
Parallel Implementation of the Heisenberg
Model using Monte Carlo on GPGPU

Alessandra M. Campos, João Paulo Peçanha, Patŕıcia Pampanelli, Rafael B. de
Almeida, Marcelo Lobosco, Marcelo B. Vieira, and Sócrates de O. Dantas

Universidade Federal de Juiz de Fora, DCC/ICE and DF/ICE,
Cidade Universitária, CEP: 36036-330, Juiz de Fora, MG, Brazil

{amcampos,joaopaulo,patricia.pampanelli,rafaelbarra,marcelo.lobosco,

marcelo.bernardes}@ice.ufjf.br,dantas@fisica.ufjf.br

Abstract. The study of magnetic phenomena in nanometer scale is es-
sential for development of new technologies and materials. It also leads to
a better understanding of magnetic properties of matter. An approach to
the study of magnetic phenomena is the use of a physical model and
its computational simulation. For this purpose, in previous works we
have developed a program that simulates the interaction of spins in three-
dimensional structures formed by atoms with magnetic properties using
the Heisenberg model with long range interaction. However, there is in-
herent high complexity in implementing the numerical solution of this
physical model, mainly due to the number of elements present in the sim-
ulated structure. This complexity leads us to develop a parallel version of
our simulator using General-purpose GPUs (GPGPUs). This work de-
scribes the techniques used in the parallel implementation of our simula-
tor as well as evaluates its performance. Our experimental results showed
that the parallelization was very effective in improving the simulator per-
formance, yielding speedups up to 166.

Key words: Computational Physics, Heisenberg Model, High Perfor-
mance Computing, Many-core Programming, Performance Evaluation.

1 Introduction

The magnetic phenomena are widely used in the development of new technolo-
gies, such as electric power systems, electronic devices and telecommunications
systems, among many others. To a better understanding of magnetism, it is es-
sential the study of materials in nanoscale. The research at atomic scale has taken
the physicists Albert Fert from France and Peter Grünberg from Germany to
discover, independently, a novel physical effect called giant magnetoresistance or
GMR. By such important discovery, they won the 2007 Nobel Prize in Physics.
The GMR effect is used in almost every hard disk drives, since it allows the
storage of highly densely-packed information.

The magnetic phenomenon is associated to certain electrons properties: a)
the angular momentum, related to electrons rotation around the atomic nu-
cleus; and b) spins, a quantum mechanics property essential to the magnetic be-
havior. When magnetic atoms are brought together they interact magnetically,

2 Campos, A. M., et. alli

even without an external magnetic field, and thus may form structures at the
nanoscale. Computer-aided simulations can be used to study such interactions;
these simulators contribute to the understanding of magnetism in nanometer
scale providing numerical information about the phenomenon. Physicists and
engineers may use these simulators as virtual labs, creating and modifying fea-
tures of magnetic systems in a natural way. Moreover, visual and numerical data
are useful in the comprehension of highly complex magnetic systems.

Particularly, we are interested in simulating the behavior of ferromagnetic
materials. The interaction among ferromagnetic atoms is well-defined by the
Heisenberg model. This model was introduced by Heisenberg in 1928 [1] and
represents mathematically the strong alignment presented by spins in a local
neighborhood. The Heisenberg model is a statistical mechanical model used in
the study of ferromagnetism.

In a previous work [2], we have presented and implemented a computational
model used to simulate the spins interaction in three-dimensional magnetic struc-
tures using the Heisenberg model with long range interaction. The main goal of
our simulator is to provide a tool to analyze volumetric magnetic objects under
an uniform external magnetic field. The spins interaction occurs in a similar way
to the classical n-body problem [3]. Nevertheless, our work focuses on the so-
lution of interaction among particles that assemble in crystalline arrangements.
The complexity of this problems is O(N2), where N is the number of spins in
the system.

In order to reduce the costs associated with the computational complexity, we
have developed a parallel version of our simulator using General-purpose Graph-
ics Processing Units (GPGPUs). GPGPUs were chosen due to their ability to
process many streams simultaneously. The present work describes the techniques
used in our parallel implementation as well as evaluates its performance. These
techniques can be easily extended to other problems with similar features. Our
experimental results showed that the parallelization was very effective in im-
proving the simulator performance, yielding speedups up to 166.

