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Abstract. This paper presents an adaptive method for visualization of
tensor fields using multiresolution and viewer position and orientation.
A particle tracing method is used in order to explore the benefits of
motion to the human perceptual system. The particles are inserted and
advected through the field based on a priority list which ranks tensors
according to anisotropy measures and viewer parameters. Tensor fields
representing colinear and coplanar structures are suitable for multireso-
lution analysis. Using multiple scales, we propose the use of anisotropic
information in multiresolution, yielding an effective and simple method
to compute priority values for particle creation. We also propose a new
deterministic criterion for particle insertion in the field that balances
their distribution in the tensor field domain. Our results show that our
method enhances the visualization and reduces artifacts encountered in
previous approaches.

Keywords: Tensor Field, Particle Tracing, Multiresolution, Scientific
Visualization.

1 Introduction

Tensor field properties, such as curvatures and continuities, are sometimes hard
to visualize. Particle-tracing methods using tensorlines provide a good way to
observe these features. But the tensorlines could represent some inharmonious
or even discontinuous paths present in tensor fields. Smoothness is an impor-
tant factor to be analyzed. Being able to enhance this feature without changing
the peculiarities of the field provides an opportunity to further explore these
characteristics of tensor fields.

In this work, we propose an improvement of method presented in [1] which
used particle tracing to generate a viewer-dependent visualization. This method
used a particle creation criterion based on a priority list which sorted the tensors
according to their importance. However, the choice of the tensor in the list was
done through a normal distribution function, which sometimes resulted in cre-
ation of particles in less interesting sites. The previous approach also generated
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a flickering effect, due to particles reaching isotropic regions shortly after being
created. In this paper, we propose a new approach using multiresolution, and we
present a new criterion for the creation of particles. We decompose the original
field in order to get smaller subsamples. With this approach, we were able to
significantly reduce the amount of parameters necessary in the calculation of the
scalar used in the priority list sorting.

One common problem in tensor field visualization is ambiguity. In glyph-
based visualization, tensors with different forms may appear similar from a par-
ticular point of view. Tensors with linear anisotropy may be identified as an
isotropic if the main eigenvector is aligned to the observer. To solve this prob-
lem, we follow previous works [2, 1] in adopting a metric to evaluate the tensor
orientation in regard to the observer. This strategy can be efficient not only to
treat the degeneration problem, but also to improve other visualization methods.
Aiding to that, we use the multiple scales of the field to enhance tensors based
on their distance to the observer.

2 Related work

Research in tensor field visualization is generally concerned with the problem
of achieving a more intuitive visualization of the field. The large amount of
information present in a field usually makes its analysis difficult for the observer.
Thus, different approaches have been tried in past works. An overview about
some of them is presented in this section.

In cases where punctual data is used to obtain information from the field,
the discrete approach plays an important role. Shaw et al, in [3] and later in
[4], proposed a glyph-based visualization of general multi-dimensional data us-
ing superquadrics, seeking to explore human perceptual system characteristics
in order to obtain a meaninful display of the data. Kindlmann [5] later used su-
perquadrics to specifically describe a tensor glyph that encodes the shape of the
tensor and displays it in a consistent orientation. He used measures defined by
Westin et al [6] to better adapt the geometry of the tensor, avoiding symmetry
problems and ambiguity in the identification of its shape. These measures allow
classification of diffusion tensors by its shape. They are useful in DT-MRI, since
diffusion can be anisotropic or isotropic depending on the tissue characteristics.

