
High Frequency Assessment from
Multiresolution Analysis
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Abstract. We propose a method for the assessment and visualization of
high frequency regions of a multiresolution image. We combine both ori-
entation tensor and multiresolution analysis to give a scalar descriptor of
high frequency regions. High values of this scalar space indicate regions
having coincident detail vectors in multiple scales of a wavelet decom-
position. This is useful for finding edges, textures, collinear structures
and salient regions for computer vision methods. The image is decom-
posed into several scales using the Discrete Wavelet Transform (DWT).
The resulting detail spaces form vectors indicating intensity variations
which are combined using orientation tensors. A high frequency scalar
descriptor is then obtained from the resulting tensor for each original
image pixel. Our results show that this descriptor indicates areas having
relevant intensity variation in multiple scales.

Key words: high frequency detection, multiresolution analysis, orien-
tation tensor.

1 Introduction

The evaluation of high frequencies in an image is an important task for several
applications in computer vision, computer graphics and image processing. Ob-
jects in a scene are mainly distinguished by the contrast of their borders against
a background. In a signal processing point of view, this can be seen as brightness
variation with multiple frequencies.

However, object and background areas can be arbitrarily complex. One way
of estimating salient regions is to use multiresolution to capture global and local
brightness variations. Even in a non-redundant wavelet decomposition, local and
global borders occurring in the same region may carry useful information. The
problem is to combine the global information into a single image. In this sense,
orientation tensors can capture the multivariate information of several scales and
color channels [1].

In this paper, we combine both orientation tensor and multiresolution anal-
ysis to give a scalar descriptor of high frequency regions. High values of this
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scalar space indicate regions having coincident detail vectors in multiple scales
of wavelet decomposition. This is useful for finding edges, textures, collinear
structures and salient regions for computer vision methods.

2 Related Work

Orientation tensors can be used to analyze and draw conclusions about the
quality of an image. In Fronthaler et al. [2], the objective is to distinguish noisy
content from possible non-trivial structures in biometric assessments. The ori-
entation tensor is decomposed into symmetric representations from which a par-
ticular definition of quality can be estimated.

Wong and Chung [3] use orientation tensors to exploit local structural co-
herence to improve the quality of the binary segmentation of an image. An
estimation of the local structural orientation through eigen decomposition of
these tensors is performed for local structure description.

In Han and Shi [4], the wavelet transform plays an important role in the task
of decomposing a texture image into several levels. Once a decomposition level is
chosen, textures are then removed from the original image by the reconstruction
of low frequencies only.

Bigun et al. [5] use a structure tensor to represent and detect more intricate
patterns than straight lines and edges to produce and filter dense orientation
fields for feature extraction, matching, and pattern recognition.

Schou et al. [6] propose a method to detect line and edge structures in multi-
channel remote sensing images. They also use tensors to represent orientation
information. Vliet and Faas [7] decompose structure tensors to analyze and rep-
resent multiple oriented structures inside a local neighborhood of an image. They
propose cluster analysis to divide the local gradient vectors that would normally
construct a single tensor into a limited number of clusters.

Most of the related works use orientation tensors or multiresolution as a step
to gather specific image information in a single scale. In this paper, a weighted
sum of orientation tensors, obtained from several multiresolution scales, is used
to combine high frequencies in only one tensor field. This resulting tensor field
captures regions having coincident high frequencies that can be used to detect
salient areas.

3 Fundamentals

3.1 Wavelets

The wavelet transform decomposes signals over dilated and translated wavelets
[8]. A wavelet is a function ψ ∈ L2(<) with a zero average:∫ +∞

−∞
ψ(t)dt = 0 (1)



High Frequency Assessment from Multiresolution Analysis 3

It is normalized ||ψ|| = 1, and centered in the neighborhood of t = 0. A
family of time-frequency atoms is obtained by scaling ψ by s and translating it
by u:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
(2)

We are interested in wavelets which form a base of L2(<2) to represent im-
ages. If we have an orthonormal wavelet basis in L2(<) given by ψ with the
scaling function φ, we can use

ψ1(x) = φ(x1)ψ(x2), ψ2(x) = ψ(x1)φ(x2), ψ3(x) = ψ(x1)ψ(x2) (3)

to form an orthonormal basis in L2(<2) [8].

