.71 2.76 96.51 3.47 
(e) 6.04 76.15 14.00 3.79 82.19 17.79 
(f) 4.52 91.61 3.20 0.66 96.13 3.86 
(g) 32.42 65.52 1.34 0.70 97.94 2.04 
(h) 13.16 28.02 58.60 0.20 41.18 58.80 
(i) 2.19 91.64 5.84 0.31 93.83 6.15 
(j) 0.74 97.98 1.24 0.02 98.72 1.26 

Table 3. Results of our skin method withbk = 128 in total pixels 

percent. The first column indicates the images used from Figure 
10. True positives, true negatives, false positives and false 
negatives are presented in percent in the next columns. The sixth 
column presents the total of correct assigned pixels in the image 
and the last one shows the total of wrong assigned pixels in the 
segmented image. 

Img TP TN FP FN Acc Err 
(a) 20.32 73.84 4.06 1.76 94.16 5.82 
(b) 6.42 91.17 2.13 0.26 97.59 2.39 
(c) 1.45 89.76 8.07 0.70 91.21 8.77 
(d) 25.22 68.07 0.34 6.35 93.29 6.69 
(e) 3.05 84.69 5.46 6.78 87.74 12.24 
(f) 4.21 93.43 1.37 0.96 97.64 2.33 
(g) 31.77 66.15 0.71 1.35 97.92 2.06 
(h) 12.43 49.72 36.90 0.92 62.15 37.82 
(i) 1.96 96.97 0.51 0.54 98.93 1.05 
(j) 0.71 98.64 0.58 0.05 99.35 0.63 
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Table 4. Results of our skin method withbk = 256 in total pixels 

percent. The first column indicates the images used from Figure 
10. True positives, true negatives, false positives and false 
negatives are presented in percent in the next columns. The sixth 
column presents the total number of correct assigned pixels in the 
image and the last one shows the total number of wrong assigned 
pixels in the segmented image. 

Img TP TN FP FN Acc Err 
(a) 18.07 75.02 2.89 4.01 93.09 6.9 
(b) 6.29 91.93 1.37 0.39 98.22 1.76 
(c) 1.30 95.01 2.82 0.85 96.31 3.67 
(d) 23.17 68.23 0.18 8.40 91.40 8.58 
(e) 0.84 87.87 2.26 8.99 88.71 11.25 
(f) 3.81 94.04 0.77 1.37 97.85 2.14 
(g) 30.58 66.50 0.36 2.54 97.08 2.90 
(h) 11.90 81.37 5.25 1.45 93.27 6.70 
(i) 1.80 97.31 0.17 0.70 99.11 0.87 
(j) 0.69 98.86 0.36 0.07 99.55 0.43 

 
We can draw some conclusions from the experi-

ments. Comparing Table 1 with Table 2, five seg-
mented images have fewer errors with our method 
than with the classical one [32]. These images have 
background pixels with yellow and red tones that are 
skin-like tones. In our method, they are not easily 
confused because the database stores a heterogeneous 
set of background colors that reduces significantly 
the overall error.  

However, many false positives were detected with 

bk  = 64, as shown in the images from Figure 10(e) 

and 10(h). This happened because many background 
tones in the segmented images are not well 
represented in the skin database. It is possible to re-

duce this error by increasing the total sample bk
 
of 

background tones considered. Consequently, more 
tones of image database will be considered, for in-
stance, these mismatched yellow and red skin-like 
tones. 

It can be easily seen that with the increase of the 

parameter bk  = 128, practically the total pixels errors 

of all images is dramatically reduced. This is obvious, 
because a more complete background description is 
considered during the assignment of a given pixel. 

However, it is not guaranteed that with the in-

crease of the background parameter to bk  = 256 the 

errors will be more reduced. As said before, the non-
skin database contains the whole RGB set, including 

skin colors. With the increase of bk , more correct 

skin pixels can be assigned to the database, because 
the considered non-skin background set of the data-
base will be very huge compared to the skin object 

set and the propensity of set assignment is to include 
pixels to the background and not the object set, ex-
cept if the analyzed pixel has skin tones very similar 
to the whole skin set. This situation occurs in some 
considered images as, for instance, in Figures 10(a), 
10(d), 10(g). But for some image examples this in-
crease can be extremely advantageous, as in Figure 

12, where with the increase of the bk , many yellow 

skin-like tones were removed, reducing the total er-
rors. 