For the best of our knowledge, the main contributions of our paper are the fol-
lowing. First, we observed that the energy of each atom in the Heisenberg model
can be computed independently. This is the main factor that contributed to the
speedups we achieved. A previous work [4], which performed simulations on 3D
systems using a simpler spin model (the Ising model [5]), obtained a speedup of
35. Second, this is the first work in literature that uses Compute Unified Device
Architecture (CUDA) to successfully implement the Heisenberg model with long
range interaction. Finally, we are the first to propose an automatic generation,
at run-time, of the execution configuration of a CUDA kernel.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the physical model used in the simulations. Section 3 gives a brief
description of CUDA. Section 4 presents the computational models. In Section 5,
we evaluate the impact of the techniques used in the parallelization on the simu-
lator performance. Section 6 presents related work and we state our conclusions
in Section 7.

Parallel implementation of the Heisenberg model using MC on GPGPU 3

2 Physical Model

All materials can be classified in terms of their magnetic behavior falling into one
of five categories depending on their bulk magnetic susceptibility χ= |M|/|H| (H
is the external magnetic field vector and M the magnetization vector). The five
categories are: a) ferromagnetic and b) ferrimagnetic (χ� 1); c) diamagnetism
(χ < 1); d) paramagnetic (χ > 0); and e) antiferromagnetic (χ small). In par-
ticular, this work focuses on modeling elements with ferromagnetic properties,
whose magnetic moments tend to align to the same direction. In ferromagnetic
materials, the local magnetic field is caused by their spins.

Loosely speaking, the spin of an atom in quantum mechanics refers to the
possible orientations that their subatomic particles have when they are, or are
not, under the influence of an external magnetic field. The spin representation
using an arbitrary 3D oriented vector is known as Heisenberg model [6].

Suppose you have a closed system composed by a single crystalline or molec-
ular structure, which could take the form of any basic geometric shape, such as
spheres, cubes and cylinders. The atoms of this structure are modeled as points
in the space (grid) and are associated with a Si ∈ R3 vector that represents
their spins. The atoms are equally spaced in a regular grid of variable size. The
unique external influence is an uniform magnetic field H.

Such magnetic structures, when influenced by H , tends to orient their spins
in the direction of the external field, but this effect can be influenced by temper-
ature. As the system evolves, the spins rotate, trying to adjust their direction
to the applied external magnetic field. Because each atom has an unique energy
and a well-defined position in space, it is possible to calculate the total system
energy Et, given by the interaction of N dipoles, as follows:

Et =
A

2

N∑
i,j=1

i6=j

ωij − J
N∑

i,k=1

i6=k

Si · Sk −
N∑
i=1

D(Si ·H), (1)

where ωij represents the dipole-dipole interaction between the i-th and j-th spin,
and is given by:

ωij =
Si · Sj
|rij |3

− 3
(Si · rij) (Sj · rij)

|rij |5
, (2)

where Si is the spin of the i-th particle, rij = ri − rj is the position vector that
separates the particles i and j.

In Equation 1, A is the intensity of the dipole-dipole interaction, J is the
ferromagnetic factor characteristic of the object in question, H is the uniform
external field and D is related to its amplitude. The first term of Equation
1 is called long-range dipole-dipole term. This is the most expensive term to
compute since our main goal is to access the energy of every individual atom.
The computational complexity of this term is O(N2), where N is the number of
spins.

4 Campos, A. M., et. alli

The second term of Equation 1, called ferromagnetic interaction, is a short-
range interaction where, in a regular cubic grid, we have only six nearest neigh-
bors elements (k = 1, 2, 3, ..., 6) influencing the final energy of a given spin. The
last term of the same equation refers to the influence of the external field vector
H on each particle.

A detailed analysis of the energy along a Monte Carlo simulation can reveal
very important information: the moment that occurs a phase transition from
ferromagnetic to a paramagnetic behavior. The main goal of computing this
equation is to find, for a given spin configuration, the Et corresponding to the
critical temperature value that causes a phase transition on the system.

