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Universidade Federal de Juiz de Fora, DCC/ICE,
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Abstract. Tensor field visualization is a hard task due to the multi-
variate data contained in each local tensor. In this paper, we propose a
particle-tracing strategy to let the observer understand the field singulari-
ties. Our method is a viewer-dependent approach that induces the human
perceptual system to notice underlying structures of the tensor field. Par-
ticles move throughout the field in function of anisotropic features of local
tensors. We propose a easy to compute, viewer-dependent, priority list
representing the best locations in tensor field for creating new particles.
Our results show that our method is suitable for positive semi-definite
tensor fields representing distinct objects.

Key words: Tensor Field, Particle Tracing, Dynamic Visualization, Sci-
entific Visualization.

1 Introduction

Arbitrary tensor fields are very useful in a large number of knowledge areas like
physics, medicine, engineering and biology. The main goal of the study of ten-
sors in these areas is to investigate and seek for collinear and coplanar objects
represented by tensors. These objects or artifacts are formed by subsets of ar-
ranged and structured tensors which capture some geometric continuity like, for
example, fibers.

The best visualization methods must offer different features to allow the ob-
server to see as many aspects of tensor multivariate data as possible. Therefore,
it is very hard to combine in a single method all the expected functionalities.
In this paper we introduce a visualization process suitable for many different
positive semi-definite tensor fields. Our goal is to highlight most continuity in-
formation in a simple and adaptive fashion. An interesting approach may take
into account not only the static data given by an ordinary tensor field. It can
also use other information like the object’s surrounding space and the observer
(i.e. camera model) to generate and modify the visual data.

In this paper we present a dynamic method to visualize tensor fields. It
takes into account the observer point of view and other attributes aiming to
highlight collinear and coplanar information. The particle motion incites the
human perceptual system to fuse and perceive salient features. The work of [1]
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also use particle tracing to extract visual information of a tensor field. However,
the criterion to create particles is purely random, which may generate some
confusing results. In this paper we defined a priority list to choose the best places
in the space where particles should born to produce a superior viewing result.
The priorities are computed by a linear combination of anisotropic measures of
tensors and by the viewer camera parameters.
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Fig. 1. Schematic representation of the proposed method.

An overview of our method is depicted in Figure 1, having the following steps:
extract the best velocity vector from the tensor field, use a priority list to define
where new particles will appear, perform the advection of particles.

2 Related Works

In tensor field visualization we can adopt different approaches to represent infor-
mation. The discrete approach is commonly used when punctual data is sufficient
to obtain the required information. A superquadric glyph is an ordinary fashion
to represent local information given by the field mapping into geometric prim-
itives, like cubes, ellipses and cylinders this information. Using the concept of
glyphs, Shaw et al [2] have developed their work for multidimensional generic
data visualization. Their main contribution is to connect the advantages of the
visual human being perception and superquadrics intrinsic interpolation feature.
In a later extension [3], they propose to measure how many forms assumed by
superquadric can be distinguished by human vision system. Westin et al [4] pro-
posed an anisotropic metric to identify and compare a set of glyphs. Kindlmann
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[5] defines a linear mapping of shape coefficients in order to view anisotropic
and isotropic tensors. They present the problem of ambiguous glyphs that can
induce to wrong visual conclusions when the glyphs adopt planar or linear forms.
In one hand, all problems that involves symmetry can be solved using ellipsoidal
glyphs. In other hand, there are ambiguity situations in the visual identification
of the tensor. If the point of view direction is aligned to the main eigenvector,
ellipsoidal linear tensors can be identified as spheres. To overcome this prob-
lem, he presents a new parametrization of superquadric tensor glyphs to better
represent shape and orientation.

There are also continuous methods for tensor visualization based upon the
tensor interpolation of two distinct points in a multidimensional space. In [6] the
concept of tensor field lines - extended from [7] - is generalized, and the concept
of hyperstreamlines is introduced. In that work they represent all information of
a tensor field taking into account not points, but the trajectory generated by the
tensor using its eigenvectors. This approach is interesting to visualize symmetric
tensor fields, where its eigenvectors are real and orthogonal. However, the field
becomes hard to visualize for a large number of hypersetreamlines. Delmarcelle et
al [8] have presented another problem with hypersetreamlines: the degeneration
when a tensor has at least two equal eigenvectors. In [9] is presented a method
to avoid degeneration due to planar and spherical tensors in input data. This
method was applied in tensors fields obtained from magnetic resonance images.