8.2. Time complexity  

Another problem that can influence significantly 
the final solution is the time complexity of the im-
plementation. The computation of the proposed ener-
gy can be very slow depending on the total number of 

database images, user marks or on the bk
 
and ok  

parameters. Considering these factors, it is very hard 
to do real-time segmentation on sequential machines. 
However, if we implement it on the GPU architecture, 
we can obtain efficient segmentation even for videos. 

A comparison of the times to compute the cost 
function terms is featured in Table 5 using the same 
energy parameters both in the CPU and the GPU. It is 
also featured the computation of the graph-cut in Ta-
ble 6. The CPU used is a Core 2 Duo with 2.53 Ghz 
and the GPU used in this specific experiment is a 
Nvidia Tesla C1060 with 240 stream processors. This 
configuration gives a good visual result but is slow to 
converge. This test was done using three different 
images and dimensions. These images are depicted in 
Figure 13. 

 
 

 

 

 

 

 

 

 

Fig. 13. Images used in the energy terms construction experiments. 
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Table 5. Comparison between CPU and GPU times for energy 
construction. 

Image Dimensions CPU Time GPU Time 
(a) 188 x 205 29.5s 37ms 
(b) 640 x 480 241.28s 239ms 
(c)  1280 x 960 957.266s 897ms 

Table 6. Comparison between CPU and GPU times for graph-cut 
computation. 

Image Dimensions CPU Time GPU Time 
(a) 188 x 205 16ms 24ms 
(b) 640 x 480 172ms 78ms 
(c)  1280 x 960 1.73s 243ms 

 
The construction of the energy terms for  Figure 13 

in Table 5 was extremely more efficient to compute 
in the GPU when compared to the CPU. The con-
struction of the energy terms consists of only arith-
metic operations, becoming more appropriate to be 
performed in the GPU than the CPU. A comparison 
of the graph-cut computation of the images in Figure 
13 using both the CPU and GPU approaches is de-
picted in Table 6. As it can be seen, the graph cut 
computation in GPU is not as efficient as the energy 
construction, but it is possible to obtain a significant 
speedup.  

Finally, we evaluate experiments with video seg-
mentation. For this we defined a different database to 
improve the speed of the construction of the energy 
terms. Tests were done with video sequences of sizes 
equal to 320 x 240, 640 x 480 and 1280 x 720. Table 
7 shows the results in terms of the number of frames 
per second for these videos. Considering that the 
energy construction is an expensive computational 
step, it is not appropriate to compute it at each frame. 
We did tests constructing the energy at every 5 
frames, obtaining good visual results for low resolu-
tion video sequences (320 x 240), achieving approx-
imately 41 FPS. However, with the increase of the 
resolution of the video, the number of frames per 
second reduced significantly because the energy con-
struction and the graph-cut became more complex to 
compute. For high resolution videos the computation 
is slow, obtaining 6 FPS. We also computed the va-
riance of the data in order to show that the data dis-
persion data is not significant. An example of seg-
mented video sequences used in these tests is featured 
in the Figure 14. 

 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

Fig. 14. Video Segmentation results. 

Table 7. FPS analysis of video sequences of different dimensions. 

Video Dimensions Mean 
Time (ms) 

Variance 
Time(ms) 

FPS 

(a) 320 x 240 24 0.0001 41 
(b) 640 x 480 67 0.0001 15 
(c) 1280 x 960 176 0.0008 6 

9. Conclusion and Future Works 

This works presents a new approach for efficient 
automatic human skin segmentation for image and 
videos using Graph-Cuts in GPUs. On traditional 
implementations of Graph Cuts, the energy function 
needs to be assigned by user marked seeds, what in 
this work it is not needed. The method uses a data-
base of marked images which gives clues for the al-
gorithm on what regions are skin or non-skin. As we 
presented, our method can yield good results when 
compared with traditional color segmentation tech-
niques. 

On future works, we intend to use new color spac-
es with the Graph Cuts approach as the HSL and Lab. 
This is necessary because the RGB color space, used 
entirely in this work, cannot deal with drastic varia-
tions, for instance, due to illumination. Also as we 
have shown, the color metric is sometimes not suffi-
cient to yield an exact segmentation. In those cases, 
new features could be employed to our database ap-
proach, like textures.  

Temporal coherence is another property that can 
also be used to improve the overall performance of 

   
 

    
 

     



the method. Reusing the results obtained in a pre-
vious frame calculation as an input to the next frame 
can improve significantly the algorithm speed [25]. 
Also, real-time can be achieved by using GPU specif-
ic techniques like Loop Unrolling [40]. 
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