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Abstract. We introduce a novel framework for automatic 3D facial expression
analysis in videos. The preliminary results were demonstrated by editing the fa-
cial expression with facial recognition. We first build a 3D expression database
to learn the expression space of a human face. The real-time 3D video data were
captured by a camera/projector scanning system. From this database, we extract
the geometry deformation independent of pose and illumination changes. All
possible facial deformations of an individual make a nonlinear manifold em-
bedded in a high dimensional space. To combine the manifolds of different
subjects that vary significantly and are usually hard to align, we transfer the fa-
cial deformations in all training videos to one standard model. Lipschitz em-
bedding embeds the normalized deformation of the standard model in a low di-
mensional generalized manifold. We learn a probabilistic expression model on
the generalized manifold. To edit a facial expression of a new subject in 3D
videos, the system searches over this generalized manifold for optimal replace-
ment with the ‘target’ expression, which will be blended with the deformation
in the previous frames to synthesize images of the new expression with the cur-
rent head pose. Experimental results show that our method works effectively

1   Introduction

The Facial expression analysis and synthesis is an active and challenging research
topic in computer vision, impacting important applications in areas such as human-
computer interaction and data-driven animation. We introduce a novel framework for
automatic facial expression editing in 3D videos. The system recognizes the expres-
sions and replaces them by expression mapping functions smoothly. We expect to use
this 3D system in the future as the core element of a facial expression analysis that
takes 2D video input.

3D information is becoming widely used in this field [1-3]. A combination of tex-
ture image and 3D geometry can considerably reduce the variation due to pose and
illumination changes. Recent technical progress allows the capture of accurate dense
3D data in real time, which enables us to build a 3D expression database for learning
the deformation space of human faces. The data capture system was developed by [4].



A coarse mesh model is fitted to track the inter-frame point motion and a dense mesh
is used for synthesis of new expressions.

The nonlinear expression manifolds of different subjects share a similar structure
but vary significantly in the high dimensional space. Researchers have proposed many
approaches, such as locally linear embedding (LLE) [5] and Isomap [6] to embed the
nonlinear manifolds in a low dimensional space. Expression manifolds from different
subjects remain difficult to align in the embedded space due to various causes: (1)
subjects have different face geometries; (2) facial expression styles vary by subject;
(3) some persons cannot perform certain expressions; and (4) the whole expression
space is large including blended expressions, so only small portion of it can be sam-
pled. Considering these factors, bilinear [7] and multi-linear  [8] models have been
successful in decomposing the static image ensembles into different sources of varia-
tion, such as identity and content. Elgammal and Lee [9] applied a decomposable
generative model to separate the content and style on the manifold representing dy-
namic objects. It learned a unified manifold by transforming the embedded manifolds
of different subjects into one. This approach assumes that the same kind of expression
performed by different subjects match each other strictly. However, one kind of ex-
pression can be performed in multiple styles, such as laughter with closed mouth, or
open mouth. The matching between these styles is very subjective.

To solve this problem, we built a generalized manifold that is capable of handling
multiple kinds of expressions with multiple styles. We transferred the 3D deformation
from the models in the training videos to a standard model. Sumner and Popovic [10]
designed a special scheme for triangle meshes where the deformed target mesh is
found by minimizing the transformation between the matching triangles while enforc-
ing the connectivity. We added a temporal constraint to ensure the smooth transfer of
the facial deformations in the training videos to the standard model. This model is
scalable and extensible. New subjects with new expressions can be easily added in.
The performance of the system will improve continuously with new data.

We built a generalized manifold from normalized motion of the standard model.
Lipschitz embedding was developed to embed the manifold to a low dimensional
space. A probabilistic model was learned on the generalized manifold in the embed-
ded space as in [11].

In this framework, a complete expression sequence becomes a path on the expres-
sion manifold, emanating from a center that corresponds to the neutral expression.
Each path consists of several clusters. A probabilistic model of transition between the
clusters and paths is learned through training videos in the embedded space. The like-
lihood of one kind of facial expression is modeled as a mixture density with the clus-
ters as mixture centers. The transition between different expressions is represented as
the evolution of the posterior probability of the six basic paths. In a video with a new
subject, the deformation can be transferred to the standard model and recognized
correctly.