Delmarcelle et al [7] used another approach, in which they produced a con-
tinuous representation of the data contained in the tensor field. They introduced
the concept of hyperstreamline to define continuous paths along which the tensor
field can be visualized. This method is, however, subject to degeneration [8] and
more suitable to symmetric tensor fields. Thus, Weinstein et al [9] introduced
the tensorlines method, in an attempt of stabilizing the propagation in regions
of non-linear diffusion, where the hyperstreamlines method encountered difficul-
ties. They proposed a combination of diffusion with advection vectors applied to
DT-MRI. More information on the use of tensor glyphs and continuous methods,
as well as a number of other DTI visualization techniques, can be found in [10].
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Another approach has also been proposed by Kondratieva et al [2]. They
provided a dynamic visualization, which aims at taking more advantage of the
human perceptual system. A GPU particle tracing was used to produce motion
in order to enhance the user perception. They advected particles along the direc-
tions of a generated vector field, while allowing the user to interactively visualize
the tensor field. Leonel et al [1] used this same approach, but also taking into
account the position and orientation of the observer. An adaptive visualization
of the tensor field was provided, enhancing the features that are more likely to
interest the viewer.

Some more recent works following [2] focused on improving fiber tracking
algorithms. A stochastic method to determine connectivity in a fiber path was
presented in [11]. A GPU implementation of the method is also presented. Köhn
et al [12] and Evert et al [13] also made use of graphics hardware to achieve a
better and faster fiber tracking, allowing for interactive visualization. Mittmann
et al [14] presented a real-time interactive fiber tracking method, in which the
user defined volumes of interest in the tensor field, and the algorithm calculated
new fiber paths automatically based on the user choices. Finally, in [15] an in-
terpolation method was introduced in order to avoid low-anisotropy regions in
the trajectory calculation. When the algorithm reaches such a region, it interpo-
lates the tensors in some neighborhood and continues the path along the main
eigenvector of the interpolated tensor.

This work is focused on improving visualization of diffusion tensor images.
Thus, we still used the tensorlines method [9] as the tracking algorithm. Our
method was implemented in CPU, yielding good results and allowing a fast and
real-time interactive visualization, even for a large amount of particles, as will
be shown in the paper. We also adopted a multiresolution approach associated
to the dynamic visualization employed by [2] and [1]. Multiresolution analysis
of diffusion tensor images can be found in the literature. Rodrigues et al [16],
for example, proposed a scale-space representation of a DTI image, using a mul-
tiresolution watershed segmentation method to separate coarse from fine data.
They generated a hierarchical representation afterwards, through a cross scale
linking of the segmented regions. In this paper, we present a different and much
simpler multiresolution scheme, based on wavelet theory.

3 Fundamentals

3.1 Tensors

Second-order tensors can be defined as linear transformations between vector
spaces. They are represented by 3x3 matrices. In this work, a tensor of particular
interest is the one presented by Westin [6]. It is called a local orientation tensor,
and it is a special case of a non-negative symmetric rank 2 tensor. This tensor
can be used to estimate orientations in a field. Mathematically, it can be defined
as following:

T =

n∑
i=1

λieiei
T
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where λi represent the eigenvalues and ei the associated eigenvectors.
In R3, the equation above can be decomposed in such a way that T can be

expressed in terms of its linear, planar and spherical intrinsic features [1]. So,
the tensor definition becomes:

T = (λ1 − λ2)Tl + (λ2 − λ3)Tp + λ3Ts

This decomposition reveals an important geometric interpretation about the
tensor. Assuming that λ1 ≥ λ2 ≥ λ3, we can analyze the eigenvalues to identify
the shape of the tensor, which is of much more use than its magnitude, for
example. If, for instance, we have λ1 >> λ2 ≈ λ3, the tensor is approximately
linear. If λ1 ≈ λ2 >> λ3, then the shape of the tensor is approximately planar.
Finally, if all eigenvalues are almost equal, then the tensor is approximately
isotropic. In this case, there is no main orientation present in the tensor.

Coefficients of anisotropy The tensor eigenvalues can be used to calculate
coefficients of anisotropy. The eigenvalues are obtained by solving det(λI−D) =
0. We can define three of these coefficients: linear (cl), planar (cp) and spherical
(cs). These three coefficients must sum to 1.

cl =
λ1 − λ2

λ1 + λ2 + λ3
(1)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

It is also possible to calculate a number of coefficients which are insensitive to
basis changing. These coefficients are called algebraic invariants. Among them,
the ones presented below are helpful in the definition of a series of parameters
that can be used to analyse the characteristics of the field.