Zheng and Pang [10] proposed a method to visualize tensor field using the
concept of linear integral convolution. Their work is an extension of [11], which
uses a white texture noise and hyperstreamlines to generate the visual informa-
tion.

Dynamical particles walking through a tensor field is a powerful and recent
method for visualization. The sensation of movement incites the human per-
ceptual system making easier the understanding of some field properties. Kon-
dratieva et al [1] has proposed a dynamical approach using particle tracing in
GPU (Graphic Processing Unit). They argue that particle tracing gives an effi-
cient and intuitive way to understand the tensor field dynamics. The advection of
a set of particles in a continuous flow is used to induce particle motion. Through
the tensor field, a direction vector field is generated - based on [12] - and then,
the advection using this vector field is performed.

3 Fundamentals

3.1 Orientation Tensor

A local orientation tensor is a special case of non-negative symmetric rank 2
tensor. It was introduced by Westin [13] to estimate orientations in a field. This
tensor is symmetric and can be saw as a pondered sum of projections:

T =

n∑
i=1

λieie
T
i , (1)
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where {e1, e2, ..., em} is a base of Rn. Therefore, it can be decomposed into:

T = λnTn +

n−1∑
i=1

(λi − λi + 1)Ti, (2)

where λi are the eigenvalues corresponding to each eigenvector ei. This is an
interesting decomposition because of its geometric interpretation. In fact, in R3,
an orientation tensor T decomposed using Equation 2 can be represented using
the contribution of its linear, planar, and spherical intrinsic features:

T = (λ1 − λ2)Tl + (λ2 − λ3)Tp + λ3Ts. (3)

A R3 tensor decomposed by Equation 3, with eigenvalues λ1 ≥ λ2 ≥ λ3, can
be interpreted as following:

– λ1 � λ2 ≈ λ3 corresponds to an approximately linear tensor, with the spear
component being dominant.

– λ1 ≈ λ2 � λ3 corresponds to an approximately planar tensor, with the plate
component being dominant.

– λ1 ≈ λ2 ≈ λ3 corresponds to an approximately isotropic tensor, with the
ball component being dominant, and no main orientation present.

For many purposes only the main direction of the tensor is necessary. Further-
more, the shape of the tensor is generally more important than its magnitude.
Using the sum of the tensor eigenvalues, one may obtain the linear, planar, and
spherical coefficients of anisotropy:

cl =
λ1 − λ2

λ1 + λ2 + λ3
, (4)

cp =
2 (λ2 − λ3)

λ1 + λ2 + λ3
, (5)

cs =
3λ3

λ1 + λ2 + λ3
. (6)

Note that coefficients in Equations 5 and 6 were scaled by 2 and 3, re-
spectively, so that each of them independently lie in the range ∈ [0, 1] with
cl + cp + cs = 1 [13].

3.2 Invariants Towards Eigenvalues

The eigenvalues of a tensor D can be calculated solving:

det(λI−D) = 0.

Hence:
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det(λI−D) =

∣∣∣∣∣∣
λ−Dxx −Dxy −Dxz

λ−Dyy −Dyz

λ−Dzz

∣∣∣∣∣∣ = λ3 − J1λ
2 + J2λ− J3,

where,

J1 = Dxx −Dyy −Dzz = tr(D),

J2 = DxxDyy +DxxDzz +DyyDzz −D2
xy −D

2
xz −D

2
yz =

tr(D)2 − tr(D2)

2
,

J3 = 2DxyDxzDyz +DxxDyyDzz −D2
xzDyy −D2

yzDxx −D2
xyDzz = det(D).

(7)

so that tr(D) and det(D) are the trace and the determinant of tensor D, re-
spectively.

