
Combining gradient histograms using orientation tensors for human action
recognition

Eder A. Perez,Virgı́nia F. Mota, Luiz Maurı́lio Maciel, Dhiego Sad, Marcelo B. Vieira
Universidade Federal de Juiz de Fora - MG - Brazil

{eder.perez, virginia.fernandes, luiz.maurilio, dhiego.sad, marcelo.bernardes}@ice.ufjf.br

Abstract

We present a method for human action recognition
based on the combination of Histograms of Gradients
into orientation tensors. It uses only information from
HOG3D: no features or points of interest are extracted.
The resulting raw histograms obtained per frame are
combined into an orientation tensor, making it a sim-
ple, fast to compute and effective global descriptor. The
addition of new videos and/or new action cathegories
does not require any recomputation or changes to the
previously computed descriptors. Our method reaches
92.01% of recognition rate with KTH, comparable to
the best local approaches. For the Hollywood2 dataset,
our recognition rate is lower than local approaches but
is fairly competitive, suitable when the dataset is fre-
quently updated or the time response is a major appli-
cation issue.

1. Introduction

Human action recognition is a field of research very
attractive over the past years. It can be considered one
of the key prerequisites for video analysis and under-
standing. One of the methods widely used to create de-
scriptors for actions is the histogram of oriented gradi-
ents (HOG). In general, these methods combine HOG
with local information. In this work, we present a novel
approach using HOG3D and tensors for computing a
global motion descriptor.

A global descriptor based on histogram of oriented
gradients is presented by Zelnik et al [12]. It is applied
on Weizmann video database and is obtained extracting
multiple temporal scales through the construction of a
temporal pyramid. For each scale, the intensity of each
pixel gradient is calculated. Then, a HOG is created
for each video and compared with others histograms to
classify the database. In order to apply a global descrip-
tor on the KTH database, Laptev et al [5] apply the Zel-

nik descriptor [12] in two different ways: using multiple
temporal scales as the original and using multiple tem-
poral and spatial scales.

Laptev et al [6] proposed the combination of HOG
with histogram of optic flow (HOF) to characterize lo-
cal motion and shape. Histograms of spatial gradient
and optic flow are computed and accumulated in space-
time neighborhoods of detected interest points. Simi-
larly to the SIFT descriptor [8], normalized histograms
are concatenated to HOG and HOF vectors.

Two dimensional features derived from histograms
of oriented gradients have been shown to be effective
for detecting human actions in videos. However, ac-
cording to the viewing angle, local features may be of-
ten occluded. One alternative was proposed by Kläser
et al [4] to avoid the problems presented by HOG2D.
This work presented the HOG3D, a descriptor based on
histograms of 3D gradient orientations and can be seen
as an extension of SIFT descriptor.

HOG based methods do not achieve the best recogni-
tion rates for KTH and Hollywood2 dataset. Recently,
Quoc et al [7] proposed an extension of the Indepen-
dent Subspace Analysis algorithm (ISA) to learn invari-
ant spatio-temporal features from unlabeled video data.
In this approach are employed two important ideas from
convolutional neural networks: convolution and stack-
ing. These ideas enable the algorithm to learn a hier-
archical representation of the data suitable for recogni-
tion. This method present a classification results supe-
rior to all previous published results on the Hollywood2,
UCF, KTH and YouTube action recognition datasets.

The learning step of the previous works extracts sin-
gular features of each database to improve recognition
rates. The drawback is the time needed for learning and
the scalability of the method in function of the addition
of new video information.

Our method uses only information from HOG3D: no
features or points of interest are extracted. The result-
ing raw histograms obtained per frame are combined
into an orientation tensor, making it a simple global de-



scriptor. Using a SVM classifier, it achieves recogni-
tion rates greater than those found by other HOG global
techniques on KTH dataset and a competitive recogni-
tion rate, in terms of time and space complexity, for
Hollywood2 dataset.

2. Proposed Method

The partial derivatives of the j-th video frame at
point p

~gt(p) = [dx dy dt] =

[
∂Ij(p)

∂x

∂Ij(p)

∂y

∂Ij(p)

∂t

]
, (1)

or, equivalently, in spherical coordinates ~st(p) =
[ρp θp ψp] with θp ∈ [0, π], ψp ∈ [0, 2π) and
ρp = ||~gt(p)||, indicate brightness variation that might
be the result of local motion.