3 General-Purpose Computing on Graphics Processing
Units - GPGPU

NVIDIA’s CUDA (Compute Unified Device Architecture)[7] is a massively par-
allel high-performance computing platform on General-Purpose Graphics Pro-
cessing Unit or GPGPUs. CUDA includes C software development tools and
libraries to hide the GPGPU hardware from programmers.

In GPGPU, a parallel function is called kernel. A kernel is a function callable
from the CPU and executed on the GPU simultaneously by many threads. Each
thread is run by a stream processor. They are grouped into blocks of threads
or just blocks. A set of blocks of threads form a grid. When the CPU calls the
kernel, it must specify how many threads will be created at runtime. The syntax
that specifies the number of threads that will be created to execute a kernel is
formally known as the execution configuration, and is flexible to support CUDA’s
hierarchy of threads, blocks of threads, and grids of blocks.

Since all threads in a grid execute the same code, a unique set of identification
numbers is used to distinguish threads and to define the appropriate portion
of the data they must process. These threads are organized into a two-level
hierarchy composed by blocks and grids and two unique values, called blockId
and threadId, are assigned to them by the CUDA runtime system. These two
build-in variables can be accessed within the kernel functions and they return
the appropriate values that identify a thread.

Some steps must be followed to use the GPU: first, the device must be ini-
tialized. Then, memory must be allocated in the GPU and data transferred to it.
The kernel is then called. After the kernel have finished, results must be copied
back to the CPU.

4 Computational Model

The physical problem is mapped onto a statistical one and solved using a Monte
Carlo method called Metropolis algorithm [8]. The Metropolis dynamics is based
on a single spin-flip procedure. Briefly, at each iteration a random spin is selected,
its value is also changed randomly and the new total system energy is computed

Parallel implementation of the Heisenberg model using MC on GPGPU 5

using Equation 1. Therefore, the algorithm decides whether the spin should
take the new orientation or return to the old state. If the new system energy
is lower than the previous one, it is accepted. Otherwise, the spin arrangement
temperature may be interfering in the system. In this case, the new value is
accepted only if the following condition applies: e(−∆E/Kt) > R, where R is a
random value in the range [0, 1]. Otherwise, the new value is rejected and the
system returns to its previous state.

An important step in the Metropolis algorithm is the choice of random values.
It is important to ensure that the probability of choosing a particle has uniform
distribution. To achieve this condition, we use the Mersenne Twister algorithm
[9], which has a period of 219937 − 1, in all random steps.

The parallelization process focused on the computation of the total system
energy due to its huge computational time cost. It is based on the observation
that the energy of each atom can be computed independently. This fact can
be easily checked in Equation 1: the atom energy depends only on the spin-
orientation of other atoms. Thus, the energy of distinct regions of the space can
also be computed independently. So, in order to increase the performance, the
main process can issue multiple threads to compute the energy for each part
of the space containing the ferromagnetic object. A detailed discussion on the
CUDA implementation is presented in this section. A CPU-based multithreaded
version of the code was also implemented for comparison purposes.

Both algorithms depicted in this section use an implicit representation of
the magnetic object. The simulation area consists of a three-dimensional ma-
trix. Each spin position can be obtained implicitly, by the triple (x, y, z) ∈ N3

which corresponds to its own matrix coordinates. Thus, it is not necessary to
store individual spin positions, assuring a faster and simpler data manipulation.
Another advantage of the matrix representation is that it is trivial to model
complex geometries using implicit equations.

4.1 Multithreaded Version

The multithreaded version of our simulator uses a dynamic spatial partition
scheme. The scheme is straightforward: the space is divided into plans, which
are stolen by threads following a work stealing algorithm. The thread computes
the energy of the plan, which is calculated as the sum of the energies of all
spins located in the plan. The total system energy is obtained as the sum of the
energies of all plans. The division of space into plans follows the directions given
by the axis XY, YZ or ZX.