The matrix determinant is invariant to basis changing and thus is classified as
an algebraic invariant. Another useful invariant used to determine the eigenvalues
of a tensor is the squared norm:

J4 = ‖D‖2 = J2
1 − 2J2

= D2
xx + 2D2

xy + 2D2
xz +D2

yy + 2D2
yz +D2

zz

= λ21 + λ22 + λ23. (8)

3.3 Eigenvalue Wheel

Kindlmann [14] describes other three invariants used to solve a cubic polynomial:

Q =
J2
1 − 3J2

9
=
J4 − J2

9
=

3J4 − 3J2
1

18
(9)

R =
−9J1J2 + 27J3 + 2J3

1

54
=
−5J1J2 + 27J3 + 2J1J4

54
(10)

Θ =
1

3
cos−1

(
R√
Q3

)
. (11)

The wheel eigenvalues can be defined as a wheel with three equally placed
radii centered on the real number line at J3/3. The radius of the wheel is 2

√
Q,

and Θ measures the orientation of the first radius [14].

The central moments of a tensor determines the geometric parameters of the
eigenvalue wheel. The central moments are defined as:
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µ1 =
1

3

∑
λi =

λ1 + λ2 + λ3
3

= J1/3

µ2 =
1

3

∑
(λi − µ1)2 =

2(λ21 + λ22 + λ23 − λ1λ2 − λ1λ3 − λ2λ3)

9
= 2Q

µ3 =
1

3

∑
(λi − µ1)3 = 2R.

The second central moment µ2 is the variance of the eigenvalues, and the
standard deviation is σ =

√
µ2 =

√
2Q. The asymmetry A3 of the eigenvalues is

defined as follows [15]:

A3 =
µ3

σ3
=

∑
(λi − µ1)3

3µ2
√
µ2

=
R√
2Q3

. (12)

3.4 Anisotropy

In literature we can find many forms to measure the tensor anisotropy. The
fractional anisotropy (FA), relative anisotropy (RA), volume ratio and others,
can be computed using the tensor eigenvalues [16].

The FA [16] and RA [17] are defined as following:

FA =
3√
2

√
µ2

J4
= 3

√
Q

J4
=

√
J4 − J2

J4

RA =

√
µ2√
2µ1

=
3
√
Q

J1
. (13)

3.5 Tensorlines

The tensorlines concept is an extension of the hyperstreamlines method proposed
in [6]. Hyperstreamlines is obtained by a smooth path tracing. This is done by
using the main tensor eigenvector to perform line integration. The degenera-
tion problem in this method incited Weinstein et al [9] to develop an extension
called tensorlines. The tensorlines method uses multiple tensor features to de-
termine the correct path to follow. It stabilizes the propagation incorporating
two additional terms vint and vout given by:

vout = Tvin, (14)

so that vin is the incoming direction, vout the outgoing direction and T the local
tensor. The vin vector corresponds to the propagation direction in the previous
step, and vout is the input vector transformed by the tensor.
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The propagation vector used in the integral is a linear combination of e1,
vin, and vout. The next propagation vector, vprop, depends on the shape of the
tensor:

vprop = cle1 + (1− cl) ((1− wpunct)vin + wpunctvout) , (15)

where wpunct ∈ [0, 1] is a parameter defining the penetration into isotropic re-
gions [9].

3.6 Particle Tracing

The tensorline method generates a vector field that can be visualized using many
approaches. One of those is called particle tracing. In this method, massless
particles are inserted into the field subspace and their movements are coordinated
by its vectors.

It is necessary to compute the particle position
→
x in time t over velocity

→
v

each time-step. The mathematical model for this problem is straightforward. A

given particle p, is identified by your initial position
→
xpo with velocity

→
v p (p, t).

We must find
→
x∈ Rn: {

d
→
x p

dt =
→
v p (

→
xp, t) t ∈ [t0, Tp]

→
xp|t=t0 =

→
xp0

.
, (16)

where Tp is the time for particle p walk through all domain Ω.

4 Proposed Method

One common problem in tensor field visualization is ambiguity. In glyph-based
visualization, tensors with different forms may appear similar in a particular
point of view. Tensors with linear anisotropy may be identified as an isotropic
if the main eigenvector is aligned to the observer. To solve this problem we can
adopt a metric to evaluate the tensor orientation in regard to the observer. This
strategy can be efficient not only to treat the degeneration problem, but also
to improve other visualization methods. We will apply the benefits of observer
metrics to propose a visualization method based on particle tracing.

