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Figure 1. Steps to construct a non-planar object using a bidimensional hexagonal grid.

Abstract—This paper addresses the problem of rectangular
hexagonal mesh generation for surface modeling. Hexagonal
grids are important for several applications such as the
simulation of carbon nanostructures. A fast and accurate
method to obtain a rectangular region over a hexagonal
grid is proposed. Strips of hexagons defined by the Hamada
indexes are constructed and stacked using a variation of the
Bresenham’s algorithm. The final hexagonal mesh is tessellated
using half-edges in order to be suitable for several operations
and simulation processes. This mesh can be used as a parameter
space for obtaining different geometric models. Experimental
results show that arbitrarily large meshes are generated fast.
The enumeration of rectangular regions with high number of
hexagons is accurate despite its dimensions. An evaluation of
the method under several circumstances is presented indicating
its high performance for the generation of a high number of
hexagons.

Keywords-hexagonal meshes, parametric surfaces, Hamada
indexes, nanostructure modeling

I. INTRODUCTION

This work presents a method of rectangular hexagonal
mesh generation based on an adaptation of Bresenham’s
algorithm [1]. Using a half-edge data structure, the resulting
mesh is suitable for several operations and processing.

Hexagonal surfaces are frequently found in nature, such
as the epidermal layer of cells [2] and the honeycombs [3].
In physics and chemistry, hexagonal structures are studied in
the form of molecule arrangements. Modeling of chemistry
compounds and nanostructures are interesting examples.

Carbon nanotubes [4] are a special kind of nanostructure.
The outstanding nanotube properties incite the scientists to
study their carbon anisotropy. This is a very special case of
hexagonal mesh found in nature. However, their high cost
of production and manipulation make computer simulation
models attractive to study their electromechanical features.
This is a case where a fast and accurate hexagonal mesh
generation is important.

Much work has been done about hexagonal meshes.
Paper [5] presents an algorithm for computing a specified
shape using this kind of mesh, computing first the regular
triangulation and then turning it into a planar hexagonal
mesh. Our method in comparison with this is much spe-
cific and proposes a direct hexagonal mesh generation to
obtain faster results. Wang & Liu [6] uses an initial quad-
mesh to compute a hexagonal mesh and then apply local
perturbations to approximate a given surface. A method to
spacial subdivision on hexagonal mesh was proposed in [7].
Examples of operations performed into pre-built hexagonal
meshes can be found in [8].

Our main objective is to construct a rectangular hexagonal
mesh using a small number of parameters. The main object
is a strip of hexagons defined by two integers (n,m) which is
constructed using a variation of the Bresenham’s algorithm.
Several strips can be stacked to form a rectangular region.
Using half-edges, an explicit mesh is constructed efficiently
and can be used to represent non-planar topologies. This



method is shown in Figure 2 and has the following features:

• three positive integers (n,m,l) are used to specify
arbitrarily rotated rectangular regions on a hexagonal
grid;

• a variation of the Bresenham’s algorithm is used to
generate hexagonal strips;

• a half-edge structure is used to allow fast mesh gener-
ation and non-planar topologies;

• the mesh can be used as a parameter space for obtaining
different geometric models.

This work is motivated by the need of fast generation of
carbon arrangements for physics and chemistry simulations.
Most carbon nanostructures are based on hexagonal cells.
Futhermore, bidimensional parametric objects are sufficient
for obtaining models suitable for most simulations. Thus,
this work concerns the specific problem of bidimensional
rectangular hexagonal mesh generation for parametric object
representation.

Figure 2. Firstly, three integers (n,m,l) are given. A sequence of strips
is generated. The result is stored for further processing.

II. HEXAGONAL CELL ENUMERATION

Our method can enumerate hexagonal cells for an arbi-
trarily rotated rectangular region using three integer positive
parameters (n,m,l). This section shows how this enumera-
tion is achieved by a variation of the Bresenham’s algorithm
for plotting lines. Also, an enumeration method of hexagonal
cells is derived. Our method is suitable to generate bidi-
mensional regular hexagonal meshes in any orientation. It is
based on the Bresenham’s algorithm [1] for drawing straight
lines and its main parameters were proposed by Hamada [9].