{ψ1
j,p, ψ

2
j,p, ψ

3
j,p}[j,p]∈Z3 (4)

In this paper, we define a vector vj,p ∈ <3 given by the inner product

vj,p = [I · ψ1
j,p, I · ψ2

j,p, I · ψ3
j,p]T (5)

at scale j and position p ∈ I, where I is the input image.

3.2 Orientation Tensor

A local orientation tensor is a special case of non-negative symmetric rank 2 ten-
sor, built based on information gathered from an image. As shown by Knutsson
[1], such a tensor can be produced by combining outputs from polar separable
quadrature filters. Because of its construction, such a tensor has special proper-
ties and contains valuable information about said image.

From the definition given by Westin [9], orientation tensors are symmetric,
and thus an orientation tensor T can be decomposed using the Spectral Theorem
as shown in (6), where λi are the eigenvalues of T .

T =
n∑

i=1

λiTi (6)

If Ti projects onto a m-dimensional eigenspace, we may decompose it as

Ti =
m∑

s=1

ese
T
s (7)

where {e1,...,em} is a base of <m. An interesting decomposition of the orientation
tensor T proposed by Westin [9] is given by

T = λnTn +
n−1∑
i=1

(λi − λi+1)Ti (8)



4 Castro, T.K., et al.

where λi are the eigenvalues corresponding to each eigenvector ei. This is an
interesting decomposition because of its geometric interpretation. In fact, in <3,
an orientation tensor T decomposed using (8) can be represented by a spear (its
main orientation), a plate and a ball

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3. (9)

A <3 tensor decomposed by (9), with eigenvalues λ1≥λ2≥λ3, can be inter-
preted as following:

– λ1>>λ2≈λ3 corresponds to an approximately linear tensor, with the spear
component being dominant.

– λ1≈λ2>>λ3 corresponds to an approximately planar tensor, with the plate
component being dominant.

– λ1≈λ2≈λ3 corresponds to an approximately isotropic tensor, with the ball
component being dominant, and no main orientation present.

Consider two orientation tensors A and B and its summation T = A + B.
After the decomposition of T using (9), the component (λ1−λ2)T1 is an estimate
of the collinearity of the main eigenvectors of A and B.

4 Proposed Method

The method proposed in this paper uses high frequency information extracted
from wavelet analysis. For each scale j, we create a vector based on (5). This
vector contains the high frequency value at vertical, horizontal and diagonal
directions of the image I at the position p and scale j. Symmetric rank 2 tensors
are then created as

Mj,p = vj,pv
T
j,p. (10)

We find the final tensor M0,p for each pixel of the original image using

M0,p =
nj∑

j=1

kjMj,p (11)

to combine the tensors obtained at each scale j, where nj is the number of scales
and kj ∈ < is the weight assigned to each scale, given by

kj =
∑np

n=1 Trace(Mj,n)∑nj

k=1

∑np

n=1 Trace(Mk,n)
, (12)

where np is the number of pixels and Trace(Mj,p) is the sum of the eigenval-
ues of Mj,p. The trace represents the amplification driven by the tensor to the
unit sphere and is a good estimator of its importance. Thus, the tensor sum is
weighted by the proportion of energy of each scale in the multiresolution pyra-
mid.
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Fig. 1. A tensor is computed for each pixel in original image by a weighted sum of
corresponding tensors in each scale. In this example, two wavelet decompositions are
performed.

In order to find Mj,p in (11), we use bilinear interpolation of the tensor values,
relative to each position p in the initial image, at the subsampled image at scale
j to find the resulting tensor Mj,p for each pixel of the initial image. This is
depicted in Fig. 1, where tensors are represented as superquadric glyphs whose
longer axis shows the main direction.

Note that the tensor presented in (11) is a 3 × 3 positive symmetric matrix
with real coefficients, and thus we may apply (9). We then find the main orienta-
tion component (spear) of the final orientation tensor for each pixel of the input
image. This component indicates the collinearity of the interpolated tensors and
provides interesting results.

4.1 Implementation

The proposed algorithm consists of three main steps: a discrete wavelet transform
[8, 10], a tensor field computation and a weighted sum of the computed tensors.
The whole process is illustrated in Fig. 2.

The number of scales to be used is a parameter of the algorithm. The DWT
splits the image into three detail components and one scale component in the
beginning of each iteration. In the next iteration, the same process is applied,
using the resulting scale component as the input image.

