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ABSTRACT
We propose a method for the detection of high frequency re-
gions using multiresolution analysis and orientation tensors.
A scalar field representing multiresolution edges is obtained.
Local maxima of this scalar space indicate regions having co-
incident detail vectors in multiple scales of a wavelet decom-
position. This is useful for finding edges, textures, collinear
structures and salient regions for computer vision methods.
The image is decomposed into several scales using the Dis-
crete Wavelet Transform (DWT). The resulting detail spaces
form vectors indicating intensity variations which are ade-
quately combined using orientation tensors. The multivariate
data of the resulting tensor field provides fair estimations of
high frequency regions. Using these tensors, a positive scalar
is computed for each original image pixel. Our results show
that this descriptor indicates areas having relevant intensity
variation in multiple scales.

Index Terms— high frequency detection, multiresolution
analysis, multiresolution edges, orientation tensor.

1. INTRODUCTION

The evaluation of high frequencies in an image is an impor-
tant task for several applications in computer vision, computer
graphics and image processing. Objects in a scene are mainly
distinguished by the contrast of their borders against a back-
ground. From a signal processing point of view, this can be
seen as brightness variation with multiple frequencies.

However, object and background areas can be arbitrarily
complex. One way of estimating salient regions is to use mul-
tiresolution to capture global and local brightness variations.
Even in a non-redundant wavelet decomposition, local and
global borders occurring in the same region may carry useful
information. The problem lies in combining this global infor-
mation into a single image. In this way, orientation tensors
can capture the multivariate information of several scales and
color channels [1].

For image segmentation, Belkasim et al. [2] uses a multi-
resolution image analysis scheme based on extracting all ob-
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jects in the image using their borders or contours. The size of
the contour can then be used to define the level of resolution
and hence the extent of the analysis.

Shih et al. [3] argue that edge extraction based only on a
gradient image will produce bad results with noise and broken
edges. In order to solve this problem, they combine an edge
detector with a multiscale edge tracker.

By combining both orientation tensor and multiresolution
analysis, one may have a scalar descriptor of high frequency
regions [4]. High values of this scalar space indicate re-
gions having coincident detail vectors in multiple scales of a
wavelet decomposition.

In this paper, the multivariate information contained in the
tensor field is used to find coincident edges in multiresolution
space. More specifically, we combine the scalar field pro-
posed in [4] with the eigenvectors obtained, in order to find
coherent edges.

2. FUNDAMENTALS

2.1. Wavelets

The wavelet transform decomposes signals over dilated and
translated wavelets [5]. A wavelet is a function ψ ∈ L2(R)
with a zero average: ∫ +∞

−∞
ψ(t)dt = 0 (1)

It is normalized ||ψ|| = 1, and centered in the neighbor-
hood of t = 0. A family of time-frequency atoms is obtained
by scaling ψ by s and translating it by u:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
(2)

We are interested in wavelets which form a base of
L2(R2) to represent images. If we have an orthonormal
wavelet basis in L2(R) given by ψ with the scaling function
φ, we can use

ψ1(x) = φ(x1)ψ(x2), ψ2(x) = ψ(x1)φ(x2),

ψ3(x) = ψ(x1)ψ(x2) (3)



to form an orthonormal basis in L2(R2) [5].

{ψ1
j,p, ψ

2
j,p, ψ

3
j,p}[j,p]∈Z3 (4)

In this paper, we define a vector vj,p ∈ R3 given by the
inner product

vj,p = [I · ψ1
j,p, I · ψ2

j,p, I · ψ3
j,p]

T (5)

at scale j and position p ∈ I , where I is the input image.

2.2. Orientation Tensor

A local orientation tensor is a special case of non-negative
symmetric rank 2 tensor, built based on information gathered
from an image. As shown by Knutsson [1], such a tensor
can be produced by combining outputs from polar separable
quadrature filters. Because of its construction, such a ten-
sor has special properties and contains valuable information
about said image.

From the definition given by Westin [6], orientation ten-
sors are symmetric, and thus an orientation tensor T can be
decomposed using the Spectral Theorem as shown in Eq. 6,
where λi are the eigenvalues of T .