J1 = tr(D)

J2 =
tr(D)2 − tr(D2)

2

J3 = det(D)

J4 = ||D||2

where tr(D) and det(D) are the trace and the determinant of D, respectively
[1].

Kindlmann [17] presents three more algebraic invariants, which are used not
only to describe what is called the eigenvalue wheel, but also to define the central
moments of the tensor. These invariants are defined as follows:

Q =
3J4 − 3J2

1

18
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R =
−5J1J2 + 27J3 + 2J1J4

54

Θ =
1

3
cos−1

(
R√
Q3

)
The central moments are related to the geometric parameters of the wheel.

The definition of the wheel, along with a detailed explanation of it, can be found
in the work by Kindlmann [17]. Using the Kindlmann invariants, we can define
the central moments as shown below:

µ1 =
J1
3

µ2 = 2Q

µ3 = 2R

The second central moment µ2 represents eigenvalues variance. Taking its
square root, we can obtain the standard deviation σ. This allows us to define
an important parameter in this work, called the asymmetry of the eigenvalues.
The asymmetry parameter varies from negative to positive as the tensor changes
from planar to linear. It is calculated as follows [18]:

A3 =
µ3

σ3
=

R√
2Q3

(2)

A more complete description of several anisotropy coefficients are found in
[1]. In this paper, we use only the A3 and cl coefficients since they indicate linear
and planar continuities suitable for particle tracing.

3.2 Tensorlines

Previous works intended for path tracing in tensor fields lacked stability in cer-
tain scenarios. The hyperstreamlines method [19] used just the main tensor eigen-
vector in order to obtain a smooth tracing, but it was subject to degeneration.
Seeking to work around the inherent problems of this method, Weinstein et al [9]
proposed an extension called tensorlines. Instead of only using the main eigen-
vector to determine the path, it applies the tensor to a vector corresponding to
the propagation direction in the previous step.

vout = Tvin (3)

The new vector vout produced by the transformation above is linearly com-
bined with vin and the main eigenvector e1. Thus, we obtain the new propagation
vector, which is dependent on the shape of the tensor. It is calculated as follows:

vprop = cle1 + (1− cl)((1− wpunct)vin + wpunctvout) (4)

The parameter wpunct lies in the range [0, 1] and defines how much the prop-
agation should penetrate planar tensors. This parameter is controlled by the
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user. The coefficient cl is the linear anisotropy coefficient defined in the previous
subsection.

The vector field produced by the tensorlines method can be applied to a
particle tracing procedure to visualize the tensor field. The particles introduced
in the field have no mass. At each time step, we update the position of each
particle over time t, using a vector v from the generated field as the velocity.

3.3 Multiresolution

In this work, we used a multiresolution scheme based on the Daubechies analysing
filters. The Daubechies low pass filter is applied to the tensor field, separately
for each tensor component, with the purpose of generating lower resolution fields
with half spectrum of the previous scale. Since the tensor fields we worked on
have the maximum dimensions of 148× 190× 160, two decimated scales seemed
to be enough for our purposes.

A decimated tensor captures the anisotropy of a group of local tensors. It can
be used, for example, to filter the particle paths during tensorlines computation.
The anisotropic features of the scaled tensors are linear combinations of the
underlying tensors shape in full resolution. As such, its anisotropic coefficents
bring new information to form an improved priority list. Details about signal
multiresolution can be found on [20].

In the previous work of Leonel [1], an extensive list of parameters were used
to calculate the importance of a single tensor to the observer. This importance
was determined by a scalar parameterized by the user. Here, we present a new
formulation for calculating this scalar with a reduced number of parameters,
taking into account the lower resolution fields obtained. The next section presents
the equations for this calculation and other contributions of this work.