For each pixel of the input image, its correspondent position at the current
scale is computed with subpixel precision for each resolution. The four nearest
pixels in a given resolution are used to compute the final tensor. The vectors vj,p

described in (5) are computed for each of these pixels and then used to compute
four spear type tensors. The final tensor for the subpixel position is obtained
by combining these four tensors with bilinear interpolation. The pixel tensor is
computed by combining the nj tensors as showed in (11).

The pixel tensors are decomposed and their eigenvalues are then extracted.
The values λ1 - λ2 are computed and normalized to form the output image. Color
images are split into three monochromatic channels (Red, Green and Blue) and
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Fig. 2. Example of the proposed algorithm using Daubechies1 to decompose the image
into two scales.

the proposed algorithm is applied to each channel separately. The tensors for
each color channel are summed before eigen decomposition.

The complexity of the whole process is O(nj · np), where nj is the number
of analyzed scales and np the amount of input pixels. Thus, this is an efficient
method that can be further parallelized.

5 Experimental Results

The first experiment consists of fixing an input image and varying the wavelet
function and the amount of analyzed scales. This is shown in Figures 3 and
4 where the DWT is applied with different analyzing Daubechies filters and
number of scales.

Comparing the Fig. 3b with the Fig. 3c, one may see that the number of scales
is important to capture the coarse detail from the image. Note that the church’s
floor has low frequencies that cannot be detected using only one scale Fig. 3b.
This is even clearer in Figures 4b and 4c. The ceiling is formed by coincident
frequencies on its geometric details. These details can be better observed in Fig.
4c.

Changing the analyzing filter from Daubechies1 to Daubechies3 provides a
better estimation of soft edge transitions. Figures 3b, 3d, 4b and 4d illustrate
this behavior.

The resulting eigenvectors associated to the greatest eigenvalues λ1 are shown
in Fig. 5. The tensors eigenvectors are overlayed with the original image using
the thermal color to indicate λ1 − λ2. Note that they indicate regular patterns
in high frequency regions.
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In general, it can be noted that high frequencies occurring in the same re-
gion at different scales are highlighted by this method. The thermal coloring is a
smooth transition from blue to red, where blue means absence of high frequen-
cies, and red means presence of high frequencies. The green regions also indicate
high frequencies, but not as intense as those indicated by red regions. The tensors
obtained in the red regions have better estimation of higher frequencies.

(a)

(b) (c)

(d) (e)

Fig. 3. (a) input image. (b) λ1 - λ2 with Daubechies1 and 1 scale. c) Daubechies1 and
3 scales. d) Daubechies3 and 1 scale. e) Daubechies3 and 3 scales.

The second experiment shows the time spent to apply the algorithm in color
images. The Fig. 6 shows the time in seconds in function of the number of
scales and image size. One may see the linear behavior of the algorithm, where
the slope is the number of scales. However, it is important to note that the
algorithm response time may be a bottleneck in real time applications if the
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(a)

(b) (c)

(d) (e)

Fig. 4. (a) input image. (b) λ1 - λ2 with Daubechies1 and 1 scale. c) Daubechies1 and
3 scales. d) Daubechies3 and 1 scale. e) Daubechies3 and 3 scales.

Fig. 5. Eigenvector field overlayed with the input image.
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number of pixels is high. All experiments were performed on an Intel Core2 Duo
1.8Ghz CPU using a 32bit compiler.

Fig. 6. Evaluation of the running time in function of the number of scales and amount
of pixels of a color image.

6 Conclusions and Future Works

A method for high frequency assessment and visualization was proposed. It is
based on the DWT decomposition and detail information merging using orien-
tation tensors. This multiresolution analysis showed to be suitable for detecting
relevant edges and salient areas in an image. Due to the multivariate nature of
tensors, the process can be easily applied in color images.

The experimental results show that the high frequency information can be
inferred by varying the DWT filters and number of scales. Coincident frequencies
in space domain are successfully highlighted. By tuning the number of scales,
one may infer texture feature regions. As shown, the linear complexity is suitable
for high performance processes.

The λ1−λ2 scalar field is one of the most used orientation alignment descrip-
tors. However, other relations can be extracted from final pixel tensors. Future
works should evaluate this remaining tensor information. As an example, there
is promising information coded in the tensor eigenvectors. It is also interesting
to investigate the tensor field instead of isolated tensors.

The discrete wavelet transform and the tensor summation can be easily par-
allelized. The use of rising technologies like GPGPUs and multicore CPUs turns
this method attractive for high performance applications.
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