T =
n∑

i=1

λiTi (6)

If Ti projects onto a m-dimensional eigenspace, we may
decompose it as

Ti =
m∑

s=1

ese
T
s (7)

where {e1,...,em} is a base of Rm. An interesting decompo-
sition of the orientation tensor T proposed by Westin [6] is
given by

T = λnTn +
n−1∑
i=1

(λi − λi+1)Ti (8)

where λi are the eigenvalues corresponding to each eigenvec-
tor ei. This is an interesting decomposition because of its
geometric interpretation. In fact, in R3, an orientation tensor
T decomposed using Eq. 8 can be represented by a spear (its
main orientation), a plate and a ball

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3. (9)

A R3 tensor decomposed by Eq. 9, with eigenvalues
λ1≥λ2≥λ3, can be interpreted as following:

• λ1>>λ2≈λ3 corresponds to an approximately linear
tensor, with the spear component being dominant.

• λ1≈λ2>>λ3 corresponds to an approximately planar
tensor, with the plate component being dominant.

• λ1≈λ2≈λ3 corresponds to an approximately isotropic
tensor, with the ball component being dominant, and no
main orientation present.

Consider two orientation tensors A and B and its summa-
tion T = A + B. After the decomposition of T using Eq. 9,
the component (λ1 − λ2)T1 is an estimate of the collinearity
of the main eigenvectors of A and B.

2.3. Multiresolution High Frequency Assessment

The method proposed in [4] uses high frequency information
extracted from wavelet analysis. For each scale j, a vector
based on Eq. 5 is created. This vector contains the high fre-
quency value at vertical, horizontal and diagonal directions of
the image I at the position p and scale j. Symmetric rank 2
tensors are then created as

Mj,p = vj,pv
T
j,p. (10)

The final tensor M0,p is computed for each pixel of the
original image using

M0,p =
nj∑

j=1

kjMj,p (11)

to combine the tensors obtained at each scale j, where nj is
the number of scales and kj ∈ R is the weight assigned to
each scale, given by

kj =
∑np

n=1 Trace(Mj,n)∑nj

k=1

∑np

n=1 Trace(Mk,n)
, (12)

where np is the number of pixels and Trace(Mj,p) is the sum
of the eigenvalues of Mj,p. The trace represents the ampli-
fication driven by the tensor to the unit sphere and is a good
estimator of its importance. Thus, the tensor sum is weighted
by the proportion of energy of each scale in the multiresolu-
tion pyramid.

For each pixel p of the input image, its correspondent po-
sition at the current scale j is computed with subpixel preci-
sion for each resolution. The four nearest pixels in this reso-
lution are used to compute the final tensor. The vectors vj,p

described in Eq. 5 are computed for each of these pixels and
then used to compute four spear type tensors. The final ten-
sor Mj,p (Eq. 10) for the subpixel position is obtained by
combining these four tensors with bilinear interpolation. The
pixel tensorM0,p is computed by combining the nj tensors as
showed in Eq. 11.

The tensors are then decomposed using Eq. 9 and their
eigenvalues are extracted. The values λ1 - λ2 are computed
and normalized. They indicate the collinearity of the interpo-
lated tensors and provides interesting results. Color images
are split into three monochromatic channels (Red, Green and
Blue) and the proposed algorithm is applied to each channel
separately. The tensors for each color channel are summed
before eigen decomposition.



3. PROPOSED METHOD

The proposed method consists of combining the eigenvectors
e1, e2 and e3 of each tensor with the resulting scalar field
λ1 - λ2. We argue that when the main direction is coincident
with the variation of λ1 - λ2, we have a salient multiresolution
region. A method similar to the proposed in [7] can be derived
to extract these regions.

Since the tensor is a symmetric positive matrix, its eigen-
system forms an orthonormal basis of R3 where e1 represents
the estimated main direction and e1 with e2 form the best es-
timated plane. Using the method presented in Section 2.3, e1
represents the resulting gradient vector obtained from several
scales. The value λ1 - λ2 is an estimation of their collinearity.
The plane e1e2 is the plane where the combined gradient is
likely to be.

e1 e2

e3 ∇p(λ1 − λ2)

Fig. 1. Eigenvector fields and the gradient∇p(λ1−λ2) over-
layed with the input image. Fields obtained using daub2 filter
and two scales.