The gradient of all n points of the image Ij can be
compactly represented by a tridimensional histogram of
gradients ~hj = {hk,l}, k ∈ [1, nbθ] and l ∈ [1, nbψ],
where nbθ and nbψ are the number of cells for θ and ψ
coordinates respectively. There are several methods for
computing the HOG3D and we chose, for simplicity, an
uniform subdivision of the angle intervals to populate
the nbθ · nbψ bins:

hk,l =
∑
p

ρp · wp,

where {p ∈ Ij | k = 1 +
⌊
nbθ·θp
π

⌋
, l = 1 +

⌊
nbψ·ψp

2π

⌋
}

are all points whose angles map to k and l bins, and
wp is a per pixel weighting factor which can be uniform
or gaussian as in [8]. The whole gradient field is then
represented by a vector ~hj with nbθ · nbψ elements.

2.1 Orientation tensor: coding HOG3D coef-
ficients

An orientation tensor is a representation of local ori-
entation which takes the form of anm×m real symmet-
ric matrix for m-dimensional signals. Given a vector ~v
with m elements, it can be represented by the tensor
T = ~v~vT . Note that the well known structure tensor is
a specific case of orientation tensor [2].

To empirically reduce interframe brightness unbal-
ance, the histogram of gradients ~hf ∈ Rnbθ·nbψ of
a frame f has all of its elements ak ajusted to ak

γ ,
γ = 0.72. With this reduction of the relative differ-
ences between gradient bins, the frame’s tensor is given
by:

Tf = ~hf~h
T
f ,

that carries the information of the gradient distribution
of the frame f . Individually, this tensor has the same
information of ~hf , but several tensors can be combined
to find component covariances. Since Tf is a symmetric
matrix, it can be stored with m(m+1)

2 elements.

2.2 Global tensor descriptor: series of frame
tensors

We have to express the motion average of consecu-
tive frames using a series of tensors. The average mo-
tion can be given by T =

∑b
a Tf using all video frames

or an interval of interest. By normalizing T with a L2

norm, we are able to compare different video clips or
snapshots regardless their length or image resolution.

If the accumulation series diverges, we obtain an
isotropic tensor which does not hold useful motion in-
formation. But, if the series converge as an anisotropic
tensor, it carries meaningful average motion informa-
tion of the frame sequence. The conditions of diver-
gence and convergence need further studies.

2.3 Global tensor descriptor: subdividing the
frame using a grid

When the gradient histogram is computed using the
whole image, the cells are populated with vectors re-
gardless their position in the image. This implies in a
loss of the correlation between the gradient vectors and
their neighbors. As observed in several works [8], the
subdivision of the video into cubes of frames enhances
the recognition rate, using a gaussian weight for wp.

Suppose the video frame f is uniformly subdivided
in ~x and ~y directions by a grid with nx and ny non-
overlapping blocks. Each block can be viewed as a dis-
tinct video varying in time. The smaller images result
in gradient histograms ~ha,bj , a ∈ [1, nx] and b ∈ [1, ny],
with better position correlation. The tensor for frame f
is then computed as the addition of all block tensors:

Tf =
∑
a,b

~ha,bf
~ha,bf

T
,

which captures the uncertainty of the direction of them-
dimensional vectors ~ha,bf for the frame f . Thus, the im-
age subdivision does not change the descriptor size and
the accumulation described in Section 2.2 is the same.

Another improvement is to accumulate the tensor ob-
tained with the video frame flipped horizontally. The
video frame is flipped, the HOG3D is computed for
each block, the final tensor is computed (Eq. 2) and sim-
ply added to the original frame tensor. This flipped ver-
sion enforces horizontal gradient symmetries that occur
on the video, even those between multiple frames.



3. Experimental Results

Validation set. To validate our descriptor, we use
the KTH [10] and Hollywood2 datasets [9].

Experimental protocol. For the KTH dataset, we
run a multiclass classifier using a one-against-all strat-
egy and a Bayes criterion for model selection. For the
Hollywood2 dataset we run a monoclass classifier using
one-against-all strategy, average precision criterion for
model selection and crossvalidation. For both datasets,
each class is modeled using a SVM classifier with a tri-
angular kernel function with Euclidian distance.