A. Hamada parameters

Hamada Parameters for defining bidimensional regular
hexagonal meshes were initially used to describe carbon
nanotubes. It was chosen because it completely describes
the hexagonal mesh using two integer numbers (n,m), where
n ≥ m in order to capture the hexagonal symmetry of the
mesh [10].

A non-orthogonal basis called chiral vectors ~ch is used
to describe the mesh orientation. In the original paper, these
vectors are used to define the direction of a carbon nanotube
over a graphene sheet (Fig. 3a).

The chiral vector is defined as:

~ch = n~a1 +m~a2 ≡ (n,m) (1)

where ~a1 and ~a2 are the unit vectors of hexagonal mesh.
The information given by this vector will be used in the

demonstration of the method in the Section II-B.

B. Hexagonal strip generation

A variation of the Bresenham’s algorithm is derived for
hexagonal strip generation.

Figure 3. The elements on the hexagonal grid considered by the method.

The initial point P, shown in Figure 4, is the centroid of
the first hexagon, next to the origin. The decision of which
hexagon should be drawn is based on the distances between
the line, given by the chiral vector, and the centroid P. The
hexagon with smallest distance is chosen. First, we take the
line equation:

y = bx+ q (2)

where we consider q as zero, assuming that the line passes
through the origin and b is the slope of the line.

According to the Figure 4, we take P0(x0,y0) as an initial
point and calculate P1 and P2 as functions of x0 and y0:

P1 = (x0 +
√

3a0, y0) (3)

P2 = (x0 +
√

3
2
a0, y0 +

3
2
a0) (4)



Figure 4. The method considers the distances d1 and d2 from the line to
choose which hexagon is better to approximate the line.

where constant a0 represents the side of the hexagon.
The objective of this demonstration is to represent the

distance from the centroid to the line, as showed in Figure
4. We call these distances as d1 and d2 and represent them
as:

d1 = y
′

1 − y1 (5)

d2 = y2 − y
′

2 (6)

We define Pk(xk,yk) as a generic point of k-iteration:

y
′

1 = b(xk +
√

3a0) (7)

y
′

2 = b(xk +
√

3
2
a0) (8)

Replacing the equations 7 and 8 on 5 and 6, as well as
y1 and y2:

d1 = b(xk +
√

3a0)− yk (9)

d2 = (yk +
3
2
a0)− b(xk +

√
3

2
a0) (10)

Analyzing the values of d1 and d2, we observe that:{
if d1 ≥ d2, choose H2

if d2 > d1, choose H1.
(11)

Instead of using the inequality 11, we can analyze the
signal of difference d1 − d2. This difference defines a
parameter pk and replace b = ∆y

∆x , where ∆y and ∆x are
the variations of x and y, respectively:

pk = ∆x(d1 − d2)
= 2xk∆y + ∆y

√
3a0 + ∆y

√
3

2 a0 − 2yk∆x− 3
2a0∆x

= 2xk∆y − 2yk∆x+ (3∆y
√

3
2 a0 − 3

2a0∆x)
(12)

where the last two terms are not in function of x0 and y0.
We can consider these terms as constants and group them
in a constant c:

pk = 2xk∆y − 2yk∆x+ c (13)

This constant c is used to calculate the initial value of
pk, considering that P0 is at the origin. The values that
change between the iterations are represented by xk and
yk, as showed on Equation 13. Based on this information,
on the iteration k + 1, the parameter pk+1 is given by:

pk+1 = 2xk+1∆y − 2yk+1∆x+ c (14)

Applying the difference between pk+1 and pk:

pk+1 = pk + 2∆y(xk+1 − xk)− 2∆x(yk+1 − yk) (15)

The Equation 15 shows the iteration k + 1 as a function
of the previous iteration plus an increment.

Assuming that hexagon H1 is chosen, as shown in Figure
5, we consider these differences:

xk+1 − xk =
√

3a0 (16)

yk+1 − yk = 0 (17)

Figure 5. The configuration of the chiral vector ~ch when the hexagon H1

is choosen.