For expression editing, the user can define any expression mapping function F:
66 RR → , where the domain and range are the likelihood of one kind of facial expres-

sion. We currently use 3D videos as input data. Many algorithms [12,13] have been
proposed to fit 3D deformable models on 2D image sequences. So the next step will



be to take 2D videos as input with a system (such as [13]) used as a preprocessing
module.

When the expression in the domain of F is detected, the system will search over the
generalized manifold for an optimal replacement in the ‘range’ expression. The de-
formation of the standard model is transferred back to the subject, and blended with
the facial deformation in the previous frame to ensure smooth editing. Fig. 1 illustrates
the overall system structure.

Fig. 1. System diagram.

The main contributions of this paper are the following: (1) We constructed a 3D
expression database with good scalability. (2) We proposed and defined a generalized
manifold of facial expression. Deformation data from different subjects complement
each other for a better description of the true manifold. (3) We learned a probabilistic
model to automatically implement the expression mapping function.

The remainder of the paper is organized as follows. We present the related work in
Section 2. We then describe how to construct the 3D expression database in Section 3.
Section 4 presents how to build generalized expression manifold. Section 5 discusses
the probabilistic model. Section 6 presents the experimental results. Section 7 con-
cludes the paper with discussion.

2   Related Work

Many researchers have explored the nature of the space of facial expressions. Zhang et
al. [14] used a two-layer perceptron to classify facial expressions. They found that five
to seven hidden perceptrons are probably enough to represent the space of facial ex-
pressions. Chuang et al. [15] showed that the space of facial expression could be mod-
eled with a bilinear model. Two formulations of bilinear models, asymmetric and
symmetric, were fit to facial expression data.

There are several publicly available facial expression databases: Cohen-Kanade fa-
cial expression database [16] provided by CMU has 97 subjects, 481 video sequences



with six kinds of basic expressions. Subjects in every video began from a neutral ex-
pression, and ended at the expression apex. FACS coding of every video is also pro-
vided. The CMU PIE database [17] includes 41,368 face images of 68 people cap-
tured under 13 poses, 43 illuminations conditions, and with 3 different expressions:
neutral, smile, and blinking. The Human ID database provided by USF has 100 exem-
plar 3D faces. The exemplar 3D faces were put in full correspondence as explained by
Blanz and Vetter [1]. To our knowledge, there is no 3D expression database publicly
available, so we built our own 3D database that includes 6 subjects and 36 videos,
with a total of 2581 frames. Every subject performed all six basic expressions from
neutral to apex and back to neutral. We will make the database publicly available with
more subjects in the near future.

Facial animation can be generated from scratch, or by reusing existing data. Noh
and Neumann [18] proposed a heuristic method to transfer the facial expression from
one mesh to another based on 3D geometry morphing. Lee and Shin [19] retargeted
motions by using a hierarchical displacement mapping based on multilevel B-spline
approximation. Zhang [20] proposed a geometry-driven photorealistic facial expres-
sion synthesis method. Example-based motion synthesis is another stream of research.
Ryun et al. [21] proposed an example-based approach for expression retargeting. We
improve the deformation transfer scheme in [10] by adding temporal constraints to
ensure smooth transfer of source dynamics.

We were inspired by the work of Wang et al. [3]. The main difference is that we
build a generalized expression manifold by deformation transfer, which is capable of
handling multiple expressions with multiple styles. The probabilistic model also takes
the blended expression into consideration and enables automatic expression editing.

3   3D Expression Database

We build the 3D expression database by capturing real-time range data of people
making different facial expressions. The range data were registered by robust feature
tracking and 3D mesh model fitting.

3.1   Real-time 3D scanner

To construct a high quality 3D expression database, the capture system should provide
high quality texture and geometry in real-time. Quality is crucial for accurate analysis
and realistic synthesis. Real-time is important for subtle facial motion capture and
temporal study of facial expression.

The system used for obtaining 3D data is based on a camera/projector pair and ac-
tive stereo [4]. It is built with off-the-shelf NTSC video equipment. The key of this
system is the combination of the color code (b,s)-BCSL [22] with a synchronized
video stream.
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Fig. 2: Decoding stripe transitions.