During the execution, the user can choose the number of threads that will be
created. This number is usually equal to the number of processors and/or cores
available in the machine. Basically, these are the steps followed during the work
stealing:

– Each thread picks a different plan from the space. The access to the plan is
synchronized;

6 Campos, A. M., et. alli

– After finishing its job, the thread adds its result into a specific variable. The
access to this shared variable is synchronized;

– If one or more plans are still available, i.e., if their energies were not calcu-
lated, the algorithm continues, as Figure 1 illustrates. Otherwise, the algo-
rithm returns the total energy value.

Fig. 1. Thread load balance using aligned plans.

4.2 CUDA Version

In our first approach, we organized the matrix contiguously in global memory
as an unidimensional vector. The access to the matrix was done linearly. Figure
2 illustrates this initial mapping attempt. The GPU was only used to calculate
the dipole-dipole energy. Using this approach, the kernel is called by the CPU
to calculate the dipole-dipole interaction for each atom in the system. Following
the physical model, the current energy for each atom is obtained accessing in
global memory all other atoms in the system. After the dipole-dipole energy is
computed, the result is copied back to the CPU. The CPU then calculates the
other terms of Equation 1 and completes the execution of the code, including
the execution of the Mersenne Twister algorithm.

However, the performance of our first approach was lower than expected. Two
distinct factors contributed to the poor performance: a) the memory accesses
by threads were not organized to exhibit favorable access patterns, so memory
accesses could not be coalesced by GPU, and b) the initialization and data
transfers to and from GPU were executed at each Monte Carlo step, which
represented a large amount of overhead. So, in order to improve the performance,
we restructured our code.

The first modification that has been implemented is related to the compu-
tation of the system energy. While in our first approach the energy of a single
spin was calculated at each Monte Carlo step, in our second approach the energy
of each particle and its interactions with all others is calculated in parallel. In
this second approach, all the energies presented in Equation 1 are computed in
GPU, differently from the first approach, where only the dipole-dipole energy
was calculated in GPU. After computing the energies of all spins, we update

Parallel implementation of the Heisenberg model using MC on GPGPU 7

Fig. 2. Mapping of 4 × 2 matrix assuming the use of only one subset of eight stream
processors

these energies in global memory. At the end of the computation, taking advan-
tage of the location of computed energies in the global memory, we reduce the
vector of energies on the GPU. Then the CPU gets the total energy from GPU
and tests it. If it is not accepted, the system state is restored to its previous
configuration.

Another important difference between both approaches is the way data is
mapped into GPU memory. In our first approach, the data was completely stored
in global memory. Although global memory is large, it is slower than other mem-
ories available in GPU devices, such as the shared memory, a type of memory
allocated to thread blocks. However, the shared memory is smaller than our data
structure. So we use both global and shared memory to store the data using the
well-known tiling technique. Using tiles, the data is partitioned into subsets so
that each tile fits into the shared memory. However, it is important to mention
that the kernel computation on these tiles must be done independently of each
other.

The third modification is related to the way the GPU hardware is used. If
the number of threads to be created is smaller than a given threshold value, we
modify the way the computation is done. In this case, two or more threads are
associated to each spin and collaborate to calculate its dipole iteration. Threads
collaborate in a simple way: the tile is split up among threads, so each thread
will be responsible for calculating the dipole interaction of its spin with part of
the spins that composes a tile. For example, if our algorithm decides to create
two threads per spin, than one thread will be responsible for calculating the

8 Campos, A. M., et. alli

iterations of that spin with the spins that composes the first half of the tile
while the second one will be responsible for calculating its iterations with the
spins of the second half of the tile. This approach improves the GPU usage
because more threads are created, while reducing, at the same time, the total
computation done by a single thread.

A final modification in our first approach was the decomposition of our matrix
in three distinct float vectors containing respectively: a) the atom position in 3D
space, b) its spin orientation, and c) its energy. This modification was inspired
by the work described in [10] with the objective of optimizing memory requests
and transfers and avoid memory conflicts. The idea is to reduce the chance
of accessing the same memory position concurrently, and to better align the
data structures. The first vector was declared as float4, the second one as float3
and the last one as float. In the case of the first vector, three values form the
coordinates, and the fourth value is a uniquely defined index. This index is used
to avoid the computation of the long range energy of the particle with itself.