Replacing these results on equation 15:

pk+1 = pk + 2∆y
√

3a0 (18)

The Equation 18 represents the increment of pk+1 when
hexagon H1 is chosen. The demonstration is similar for
hexagon H2.

Liu [8] proposed a method for drawing straight lines on
hexagonal grids using only integer operations. The approach
described in this section is a particular case which can be
used to generate rectangular regions. Similarly, Lijun [11]
presents an algorithm to generate line on hexagonal prism
grid. First he describes the method on a 2D hexagonal grid
and then extends it to a 3D space. He also uses integer
operations.

C. Rectangle construction

As stated above, a strip over a hexagonal grid can be
defined by the parameters n and m. As shown in Figure
6, the strips can be combined to form a rectangular region
as a stack of l + 1 strips. Thus, a rectangular region on
a hexagonal grid can be defined with a triple of positive



Figure 6. Enumeration of a rectangle defined by the triple of integers
(4, 2, 2). This means that each strip is defined by (4, 2) coordinates and
the rectangle has 3 strips of this type.

integers (n,m,l). This rectangular mesh can be used to
represent other topologies as presented on Section III.

An important characteristic is that all strips are equal, as
the method is independent of position in the plane. This fact
allows appending new strips at any time.

III. MESH CONSTRUCTION USING HALF-EDGES

The Section II presented a method for hexagon enumer-
ation. The result is a sequence that needs to be linked
and stored in order to be manipulated. In order to perform
physics simulations, the widely used half-edge structure is an
interesting choice since it allows easier and faster operations
on the mesh. Half-edges provide an efficient and flexible
local control of vertices, faces and edges. Fast access of
the geometric attributes of the mesh is important for an
efficient simulation. Futhermore, the geometry of the objects
can abruptly change due to mesh ruptures during electrome-
chanical simulations. Thus, implicitly connected hexagonal
meshes are not suitable for this kind of application. This
section presents a method for hexagonal grid generation
based on the half-edge data structure.

The generated rectangle has some important properties for
the construction of nanostructures. A special feature is that
the rectangle can be rolled for any triple integers (n,m,l)
with guaranteed match of the hexagons of the borders [3].
The Figure 7a highlight the corresponding vertices and
Figure 7b presents the mesh after their connection. In this
example, we use the parametric equation of the cylinder
to construct the nanotube. The enumeration of hexagonal
grid allows connecting the corresponding vertices in the
parametrical space. Other objects with cylinder topology can
be generated using the same process.

For some indexes (n,m,l) it is possible to obtain a torus
topology connecting the first hexagonal strip of the mesh
with the last one (Fig. 9b). This is the case when m = 0,

(a)

(b)
Figure 7. Illustration of a hexagonal connected in the ~ch direction (a)
rectangle (b) cylinder before and after the border connection.

n > m and l is odd or when n = m, for instance.

IV. APPLICATIONS

One of the applications of this work is to model nanos-
tructures such as carbon nanotubes (single and multiwalled),
carbon nanotube forests and other structures. The generation
of meshes using the integers (n,m,l) is sufficient to repre-
sent the three classes of single-walled nanotubes: zigzag,
armchair and chiral [10]. This classification is important
since electromechanical properties depend on the topology
of these structures. The structural difference is more evident
on the border of nanotube, as shown on Figure 8. The
generation of these structures is fast even if using high values
of n, m or l. Typical values of the parameters are n < 500,
m < 300 and l can be arbitrarily large.

The visualization of physics systems is an important
aspect for the analysis of the studied structures and several
phenomena. As an example, we use the Lennard-Jones
potential [12], which is an all-to-all process on vertices, to
extract on site energy of the system. For viewing the result, a
thermal color palette (inner regions have lower energy) was
used to represent the energy variation, as shown on Figure
9. The half-edge structure makes easy the vertex scanning.

In fact, the diameter of carbon tubes has nanometric
dimension but its length may have several micrometers [13].
Also, forests containing several thousands of nanotubes are
interesting for simulations. Thus, it is important to provide a
method capable of generating thousands of nanotubes, each
one with distinct attributes: chirality, diameter, long length,
single or multiwalled (Fig. 10a). As showed in next section,



(a) Zigzag (b) Chiral

(c) Armchair
Figure 8. Types of nanotubes and their respective graphene sheet
representation using a hexagonal grid.