In our work, particles in motion will represent the features of the tensor
field. One critical point in visualization using particle tracing is to define the
particle starting point. The most intuitive approach used to insert particles into
the domain is to compute new positions randomly. However, a fixed distribution
function will generally not insert new particles in most interesting sites.

4.1 Priority Features

Let Tx×y×z being a discrete and finite tensor field with lattice given by x, y, z ∈ N
so that T = {t1, t2, t3...tn}, and composed by |T| = N tensors. For a given voxel
(a, b, c) where a, b, c ∈ N and such that a ≤ x, b ≤ y and c ≤ z we have the
correspondent tensor ti ∈ T.
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To correct visualize the tensor field we need to define a criterion to generate
and insert particles into the domain T. This should be done in accordance with
field variants and properties. In this work we propose a scalar Υ ∈ R, which
defines the priority of a voxel to have a particle being created on it. The Υ is
also used to define a color palette aiming to highlight the desired properties.
This priority is calculated using tensors characteristics and geometric features
of the scene (Fig. 2).

ϴ1

ϴ1

e2

e3

e1 obs

e2

e3

e1

e2

e3

e1

z

y

x

T2

T3

T1

dobs

Fig. 2. Simulation space.

To evaluate the tensor position in relation to the observer we propose the
coefficients k1, k2 e k3:

k1 = 1− |e1 · obs| (17)

k2 = 1− |e2 · obs| (18)

k3 = |e3 · obs|, (19)

where e1, e2 and e3 are the eigenvectors of the tensor and obs is the vector that
corresponds to the camera view.

Another important coefficient is the Euclidean distance between the observer
and the tensor dobs:

dobs =
|xT − xobs|
MAX(dobs)

, (20)

this distance is normalized by the greatest distance in the field MAX(dobs).
These coefficients are used together with tensor attributes to evaluate the

priority of a voxel receive a particle. For this proposal, we will calculate the
scalar Υ as the linear combination of the following terms:

– average of the eigenvalues of the tensor (µ1): related to the tensor size;
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– variance of the eigenvalues of the tensor (µ2): a bigger variance indicates
that the tensor will probably have a planar or linear anisotropy;

– asymmetry of the tensor eigenvalues (A3): changes from negative to positive
as the tensor vary from planar to linear;

– standard square of a tensor (J4): related to amplification imposed by the
tensor;

– coefficient of fractional anisotropy (FA) and relative anisotropy (RA): used
to detect anisotropy and isotropic regions;

– coefficient of orthogonally between the observer and the first eigenvalue (k1),
with the second eigenvalue (k2) and the third eigenvalue (k3): quantify the
relative position of the observer in relation to the tensor eigensystem, so we
can prioritize tensors that are parallel or orthogonal to the observer;

– normalized distance to the observer (dobs): reveal tensors closer to the screen;
– coefficient of linear anisotropy (cl), coefficient of planar anisotropy (cp): also

allow to differentiate anisotropy.

Tensor fields may present multivariate information coming from many dif-
ferent applications. Aiming to generate appropriate results, the scalar Υ will be
parameterized by the user in order to focus on the desired characteristics:

Υ t =α1µ1 + α2µ2 + α3A3 + α4J4 + α5FA+ α6RA

+ α7k1 + α8k2 + α9k3 + α10dobs + α11cl + α12cp. (21)

where αi ∈ [−1, 1] and t ∈ T. So, the Υ t ponders how much the tensor t ∈ T
presents the required information.

4.2 Priority List and Particle Insertion

In the application beginning, a number Np ∈ N of particles will be established
by the user. The program will allocate all the necessary memory and particles
are initialized, but not immediately inserted into the space. In the next step, all
tensors t ∈ T will be sorted and ranked in a list with most important elements
(higher Υt) positioned on the top (Fig. 3).

To insert a particle pi into the domain, a random number κ ∈ [0, 1] is gener-
ated using a standard normal distribution and then we select the correspondent
z-th tensor, z ∈ [0, N − 1], in the priority list:

z =
κN

ς
(22)

where N is the total number of tensors and ς defines a Gaussian distribution. A
bigger ς implies a higher frequency of choice of the top tensors in the priority
list. The particle pi will be created in the position of the z-th tensor spatial
position. The process of particle insertion stops when the domain contains at
least Np particles.
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0 1 2 3 . . . N-3 N-2 N-1

0 N
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Priority List

ϒ

z

P(κ)

Fig. 3. Normal probability distribution on the priority list.