4 Proposed method

The previous approach [1] was conceived to induce the human perceptual system
to detect continuity using particle motion. Particles in motion represent the fea-
tures of the tensor field. One critical point in visualization using particle tracing
is to define the particle starting point. The easier approach to insert particles
into the domain is to compute new positions randomly. A fixed distribution func-
tion, however, generally does not insert new particles in most interesting sites.
Using tensorlines to indicate suitable particle paths, the idea was to carefully
select the position where a new particle should start. It was based on tensor field
anisotropic features and viewer-dependent relationships. The maximum number
of particles at a time was fixed. A priority list determined which particle should
be chosen. Several coefficients for particle sorting were presented.

In this work, we propose major modifications for the priority list calculation
and new particles selection. Our approach is based on the use of multiresolution
of the tensor field. Each scale of a tensor field in multiresolution combines the
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tensor of the previous, higher resolution, scale. We exploit the anisotropic fea-
tures of the resulting tensors to provide a new scalar value for the priority list
(Eq. 5). Viewer dependent and independent coefficients in multiresolution are
computed (Fig. 1).

4.1 Priority Features

Let Tx×y×z be a discrete and finite tensor field with lattice given by x, y, z ∈ N,
so that Ts = {ts1, ts2, ts3...tsn} is composed by |Ts| = n tensors, where s is the
scale index. For a given voxel (a, b, c), where a, b, c ∈ N and such that a ≤ x,
b ≤ y and c ≤ z, we have the correspondent tensor tsi ∈ T. As explained in
Section 3.3, the tensor fields are decomposed two times in this work, resulting
in three scales: s = 0 is the original tensor field, s = 1 is the tensor field with
half spectrum, s = 2 is the tensor field with a quarter of original spectrum.

The eigensystem of a tensor tsl , 1 ≤ l ≤ n is represented by the eigenvectors
~es1 ⊥ ~es2 ⊥ ~es3 and the eigenvalues λs1 ≥ λs2 ≥ λs3 ≥ 0.

The goal of the priority list is to define in which lattice location a new particle
should be inserted. In this work we propose a new scalar Υ ∈ R which defines
the priority of a voxel having a particle created in it. This priority is calculated
using multiresolution tensors characteristics and geometric features of the scene
(Fig. 1).

In [1], the position and orientation of a tensor in relation to the observer
are evaluated by three scalars k1, k2 and k3. Using multiresolution with three
scales s = {1, 2, 3}, the coefficients can be evaluated for each scaled tensor of
a location. We propose the following scalars to capture the viewer-dependent
orientation of the l-th multiresolution tensors t1l , t2l and t3l , all centered in the
domain at position ~xl:

ks1 = 1− |~es1 · ~obs|

ks2 = 1− |~es2 · ~obs|

ks3 = |~es3 · ~obs|,

where ~es1, ~es2 and ~es3 are the eigenvectors of the tensor and ~obs corresponds to
the camera view vector (Fig. 1). Thus, we propose nine scalars to capture the
orientation of the local tensor in relation to the observer, which means three
values for each of the three scales. These nine values quantify the relative position
of the observer with respect to the tensors eigensystems, so that we can prioritize
tensors representing colinear or coplanar structures which are perpendicular to
the observer.

We need to define the weight of each scale in the calculation of the priority
value. A simple but effective approach is to fix the weights in 2.0 for the original
tensor (scale 1), 1.0 for the intermediate tensor (scale 2), and 0.5 for the tensor
of the maximum scale 3. The distance of the tensor to the observer dobs:

dobs =
|~xl − ~xobs|
MAX(dobs)

,
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Fig. 1. Combination of tensors in multiple scales, related to the observer.

which is normalized by the greatest distance in the field MAX(dobs), gives the
the viewer-dependent weight:

w = 1− dobs.