Automatic Generation of the Execution Configuration. When the host
invokes a kernel, it must specify an execution configuration. In short, the execu-
tion configuration just means defining the number of parallel threads in a group
and the number of groups to use when running the kernel for the CUDA device.
The programmer is responsible for providing such information. The choice of the
execution configuration values plays an important role in the performance of the
application.

In our implementation, the execution configuration of a kernel is automat-
ically generated at run-time: the number of threads per block and the number
of blocks are calculated based on the number of spins present in the system.
In order to improve performance, our goal is to obtain the maximum number
of threads per block. To obtain this number, some aspects must be taken into
account, such as hardware characteristics and the amount of resources available
per thread.

We start our algorithm querying the device to obtain its characteristics. Some
information are then extracted, such as the number of multiprocessors available.
Then, some values are computed, such as mnt, the minimum number of threads
that must be created to guarantee the use of all processors available in the
GPGPU architecture. This value is equal to the maximum number of threads
per block times the number of multiprocessors. We use 256 as the maximum
number of threads per block because this was the maximum value that allows
a kernel launch. Then, we compute the number of threads that will be used
during computation. This value is calculated in two steps. The first step con-
siders that one thread will be used per spin, while the second step takes into
account the use of multiples threads per spin. In the first step, we start set-
ting number of threads per block equal to one. Then we verify if the number
of spins is a prime number: the algorithm tries to find the Greatest Common
Divisor (GCD) between 1 and the radix of the number of spins, since this value
is enough to determine if the number of spin is prime or not. If the number is

Parallel implementation of the Heisenberg model using MC on GPGPU 9

prime, we have our worst case which keeps the number of threads per block
equal to one. During the computation of the GCD, we store the quotient of the
division between the number of spins and the divisor found. We verify if the quo-
tient is into the interval between 1 and 256. If so, it is considered as a candidate
to be the number of threads per block, otherwise the divisor is considered as
a candidate. The second step evaluates if the use of multiple threads per spin
is viable. To do so, the algorithm compares the number of spins with mnt. If
the number of spins is equal to or greater than mnt, the value obtained in the
first step is maintained as the number of threads per block. Otherwise the al-
gorithm tries to arrange the spins in a bi-dimensional matrix, where x represents
the number of spins per block while y represents the number of threads per spin.
We try to arrange threads in such a way that the two dimensions of the grid,
x and y, reflects the warp size and the number of stream processors available
in the machine. The third dimension, z, will be equal to one. If no arrange of
x and y can be found, the block and grid dimensions are, respectively, equal to
(number of threads, 1, 1) and (number of spins/number of threads, 1,1). If
an arrange was found, the block and grid dimensions are, respectively, equal to
(x, y, 1) and (number of spins/x,1,1).

The CUDA algorithm. Figure 3 summarizes the complete CUDA algorithm
as well as the techniques employed to achieve better performance. The first step
of the algorithm is to decompose the data matrix in three distinct vectors: a)
direction, b) position and c) energy. These vectors are copied into the GPU’s
global memory. Then, we calculate the execution configuration of the kernel
using the algorithm described in the previous subsection. After this, the CPU
calls the kernel. Each thread accesses a particular spin according to its unique
identification and copies its direction and position values into the local memory.
When all threads of the grid finish this step, they begin to calculate the dipole
interaction: each thread calculates the dipole energy between the spin kept in
its local memory and the subset of spins (or part of it, in the case of multiple
threads per spin) stored in the tile, that was brought from the shared memory
to the local memory. Due to the way data is organized, all memory transfers
are done without blocking the threads. The result is then added to the partial
result stored in a local variable. This step is repeated until all threads have
calculated the interaction of its local spin and all other spins of the system.
Then, each thread calculates the ferromagnetic factor and the interaction with
the external field. These values are then added to the dipole value just found and
the final result is written back in an unique position of a vector, called energy
vector, that is stored into the global memory. The CPU then calls another kernel
that computes the reduction of the energy vector. The sum of all energy vector
positions represents the new energy of the system.

10 Campos, A. M., et. alli

start i-th iteration

end i-th iteration

(M
em

Co
py

)

The Mersenne Twister
algorithm is used to select a

spin randomly. Its orientation

is also changed randomly.