The (b,s)-BCSL code provides an efficient camera/projector correspondence
scheme. Parameter b is the number of colors and s is the number of patterns to be
projected. Two patterns is the minimum, giving the best time coherence compromise.
The complementary patterns are used to detect stripe transitions and colors robustly.
Our system applies six colors that can be unambiguously detected through zero-
crossings: RGBCMY. In our experiments, we use a (6,2)-BCSL code that features two
patterns of 900 stripes.

To build camera/projector correspondence, we project a subsequence of these two
patterns onto the scene and detect the projected stripe colors and boundaries from the
image obtained by a high-speed camera. The four projected colors, two for each pat-
tern, detected close to any boundary are uniquely decoded to the projected stripe in-
dex p (Fig. 2). The correspondent column in the projector space is detected in O(1) by
using (6,2)-BCSL decoding process. The depth is then computed by the cam-
era/projector intrinsic parameters and the rigid transformation between their reference
systems.

We project every color stripe followed by its complementary color to facilitate the
robust detection of stripe boundaries from the difference of the two resulting images.
The stripe boundaries become zero-crossings in the consecutive images and can be
detected with sub-pixel precision. One complete geometry reconstruction is obtained
after the projection of the pattern 1 and its complement followed by pattern 2 and its
complement.

The (6,2)-BCSL can be easily combined with video streams. Each 640x480 video
frame in NTSC standard is composed of two interlaced 640x240 fields. Each field is
exposed/captured in 1/60 sec. The camera and projector are synchronized using gen-
lock. For projection, we generate a frame stream interleaving the two patterns that is
coded with its corresponding complement as fields in a single frame. This video signal
is sent to the projector and connected to the camera’s genlock pin. The sum of its
fields gives a texture image and the difference provides projected stripe colors and
boundaries. The complete geometry and texture acquisition is illustrated in Fig. 3.
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Fig. 3. Input video frames, and the texture and geometry output streams with 30fps rate.

This system is suitable for facial expression capture because it maintains a good
balance between texture, geometry and motion detection. Our videos were obtained by
projecting 25-35 stripes over the face and the average resolutions are: vertical = 12
points/cm and horizontal = 1.25 points/cm (right bottom window of Fig. 4). We used
one Sony HyperHAD camera and one Infocus LP-70 projector.

3.2   3D Data Registration

The acquired range data need to be registered for the following analysis. The range
points are first smoothed by radial basis functions (RBF). We build a coarse mesh
model with 268 vertices, 244 faces for face tracking (Fig. 4). A generic coarse model
is fitted manually at the first frame. A robust feature tracker from Nevengineering [23]
provides the 2D positions of 22 prominent feature points (Fig. 5 (a)). The mesh’s
projection was warped by the 22 feature points. The depth of the vertex was recovered
by minimizing the distance between the mesh and the range data [24].

Fig. 4. An example of 3D data viewer with fitted mesh
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Fig.5. (a) The 2D tracking results.  (b) The dense mesh model

An example of the 3D viewer is shown in Fig. 4. The left bottom window shows the
range data with the fitted mesh. The right bottom window is the texture image with the
projected 3D points. Fig. 5 (a) shows the texture image with the 22 tracked feature
points. Fig. 5 (b) shows the dense mesh with 4856 vertices and 4756 faces. The dense
model is used for the synthesis of new expressions.

4   Generalized Expression Manifold

We build the generalized expression manifold by transferring the facial deformations
in the training videos to a standard model. The standard model serves as the interface
between the models in the training videos and models in the testing videos. The gener-
alized manifold, that is the expression manifold of the standard model, includes all
information in the training videos.  The more training data we have, the better it ap-
proximates the true manifold. We can define expression similarity on this manifold
and use it to search the optimal approximation for any kind of expression. The expres-
sion synthesis will involve only the standard model and target model.

4.1   Deformation Transfer with Temporal Constraints

Sumner [10] proposed a novel method to transfer the deformation of the source trian-
gle mesh to the target one by minimizing the transformation between the matching
triangles while enforcing the connectivity. This optimization problem can be rewritten
in linear equations:
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source transformations, and A is a large sparse matrix that relates x to c, which is de-
termined by the undeformed target mesh. This classic least-square optimization prob-
lem has closed form solution as

bSx = , where cAbAAS ',' == .                                             (2)
The result is unique up to a global translation. We fix the rigid vertex, such as inner
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Our goal is to transfer the deformation of a training subject in a video sequence to a
standard face smoothly. The vertex 

iv  at frame t is represented as
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where σ  is the weight for temporal smoothing. tc  is the source transformation at
frame t,  xfAfcd tt *−= .