The scalar Υ , that indicates the priority of a voxel to receive a particle, is
defined as:

Υ t =2.0 · w · (A1
3 + c1l + k11 + k12 + k13)+

1.0 · w · (A2
3 + c2l + k21 + k22 + k23)+

0.5 · w · (A3
3 + c3l + k31 + k32 + k33), (5)

which is a linear combination of the following terms:

– coefficient of linear anisotropy of the scaled tensor (csl ) (Eq. 1);
– asymmetry of the tensor eigenvalues (As

3): changes from negative to positive
as the scaled tensor vary from planar to linear (Eq. 2);

– coefficients of orthogonality between the observer and the first eigenvector
of each scaled tensor (ks1): bigger if the main direction of the tensor is per-
pendicular to the view vector;
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– coefficients of orthogonality between the observer and the second eigenvector
of each scaled tensor (ks2): bigger if the second main direction of the tensor
is perpendicular to the view vector;

– coefficients of parallelism between the observer and the third eigenvector of
each scaled tensor (ks3): bigger if the third eigenvector is aligned with the
view vector, which implies that the other eigenvectors are perpendicular to
the observer.

4.2 Particle Insertion

A maximum number of particles Np ∈ N is fixed by the user. This value is
generally small compared to the size of the tensor field. At most Np particles
exist and walk through the field at a given time. The priority list is used to
achieve better visualization results by inserting particles in the more interesting
sites.

When the simulation begins or the user changes its position or orientation,
all tensors t ∈ T0 have their priority value computed (Eq. 5). They are sorted
in a list where the highest priorities are positioned on the top. Using the Np

topmost tensors, the total priority is computed:

m =

Np∑
l=1

|Υ l|.

The topmost tensors tl ∈ T0, 1 ≤ l ≤ Np, are allowed to have

nl = Np ·
|Υ l|
m

particles, which represents the proportion of new particles that can be assigned
to the position of the tensor tl along an insertion round. Note that some of the
tensors will not have enough priority to receive a particle. Particles are thus
created in less than Np tensor positions.

Initially, there areNp particles to be inserted into the domain at the beggining
of an insertion round. If we insert nl particles for the topmost tensor, there may
be several particles walking together or very close to each other. This is not
desired because multiple particles together are not visually salient. Thus, we
propose to assign only one particle to each tensor of the list (with non-zero nl)
at a time, decrementing its nl value upon insertion. If there are still particles left
for insertion after visiting the position Np of the list we return to its topmost
tensor, running through the list in a circular way. When all particles are inserted,
all nl are zero, indicating the end of an insertion round. We then reestablish nl
and a new insertion round begins. This round-robin policy for particle insertion
guarantees all sites with non-zero nl have at least one particle inserted before
any previously assigned tensor is visited again.

Note that only Np particles are viewed in the domain. As the simulation
runs, some particles are removed. Their reinsertion obeys the round-robin policy
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and the visual result are well distributed particle clouds. The topmost tensors
are guaranteed to have more particles inserted during simulation.

The Υl scalar has viewer-dependent terms, so, it is necessary to reorder the
priority list when the camera position or orientation changes. A merge sort
algorithm is enough for having good response times with 100.000 particles.

The simulation and the particle removal steps are explained in [1]. Given the
tensorlines, a simple advection step determines the next position of a particle.
Due to isotropic regions in the tensor field, particles can get stuck. To reduce the
creation of particles in an isotropic region, some tensors are flagged as bad places
when particles inserted on them are removed after few advection iterations.
Those tensors periodically receive particles that disappear rapidly, generating
flickering regions. Their elimination from the particle insertion process resulted
in a much better visualization.

5 Results

Here we present the results for the application of our method to three different
tensor fields: the 3-point field, the helical flow and a diffusion tensor field of a
brain. In all of the experiments, we used the color palette shown in Figure 2 to
represent the importance of a given tensor to the observer. Each particle was
represented as a pointer glyph, just as shown in [1].

Lower                                 Higherϒ

Fig. 2. Color palette used for Υ [1].