CPU GPUX

Matrix in GPU is updated

(only the new orientation

changes in global memory).

Updates the matrix with

the new spin orientation.

Each thread reads its

respective spin orientation

from global memory.

Calls the kernel that

calculates the new

system energy.

The array of spin

orientation is copied

to the shared memory.

Each thread computes the

Equation 1. The thread

stores all these results

into a local variable.

Updates the matrix

with all energies.

Copy the energies array

to the shared memory and

sum up all the energies.

Calls the reduction kernel.

Copy back the total energy.

If the energy is not accepted,

restores the old spin

orientation to the

matrix located in GPU.

Matrix is updated (only

the old orientation changes

in global memory).

Fig. 3. Algorithm to calculate the total energy of the system.

5 Experimental Evaluation

In this section, we present experimental results obtained with three distinct ver-
sions of our simulator: a) the sequential version, b) the multithread version and
c) the CUDA version. Both the sequential and multithread implementations have
been tested on a Dual Intel Xeon E5410 2.33Ghz with 4 GB of memory. The
CUDA implementation has been tested on a Intel Core 2 Quad Q6600 2.4Ghz
with a NVIDIA GeForce 9800 GTX+ and on a Intel Core 2 Quad Q9550 2.83Ghz
with a NVIDIA GeForce 295 GTX. All machines run Ubuntu 9.04 64-bits. The
NVIDIA GeForce 9800 graphic card has 128 stream processors, 16 multiproces-
sors, each one with 16KB of shared memory, and 512MB of global memory. The
NVIDIA GeForce 295 GTX has two GPUs containing 240 stream processors, 30
multiprocessors, each one with 16KB of shared memory, and 862MB of global
memory. However, only one of the two 295 GTX GPUs was used during the
experiments.

The performance figures of our simulator were collected by calculating the
energy of a cube completely filled with spins. Six different cube sizes were used
as benchmarks. To guarantee the stability of the system energy, we executed
5000 iterations for each benchmark. We submitted the benchmarks 10 times to

Parallel implementation of the Heisenberg model using MC on GPGPU 11

Table 1. Grid size, serial execution time, and parallel execution times for the multi-
threaded and CUDA versions of our simulator. All times are in seconds.

Grid size Sequential Multithread GeForce GeForce
(8 threads) 9800 GTX+ 295 GTX

8x8x8 85.0s 15.0s 5.3s 2.6s

10x10x10 325.0s 64.0s 20.0s 4.9s

12x12x12 967.5s 159.0s 53.4s 18.0s

14x14x14 2,438.0s 346.0s 139.8s 24.0s

16x16x16 5,425.8s 664.0s 298.1s 52.1s

20x20x20 20,760.3s 3,035.0s 1,140.9s 82.7s

all versions of our simulator, and reported the average execution time for each
benchmark in Table 1. The standard deviation obtained was negligible.

295 GTX
9800 GTX+
Multithread

8x8x8 10x10x10 12x12x12 14x14x14 16x16x16 20x20x20

Fig. 4. Speedups over sequential version

In Figure 4, we present speedups for each of the simulator versions. The
speedup figures were obtained by dividing the sequential execution time of the
simulator by its parallel version. Figure 4 shows that our parallel versions were
very effective in improving the simulator performance, yielding speedups between
5.1 to 166. Despite the multithreaded version speedups were respectable, ranging
from 5.1 to 8.1 for those six benchmarks on an 8 core machine, its performance
was below that of CUDA version. CUDA speedups range from 16 to 166. We
can observe a small reduction in the speedup of CUDA version for both 9800
GTX+ and the 295 GTX cards when running the 12x12x12 and the 16x16x16
cube sizes. We suspect that this happens due to a problem in the grid mapping.

12 Campos, A. M., et. alli

Table 2. Energy average after 5000 interactions.