The next algorithm step is to define a main direction
→
v∈ R3 for the new

particle. We may define a unique direction for each particle. This can be done
using a gradient of a specific field attribute. However, the created particle initially
will always move towards the same direction. A better solution is to invert the
initial direction of half the number of creations.

The Υ scalar has viewer-dependent terms, so, it is necessary to reorder the
priority list on every change of the camera position and orientation. This process
can be computationally expensive, and impairs the visualization performance.

To deal with this problem we use the following implementation strategy: after
the first iteration, the priority list stays partially ordered only if the camera
changes are not abrupt. If a full reordering is needed, the quicksort algorithm
with median-of-three partitioning [18] is performed. This algorithm has presented
relatively good performance results, leading to a real time visualization.

4.3 Particle Removal

The particle is removed from the visualization space when it reaches one of the
following situations: a) it is located at a bigger isotropic region b) get away from
the visualization lattice, and c) when the absolute value of the dot product be-
tween the entry direction into a voxel and the current voxel propagation direction
is equal to zero or smaller than a threshold γ ∈ R. We have found empirically
the value γ = 0.3 as a good parameter to avoid that a particle get stuck between
two voxels with opposite directions. It implies that the angle among these two
directions should be in the interval (72.54◦, 90.00◦].

In our implementation, for performance reasons, no particle is deallocated
until the application ends. When the stop criterion is reached for a determined
particle, its computational resources are reused and it is recreated using the
priority list.

In Kondratieva et al. [1] work, it is proposed that particles should be restarted
in its original initial position. Later, Kondratieva [19] concludes that the pre-
vious approach needed modifications. They observed a flicker behavior in the
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display due to the presence of high frequencies in the field. This situation may
distract the user and disturb the visualization. The authors proposed that par-
ticles should always restart at random in the tensor field.

In our method, a fixed number of particles is created, and during the visual-
ization process they are inserted into the lattice taking into account the priority
list and removed when it is necessary. When a particle is destroyed, it restarts
using the creation criterion. Thus, particles may reborn and highlight different
features in the same simulation. Further information will be highlighted if the
user, at runtime, manually changes the parameters αi presented in Equation 21,
or changes the observer’s point of view.

Our algorithm for tensor field visualization may be summarized as following:

1. select the tensor field to be visualized (domain T) and the number of particles
(Np);

2. compute Υ t (Eq. 21) for each tensor;
3. for each tensor t ∈ T, sort and rank it in the priority list;
4. select an available particle and insert it into the visualization space using

the priority list;
5. perform the particle advection loop;
6. verify what particles must be killed using the stop criterion;
7. if the viewer position or orientation changes too much, perform step 3.
8. if the number of particles in visualization space is smaller than Np, go to

step 4, otherwise go to step 5;

5 Results

In section, we present shots of different types of tensor fields. The particles
were represented by a pointer glyph (otherwise specified) and the color gradient
adopted flows from blue (minimum) to red (maximum) for a given Υ (Fig. 4).

Lower                                 Higherϒ

Fig. 4. Color palette for the Υ values.

We have inserted into a 38x39x40 grid three spherical charges, located at
(0,0,0), (38,39,40) and (38,0,40). For all voxels in the grid we use a formulation
to ponder the influence of each charge in that space region and then compute
a local tensor. The Figure 5(a) shows the obtained result using discrete glyphs
and in Figure 5(b) we draw a few tensorlines.

An important tensor feature is the anisotropy A3 (Eq. 12). Thus, if the user
want to seek for regions of high anisotropy, the Υ function may be adjusted. It
varies from positive to negative as the tensors changes it form from linear to
planar.
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(a) (b)

Fig. 5. A tensor field with three charges: (a) represented by superquadric glyphs
and (b) by a few tensorlines.

(a) (b)

Fig. 6. Three charges field represented by our method: (a) particles assuming
superquadric glyph shapes (particles near the charges are more stretched) and
(b) pointer glyphs smoothly flowing through the domain.