(a) (b)

Figure 9. Hexagonal meshes representing nanostructures with Lennard-
Jones potential computed. (a) spiral (b) torus.

our method is suitable for fast generation of structures with
several nanotubes.

(a) (b)

Figure 10. Complex structures typically used in physics simulations: (a)
Multiwalled nanotube (b) nanotubes interlaced forming a tissue.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained
with a Dual Xeon E5410 Quad Core PC running at 2.33
GHz, with 4 GB RAM and 12 MB L2 cache under Windows
Vista Ultimate 64 bits operating system. Although it is
a multiprocessor machine, our implementation is currently
sequential and so does not take advantage of it. The objective

Table I
CONFIGURATIONS EVALUATED

Type of nanotube n m l

Zigzag 10 to 40 0 5,000 to 25,000

Chiral 11 to 41 10 to 40 5,000 to 25,000

Armchair 10 to 40 n 5,000 to 25,000

Table II
TIME TO GENERATE THE NANOTUBES

Type of nanotube n,m,l Hexagons Time (ms)

Zigzag 40;0;15,000 600,000 1,910.5

Chiral 31;30;10,000 610,000 1,931.7

Armchair 30;30;10,000 600,000 1,908.1

of our experiments is to show that the time to generate a
nanostructure is a linear function of the number of hexagons
that compose it. So, the estimated computation time should
take the form

computation time = k ∗ [(n+m) ∗ l] (19)

where k is the time to generate one hexagon and [(n+m)∗l]
is the total of hexagons.

To evaluate the performance of the proposed method, we
examined its computational implementation under several
distinct configurations defined by the different values of
n, m and l, as illustrated by table I. We evaluated 20
different configurations of Zigzag, 15 of Armchair, with n
ranging from 10 to 40 in steps of 10. A total of 38 different
configurations were evaluated for Chiral, with n ranging
from 11 to 41 and m ranging from 10 to 40, both m and
n in steps of 10. In all three cases, l ranges from 5,000 to
25,000 in steps of 5,000.

We executed each configuration ten times, and reported
the average execution time for some of them in table II and
in Figure 11. The standard deviation was less than 10% for
all configurations.

As can be observed in table II, the implemented algorithm
is very fast. In fact, for the configuration with the greater
number of hexagons (n=31, m=10 and l=25,000, a total of
1,025,000 hexagons), it took less than 3.4 s to generate the
nanostructure.

A careful analysis of our figures showed us that the time
to generate a single hexagon is, in average, equal to 4.2 µs
on the machine used for the evaluation. The figures also lead
us to conclude that the execution time is linear with respect
to the number of hexagons, as Figure 11 demonstrates.

VI. CONCLUSIONS

A method for bidimensional rectangular hexagonal mesh
generation was proposed. Experimental results has shown
that our method is suitable for fast and accurate generation of
meshes, even with huge values of (n,m,l). In fact, it has been



Figure 11. Mean execution times for three different configurations
of armchair, chiral and zigzag with approximately the same number of
hexagons.

shown that the proposed method is linear with the number
of hexagons to draw, as shown on Section V. Our method
allows us to generate several nanostructures and monitor
their behavior on simulation engines. Fast generation of
hexagonal structure is important to allow the modeling,
in real-time, of complex and intricate objects like tissues
containing thousands of single or multiwalled structures
(Fig. 10b).

A perspective of this work is to use the Lennard-Jones
potential to perform deformations on the mesh and then
obtain a structure more stable. Stability here means that
the geometry is subject to some constraints that must be
obeyed. As the example of torus or the helix, the application
of the potential will help to respect some physic features like
the distance between atoms. A prior analysis, as shown on
Figure 9, highlights some regions of larger energy that do
not satisfy this condition.

We also have the goal to generate structures that allows the
construction of more complex models using nanojunctions
[14].

ACKNOWLEDGMENT

Authors thank to FAPEMIG-Fundação de Amparo à
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