This problem can be solved in a progressive way by approximating
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where 0xm  is the vertex locations of the undeformed target mesh.
Eq. (3) can be rewritten as
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σ  is chosen to guarantee IAmAm σ+'*  is symmetric positive matrix. Q always
exists, while it is not needed to solve Q explicitly. Eq. (4) has closed solution as

tt pQxmQQ '*' = . For efficiency, we compute and store the LU factorization of Q’Q
only once.

We separate the motion of the tracked source mesh into a global transformation due
to head movement and a local deformation due to facial expression. The local defor-
mation is used for facial expression (deformation) transfer.

Fig. 6 shows an example of transferring the source mesh to the target mesh with
synthesized texture data. The first row is the texture image of the source video at
frames 1, 12, 24. The second row is the dense mesh of the target face with transferred
deformation. The first image of the third row is the texture image of the undeformed
target model. The second and the third images are the corresponding synthesized faces
by the deformed dense mesh.



Fig.6. Deformation transfer with texture synthesis

4.2   Lipschitz embedding

We get the deformation vectors of the standard model as ktRx nts ,...1,3*, =∈ , where n
is the number of vertices; s is the number of videos and k  is the length of the video.
We normalize the duration of every video by re-sampling the deformation vectors at
equal intervals. The interpolation is implemented by a cubic spline. We build the
manifold by using the coarse mesh such that expression can be recognized quickly.
The dense mesh of the standard model is saved for synthesis of the new expression.

Lipschitz embedding [25] is a powerful embedding method used widely in image
clustering and image search. For a finite set of input data S , Lipschitz embedding is
defined in terms of a set R of subsets of S , },...,,{ 21 kAAAR = . The subsets 

iA  are

termed the reference sets of the embedding. Let );( Aod  be an extension of the dis-
tance function d  to a subset SA ⊂ , such that )},({min),( xodAod Ax∈= . An embed-

ding with respect to R  is defined as a mapping F  such
that ));();...,;();;(()( 21 kAodAodAodoF = .



For our experiments, we used six reference sets, each of which contains only the
deformation vectors of one kind of basic facial expression at its apex. The embedded
space is six dimensional. The distance function in the Lipschitz embedding should
reflect the distance between points on the manifold. We use the geodesic manifold
distance [5] to preserve the intrinsic geometry of the data. After we apply the Lip-
schitz embedding with geodesic distance to the training set, there are six basic paths in
the embedded space, emanating from the center that corresponds to the neutral image.
The images with blended expression lie between the basic paths.

An example of the generalized expression manifold projected on its first three di-
mensions can be found in the middle of the second row of Fig. 1. Points with different
colors represent embedded deformation vectors of different expressions. Anger: red;
Disgust: green; Fear: blue; Sad: cyan; Smile: pink; Surprise: yellow. In the embedded
space, expressions can be recognized by using the probabilistic model described in the
following section.

5   Probabilistic Model on the Generalized Manifold

The goal of the probabilistic model is to exploit the temporal information in video
sequences in order to recognize expression correctly and find the optimal replacement
for expression editing.

5.1. Model Learning

On the standard model, assume there are K  videos sequences for each kind of basic
expression }6,...,1{, =SS . The embedded vector for the ith frame in the jth video
for expression S  is 6

,, RI ijs ∈ , },...,1{ Kj = . By K-means clustering technique,

all points are grouped into clusters rnc n ,...,1, = . We compute a cluster frequency
measure
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learned as
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The prior )|( Scp is assigned according to the expression intensity of the cluster
center, varying from 0 to 1. By Bayes’ rule,
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For time series ,...1,0=t , the transition between different expressions can be com-
puted as the transition between the clusters:
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Due to the small variation within a cluster, 
1−tS  and 

tS  are conditionally independ-

ent given 1−tc .

5.2. Expression Recognition

Given a probe video, the facial deformation is first transferred to the standard model,
and the deformation vector is embedded as ,...1,0, =tI t

. The expression recognition

can be represented as the evolution of the posterior probability )|( :0:0 tt ISp .