To describe high frequency regions in multiresolution, we
propose the scalar field

sp = | cos θ|+ | cosα| (13)

where θ is the angle between e1 and gp = ∇p(λ1−λ2), and α
is the angle between gp and the plane e1e2. Pixels having high
values of 0 ≤ sp ≤ 2 are likely to be salient multiresolution
edges. A segmentation of this scalar field using a threshold is
sufficient to highlight multiresolution high frequency regions.

As an example, eigenvectors and the gradient of λ1 - λ2

are shown in Fig. 1, using a part of the classic Pentagon im-
age. The vectors are overlayed with the original image using a

thermal palette to indicate λ1−λ2. Vectors with small values
of λ1 − λ2 were omitted.

The complexity of the whole process is O(nj ·np), where
nj is the number of analyzed scales and np the amount of
input pixels. Thus, this is an efficient method that can be
further parallelized.

4. EXPERIMENTAL RESULTS

The Fig. 2b shows the result of λ1 − λ2 obtained for the im-
age Fig. 2a. The response of high frequencies assessment is
higher with more scales. In general, it can be noted that high
frequencies occurring in the same region at different scales
are highlighted by this method. The thermal coloring is a
smooth transition from blue to red, where blue means absence
of coincident high frequencies, and red means presence of co-
incident high frequencies.

The segmentation of pixels having high sp values is also
showed in Fig. 2. The threshold value 0.5 is used in all ex-
amples. In Fig. 2c, the result using daub2 filters with two
scales starts to show that the upper side of the Pentagon has
interesting brightness variations. Using a regular edge detec-
tor, these borders would be highlighted independently. With
our method, one may see that this region has high detail en-
ergy in all used scales. With 3 scales (Fig. 2d), it becomes
more evident. This may be an interesting multiresolution fea-
ture for detection systems. The response is similar using the
daub3 filter with 4 scales (Fig. 2e). Noise is a problem when
propagated by all scales (Fig. 2f).

The second experiment shows the time spent to apply the
algorithm in color images. Fig. 3 shows the time in seconds
in function of the number of scales and image size. One may
see the linear behavior of the algorithm, where the slope is
proportional to the number of scales. However, it is important
to note that the algorithm response time may be a bottleneck
in real time applications if the number of pixels is high. All
experiments were performed on an Intel Core2 Duo 1.8Ghz
CPU using a 32bit compiler.

5. CONCLUSIONS AND FUTURE WORKS

A method for high frequency multiresolution assessment and
edge extraction was proposed. It is based on the DWT de-
composition followed by detail information merging using
orientation tensors. This multiresolution analysis showed to
be suitable for detecting relevant edges and salient areas in an
image. Due to the multivariate nature of tensors, the process
can be easily applied in color images.

The experimental results show that the high frequency in-
formation can be inferred by varying the DWT filters and
number of scales. Coincident frequencies in space domain are
successfully highlighted. Tensor information was exploited to
obtain local maxima at multiresolution edges. By tuning the
number of scales, one may highlight specific high frequency
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Fig. 2. (a) input image with 1024×1024 pixels. (b) λ1 - λ2

with daub2 and 2 scales. Results with white pixels having
st > 0.5 and using: (c) daub2 and 2 scales, (d) daub2 and
3 scales, (e) daub3 and 4 scales, (f) daub3 and 4 scales with
10% of gaussian noise.

regions. As shown, the linear complexity is suitable for high
performance processes. The presence of random noise in the
image may generate bad results. Problems arise when noisy
borders are detected on several scales. As a result, errors in
these regions are propagated in the tensor accumulation pro-
cess. A previous low-pass filtering may reduce this problem.

The λ1−λ2 scalar field is one of the most used orientation
alignment descriptors. However, other relations can be ex-
tracted from final pixel tensors. The effects of varying wavelet
filters and number of scales are still unclear and need further
investigation. Scalar fields with zero crossings can also be
derived. This is also a promising line for future works.

Fig. 3. Evaluation of the running time in function of the num-
ber of scales and amount of pixels of a color image.

The discrete wavelet transform and the tensor summation
can be easily parallelized. The use of rising technologies like
gpGPUs and multicore CPUs turns this method attractive for
high performance applications.
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