Grid size Sequential GeForce Standard
295 GTX Deviation

8x8x8 -29.21122 -29.777496 0.400418

10x10x10 -13.729978 -13.735782 0.004104

12x12x12 -6.444052 -6.444051 0.000001

14x14x14 -2.876331 -3.172576 0.209477

16x16x16 -1.510165 -1.492171 0.012724

20x20x20 -0.532878 -0.576437 0.030801

The differences between GeForce 9800 GTX+ and GeForce 295 GTX are
more evident for larger systems. This occurs because GeForce 295 GTX has
240 stream processors (per GPU), 862MB of memory capacity (per GPU) and
223.8 GB/s of memory bandwidth, while GeForce 9800 GTX+ has 128 stream
processors, 512MB of memory capacity and 70.4 GB/s of memory bandwidth.
Recall that the 295 GTX has 2 GPUs, but only one is used in the experiments.
For small configurations, with 512 spins (8x8x8), 1,000 spins (10x10x10) and
1,728 spins (12x12x12), the 295 GTX outperforms the 9800 GTX+, in average,
by a factor of 3.0. For medium configurations, with 2,744 (14x14x14) and 4,096
(16x16x16), the 295 GTX outperforms the 9800 GTX+, in average, by a factor
of 5.7. For big configurations, with more than 8,000 spins, 295 GTX outperforms
the 9800 GTX+ by a factor of 14. With more processors available, the 295 GTX
can execute more blocks simultaneously and thus reduce the computation time.

Table 2 shows the values of energy obtained by both CPU and GPU at
the end of all simulations. A small difference, around 5%, in average, can be
observed between values computed by GPU and CPU. This difference can be
caused by the use of single-precision values by the GPU code. We believe the
use of double-precision arithmetic can reduce this error.

6 Related Works

Several proposals to reduce the total time in Monte Carlo simulations can be
found in the literature. An approach based in spin clusters flip was introduced by
Swendsen and Wang [11]. Recently, Fukui and Todo [12] achieved an interesting
result developing an O(N) algorithm using this idea. A parallel version of the
Monte Carlo method with Ising spin model was proposed by [13]. A theoretical
study of magnetic nanotube properties using a model similar to the described in
this paper can be found in [6].

The intrinsic parallelism presented by GPUs contributes positively for mod-
eling systems with high computational complexity. The GPU cards are widely
used to perform physical simulations like: fluid simulation [14], particle simu-
lation [15], molecular dynamics [16], interactive deformable bodies [17], and so
on.

Parallel implementation of the Heisenberg model using MC on GPGPU 13

Tomov et al. [18] developed a GPU based version of Monte Carlo method
using the Ising model for ferromagnetic simulations. In the Ising spin model
[5], the spin can adopt only two directions: ±1. The Heisenberg model used in
this work is much less restrictive and provides more realistic numerical results.
Tomov et al. did not use a long range interaction, while our work uses this
interaction. Although Tomov et al. have implemented a simpler model, they
have not obtained an good speedup: a speedup of three times was achieved
when using their parallel GPU version.

Another interesting GPU version for the Ising model was proposed by Preis
et al. [4]. They performed simulations using 2D and 3D systems and obtained
results 60 and 35 times faster, respectively, when compared to the CPU version.
Also, in this work, the long range factor was not used. We include the long range
dipole-dipole term (Eq. 1) because of its effects on the phase of the system. As
our experiments have shown, even using a complex model, our implementation
was very effective in improving performance.

7 Conclusions and Future Works

In this work, we presented an algorithm to simulate the Heisenberg model with
long range interaction using GPGPUs.

In order to evaluate our simulator, we compared the new implementation us-
ing CUDA with both multithreaded and sequential versions. The results reveal
that our CUDA version was responsible for a significant improvement in per-
formance. The gains due to the optimizations presented along this paper were
very expressive, yielding speedups up to 166 when using a 240 stream processors
GPU. Although the speedup obtained was respectable, we believe that we could
achieve better speedups if larger system configurations were used.

One important factor that have contributed to the expressive results we have
obtained was our observation that the energy of each atom could be computed in-
dependently. Thus, the energy of distinct regions of the space could also be com-
puted independently. So, in order to increase the performance, multiple threads
could be issued to compute the energy for each part of the space containing the
ferromagnetic object.

Finally, for the best of our knowledge, we are the first to propose an automatic
generation, at run-time, of the execution configuration of a GPGPU kernel. For
this purpose, the number of spins in the system, as well as the total amount
of memory each thread uses, are taken into account to calculate the execution
configuration.