We assume statistical independence between prior knowledge on the distributions
)|( 00 Icp  and )|( 00 ISp . Using the overall state vector ),( ttt cSx = , the transition

probability can be computed as:
)|()|()|( 111 −−− = tttttt ccpSSpxxp                                           (5)

We define the likelihood computation as follows
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where 
cu  is the center of cluster c , 

cσ  is the variation of cluster c .

Given this model, our goal is to compute the posterior )|( :0 tt ISp . It is in fact a

probability mass function (PMF) since 
tS  only takes values from 1 to 6. The marginal

probability )|,( :0 ttt IcSp  is also a PMF for the same reason.

Using Eq. (5), the Markov property, statistical independence, and time recursion in
the model, we can derive:
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which can be computed by the priors and the likelihood ticSIp iii ,...,1),,|( = .

This provides us the probability distribution of the expression categories, given the
sequence of embedded deformation vectors of the standard model.



5.3. Expression Editing

The user can define the any expression editing function F as needed. F: 66 RR → .
],...,,[))6(),...,1(( 621 qqqSpSpF ===

where ∑
=

=
6

1

1
i

iq , q is the new likelihood of one kind of facial expression. For example,

if we want to edit all sadness (S=1) videos to anger (S=2), the mapping function can
be defined as

                  F (p (S=1), p (S=2), …, p (S=6))=
   [p (S=2), p (S=1), …, p (S=6)], when p (S=1)>γ .                            (7)

This function will increase the likelihood of anger when the sadness is detected,
that is, its likelihood is above a threshold γ .

The system automatically searches for the embedded vector with likelihood that is
closest to the “range” expression. It first looks for the cluster whose center has the
closest likelihood. In that cluster, the point closest to the embedded vector of the input
frame is selected. We transfer the corresponding deformation vector back to the model
in the new video. The deformation vector is blended with the deformation at the pre-
vious frame to ensure smooth editing. The synthesized 2D image uses the head pose in
the real input frame and the texture information of the dense model.

6. Experimental Results

We collected 3D training videos from 6 subjects (3 males, 3 females). Every subject
performed six kinds of basic expressions. The total number of frames in the training
videos is 2581. We use Magic Morph morphing software to estimate the average of
the training faces, and we use that average as the standard model. The standard model
only contains geometrical data, no texture data. It will approach the “average” shape
of human faces when the number of training subjects increases.

Fig. 7 includes some examples of the mesh fitting results. Images in each row are
from the same subject. The first column is the neutral expression. The second and
third columns represent large deformation during the apex of expressions. We change
the viewpoints of 3D data to show that the fitting is very robust. A supplementary
video is available at http://ilab.cs.ucsb.edu/demos/AMFG05.mpg. This video gave a
snapshot of our database by displaying the texture sequences and 3D view of the range
data with the fitted mesh at the same time.

Fig. 8 shows examples of deformation transfer. The first row and second row is im-
ages of anger and the corresponding deformed standard mesh model. The first to the
third column is one style of anger at frame 1, 6, and 29. The fourth to sixth column is
another style of anger at frames 1, 20, and 48. The motions of the training videos are
well retargeted on the standard model.

Fig. 9 is an example of expression editing. First row is from the input video of sad-
ness. We define the expression mapping function as Eq. 7. The second row is the
deformed dense mesh by our algorithm. The third row is the output: the first image is



unchanged, the following images are synthesized anger faces by the expression map-
ping function. The system recognized the sadness correctly and synthesized new faces
with anger expression correspondingly.

Fig. 7. Mesh fitting for training videos

Fig. 8. Deformation transfer from training videos



Fig. 9. Expression editing examples

7   Conclusion

We introduced a novel framework for automatic facial expression analysis in 3D vid-
eos. A generalized manifold of facial expression is learned through a 3D expression
database. This database provides a potential to learn the complete deformation space
of human faces when more and more subjects are added in. Expression recognition
and editing is accomplished automatically by using the probabilistic model on the
generalized expression manifold of the standard model.

The current input is 3D videos. We plan to take 2D video input by using a system
like [13]. The output video is a synthesized face with a new expression. How to sepa-
rate and keep the deformation due to speech and merge the synthesized face smoothly
with the background in videos [26] are important topics for the future research.
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