We have defined Υ = −A3 + FA and the results are shown in Figure 6. The
anisotropy in this field can be seen using the proposed method (Fig. 6). We have
used superquadric glyphs (Fig. 6(a)) and pointer glyphs (Fig. 6(b)) as particles
to understand the field properties. In Figure 6(a) there are less particles than
Figure 6(b). Note that the superquadric glyph particles, in Figure 6(a), are more
stretched in regions near to the charges showing a linear behavior. This regions
presents a high anisotropy. Using the Υ function in Figure 6(b) one may note:
a) a large number of particles are inserted into that region, b) the particles
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flows smoothly making the field variation more understandable. We consider
the pointer glyph the best way to represent the particles because it makes the
visualization cleaner and allows a complete view inside the volume.

The next example is a helical tensor field (Fig. 7) with visualization depend-
ing on the observer. The tensors in this field suffer a torsion process along the
z -axis. Using k1 and having the z-axis orthogonal to the observer (Fig. 7(a)),
one may see that the tensors in the internal regions tend to have high priority
values (reddish colors) as they are orthogonal to the viewer. Using k1 with the
z-axis aligned with the observer (Fig. 7(b)), the now bluish sites (low priority
values) represent tensors highly parallel to the viewer, in regard to the new cam-
era orientation. The proposed method is highly efficient and suitable to extract
volumetric information from tensor fields.

z
x

y

(a) (b)

Fig. 7. Helical field: color palette given by k1 in two different views.

Diffusion tensor magnetic resonance imaging (DT-MRI) is generally used
to detect fibrous structures of biological tissues. In this work we have used a
diffusion tensor field of a brain available at [20] to test our method. The results
are shown in Figures 8 and 9.

The branching and crossing of brain’s white matter tracts generates local
tensors with high planar anisotropy [5]. To find these brain regions, we adjust
the priority and the colorization using Υ = µ2 + A3 − FA (Fig. 8). So, we
are searching for tensors with higher variance, amplitude and anisotropy - we
are penalizing the isotropic regions with −FA. In the central regions of the
brain, which is composed by a larger number of fiber and tissues, we can see a
concentration of the required information, as expected.

The influence of viewer-dependent terms can be also observed in the brain
field (Fig. 9). When we are searching for tensors with eigenvectors orthogonal
to the observer, the k1 and k2 view-dependent terms could be used. The k1
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Fig. 8. Brain fiber visualization. Lower left corner: brain image from [19].

coefficient (Fig. 9(a)) highlights tensors which has main eigenvectors orthogonal
to the observer. In a opposite fashion, the k2 coefficient is emphasizing tensors
that presents main direction non-orthogonal to the observer, for the same point
of view (Fig. 9(b)).

(a) (b)

Fig. 9. Influence of the viewer-dependent terms: (a) highlighting tensors orthog-
onal to e1 and (b) orthogonal to e2.
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6 Conclusions

In this paper we presented a tensor field visualization method based upon particle
tracing using viewer-dependent terms. We proposed a priority list which defines
where particles should born in the tensor field domain. This is done aiming
to highlight regions of interest. We also present a set of observer-dependent
coefficients that contributes to the final visualization, generating suitable results.
In order to cover a wide range of different tensor fields, we developed a Υ scalar
which can be adjusted to the user needs. The Υ quantifies the importance of
a tensor in the visualization process for a given set of parameters (Eq. 21).
Thus, a previous knowledge of the field is required to achieve a better visual
interpretation.

We provide results using three different tensor fields. In each field, the anisotropy
analysis showed correctly collinear and coplanar structures formed by the tensors
throughout the domain. The view-dependent attributes contributed to the visu-
alization process, highlighting orthogonality and proximity of tensors in relation
of the observer (Fig. 7 and 9).

A flicker problem occurs when a new created particle reaches isotropic regions
and are instantly destroyed by the removal criterion. This effect can be avoided
by filtering the noise present in the tensor field and smoothing the transition
between isotropic and anisotropic regions.

Acknowledgment

The authors thank to FAPEMIG (Fundação de Amparo à Pesquisa do Estado de
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