For the helical field with 38x39x40 grid, we used 7000 particles spread through
the sites according to the generated priority list. In this process, 3214 sites in
isotropic regions were eliminated from the 12073 possible ones. Figure 3 shows
the helical field. Figure 4 shows the visualization of the helical tensor field from
different points of view. Notice that tensors nearer and perpendicular to the
observer tend to have higher priority, thus their color being closer to red. As the
camera orientation is changed, the priority list is recalculated and the new best
ranked tensors in the list are then displayed with proper colors. This can be seen
by looking at the density of particles. The amount of particles decreases as it
gets far from the observer, since the nearest sites have higher priority.

Next, we present the results obtained for a diffusion tensor field of a brain [21]
(Fig. 5). These tensor fields are usually generated by magnetic resonance imag-
ing. They are very useful in detecting fibers, which are represented by regions of
high linear and planar anisotropy. Similarly, the crossings of white matter tracts
in the brain are also identified with higher planar anisotropy. Thus, we can use
this knowledge to enhance the visualization of these regions of the brain DT
image.
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(a)
(b)

Fig. 3. The helical tensor field visualization from two different angles.

Figures 6 and 7 show examples of the field visualization under different cam-
era orientations. In this simulation, the grid dimension was 74x95x80 and the
number of particles created was 15000. Plus, 12366 sites were flagged for elimi-
nation from the 24582 initially available. In this field it was possible to see one
of the main advantages of excluding sites from creation: significantly reduction
of flickering effect. The removal criterion destroys particles which they could
cause flickering by reaching isotropic regions. But particles that have a short
time between their creation and destruction, like 1 or just 2 simulation steps,
also result in flickering sensation. As mentioned in Section 4, we exclude sites
in which created particles are soon destroyed, and that really presented a better
view for the simulation.

Finally, we simulated a 3-point field (Fig. 8). It represents a 38x39x40 grid
where there are three spherical charges at positions (0,0,0), (38,0,40) and (38,39,40).
The tensor field is calculated as the geometric influence of all three charges at
every position of the grid.

With this example it was possible to analyse some features of tensor fields
that are of interest for visualization: continuities and curvatures. We could see
the importance of the anisotropy factor on choosing where to create the particles
(Fig. 9). This visualization used 30000 particles. This factor combined with the
relative position of the observer creates a huge flow near the observer, allowing
to follow the particles and to notice the smoothness of most of the field. There
were 9115 eliminated sites from a total of 56495 initially possible.

6 Conclusion

Choosing where to create particles in a tensor field for a good visualization is
not an easy task. We have combined multiresolution coefficients of the field with
viewer-dependent terms in order to evaluate the importance of each site of the
grid at the current observer’s position. The multiresolution coefficients allowed
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(a)

(b)

Fig. 4. Visualization of the helical tensor field with 7000 particles.

us to check the anisotropy of the field at different scales. With this information,
it was possible to reduce the high amount of terms used on our last approach
[1] for ranking each possible creation site. The priority list using multiresolution
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(a) (b)

Fig. 5. The original brain tensor field visualization from two different angles.

(a)
(b)

Fig. 6. Visualization of the brain field simulation associated to the viewing angles in
Figure 5

information and a deterministic algorithm for balanced particle insertion are the
main contributions of this paper.

We have shown our results on three different tensor fields. Increasing the
capacity for creating particles at higher priority sites did concentrate a large
number of particles on the spots of most interest, near the observer. We have
also determined rules to permanently remove sites from the priority list. By
eliminating these sites from the list we could reduce the flickering problem we
had to almost none.

The multiresolution terms of the priority value (Eq. 5) represent smoothed
tensor structures. Our results show that these local and filtered anisotropy esti-
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(a)
y

x

z

(b)

Fig. 7. Additional viewing angles from the brain simulation

Fig. 8. Original 3-point field. The black circles represents charge positions.

(a) (b)

Fig. 9. Visualization of the 3-point field simulation at two different simulation steps.
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mations have improved the particle tracing proposed in [1] for tensor field visual-
ization, since tensors representing colinear and coplanar structures (anisotropic
in several scales) tend to have more particles during simulation.
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