The techniques presented in this paper are not restrict to simulate the Heisen-
berg model with long range interaction. We believe that they can be applied to
improve the performance of any GPGPU-based application. In the future, the
ideas behind the algorithm that performs the automatic generation of the ex-
ecution configuration can be part of the CUDA compiler and/or its run-time
system. Some additional research must be done to verify whether the configura-
tion obtained is the optimum one or not. We plan to investigate this too.

14 Campos, A. M., et. alli

As future works, we also intend to study the impact of different geometries,
such as sphere, cylinder and spherical shell, in performance. We also plan to
extend our work to use a cluster of GPGPUs. A cluster of GPGPUs is necessary
because the physicists are interested in analyzing systems composed by a huge
number of spins. At the moment, we can deal with almost 50,000 spins, but we
plan to deal with millions of them.

Acknowledgment

The authors thank to CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Ensino Superior), FAPEMIG (Fundação de Amparo à Pesquisa do Estado
de Minas Gerais), CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico) and UFJF for funding this research.

References

1. Heisenberg, W. J. Phys 49 (1928) 619
2. Peçanha, J., Campos, A., Pampanelli, P., Lobosco, M., Vieira, M., Dantas, S.:

Um modelo computacional para simulação de interação de spins em elementos e
compostos magnéticos. XI Encontro de Modelagem Computacional (2008)

3. Blelloch, G., Narlikar, G.: A practical comparison of n-body algorithms. In: Parallel
Algorithms. Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society (1997)

4. Preis, T., Virnau, P., Paul, W., Schneider, J.J.: Gpu accelerated monte carlo
simulation of the 2d and 3d ising model. Journal of Computational Physics 228(12)
(2009) 4468 – 4477

5. Ising, E.: Beitrag zur Theorie der Ferromagnetismus. Z. Physik 31 (1925) 253–258
6. Konstantinova, E.: Theoretical simulations of magnetic nanotubes using monte

carlo method. Journal of Magnetism and Magnetic Materials 320(21) (2008) 2721
– 2729

7. NVIDIA: Nvidia cuda programming guide. Technical report, NVIDIA Corporation
(2007)

8. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculations by fast computing machines. Journal of Chemi-
cal Physics 21 (1953) 1087–1092

9. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1) (1998) 3–30

10. Nyland, L., Harris, M., Prins, J.: Fast n-body simulation with cuda. In Nguyen,
H., ed.: GPU Gems 3. Addison Wesley Professional (August 2007)

11. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in monte carlo simu-
lations. Physical Review Letters 58(2) (January 1987) 86+

12. Fukui, K., Todo, S.: Order-n cluster monte carlo method for spin systems with
long-range interactions. Journal of Computational Physics 228(7) (2009) 2629 –
2642

13. Santos, E.E., Rickman, J.M., Muthukrishnan, G., Feng, S.: Efficient algorithms
for parallelizing monte carlo simulations for 2d ising spin models. J. Supercomput.
44(3) (2008) 274–290

Parallel implementation of the Heisenberg model using MC on GPGPU 15

14. Harada, T., Tanaka, M., Koshizuka, S., Kawaguchi, Y.: Real-time particle-based
simulation on gpus. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 posters, New
York, NY, USA, ACM (2007) 52

15. Kipfer, P., Segal, M., Westermann, R.: Uberflow: a gpu-based particle engine. In:
HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, New York, NY, USA, ACM Press (2004) 115–122

16. Yang, J., Wang, Y., Chen, Y.: Gpu accelerated molecular dynamics simulation of
thermal conductivities. J. Comput. Phys. 221(2) (2007) 799–804

17. Georgii, J., Echtler, F., Westermann, R.: Interactive simulation of deformable
bodies on gpus. In: Proceedings of Simulation and Visualisation 2005. (2005) 247–
258

18. Tomov, S., McGuigan, M., Bennett, R., Smith, G., Spiletic, J.: Benchmarking and
implementation of probability-based simulations on programmable graphics cards.
Computers and Graphics 29(1) (2005) 71 – 80