Results. The performance of our method on the
KTH dataset is reported in Table 1. We compare our
recognition rate against best reported results in litera-
ture for techniques using HOG. We note that our de-
scriptor achieves recognition rates greater than those
found by other HOG techniques. When compared
to other techniques, our descriptor does not outper-
foms the best results for Hollywood2 [3, 7], however
it achieves a competitive accuracy with a much simpler
approach. Only a few parameters are required: HOG3D
resolution (nbθ and nbψ) and 2D grid dimension (nx
and ny). The confusion matrix is shown in Table 2.

Method Recognition rate
HOG pyramids [5] 72%

Harris3D + HOG3D [4] 91.4%
Harris3D + HOG/HOF [6] 91.8%

HOG3D + Tensor (our method) 92.01%
ISA [7] 93.9%

TCCA [3] 95.33%

Table 1. Comparison of recognition rates
for the KTH dataset.

Box HClap
HW

av
Jo

g
Run W

alk

Box 93.01 6.25 0.00 0.00 0.00 0.70

HClap
3.50 93.75 1.39 0.00 0.00 0.00

HW
av

0.70 0.00 98.61 0.00 0.00 0.00

Jo
g

0.00 0.00 0.00 86.81 15.28 3.47

Run 0.00 0.00 0.00 9.72 84.03 0.00

W
alk

2.80 0.00 0.00 3.47 0.70 95.83

Table 2. Confusion matrix for KTH dataset.

A comparison of our method on the Hollywood2
dataset is reported in Table 3. The average precision

Method Recognition rate
HOG3D + Tensor (our method) 34.03%

Harris3D + HOG3D [4, 11] 43.7%
Harris3D + HOG/HOF [6, 11] 45.2%

ISA [7] 53.3%

Table 3. Comparison of recognition rates
for the Hollywood2 dataset.

Action AP Action AP
AnswerPhone 17.40% DriveCar 70.35%

Eat 14.29% FightPerson 51.35%
GetOutCar 29.84% HandShake 12.88%
HugPerson 19.47% Kiss 49.26%

Run 54.03% SitDown 52.93%
SitUp 9.94% StandUp 42.93%

Mean 34.03%

Table 4. Average precision (AP) for each
class of Hollywood2 dataset using a HOG
8x16 with a 4x4 grid.

Parameters Hor. Flip Original
Grid 4x4 HOG 4x8 77.07% 77.65%

Grid 4x4 HOG 8x16 89.80% 88.88%
Grid 8x8 HOG 4x8 76.95% 77.19%

Grid 8x8 HOG 8x16 92.01% 89.34%
Grid 16x16 HOG 4x8 77.07% 77.07%
Grid 16x16 HOG 8x16 88.76% 89.22%

Table 5. Recognition rate for KTH dataset
for several parameter sets.

Parameters Hor. Flip Original
Grid 4x4 HOG 4x8 31.45% 30.45%

Grid 4x4 HOG 8x16 34.03% 33.64%
Grid 16x16 HOG 4x8 30.65% 30.08%
Grid 16x16 HOG 8x16 33.81% 33.62 %

Table 6. Recognition rate for Hollywood2
dataset for several parameter sets.

for each class is shown on Table 4. We can see on Ta-
ble 3 that local information plays an important role in
this dataset and that learning methods improve overall
recognition. Our recognition rate is lower than the local
approaches but is fairly competitive. Our approach is
fast and new video samples and/or entirely new action



categories can be added without any recomputation.
Several combinations of grid size, number of bins

and horizontal flip of the image were tested. The recog-
nition rates on KTH dataset are described on Table 5.
We can see that these three parameters have a high influ-
ence on the recognition rate. The grid size affects how
many tensors will be computed per frame, whereas the
number of HOG3D bins affects the size of the descrip-
tor. The most interesting influence is from the horizon-
tal flipping, which achieves a recognition rate more than
3% higher compared to the others. The same behavior
holds for Hollywood2 dataset with originally 33.64% of
recognition rate and 34.03% with horizontal flip as best
result (Tab. 6).

In terms of time complexity, the descriptors were
computed with an average of 23 frames per second
(HOG3D computed twice for horizontal flipping) for
the whole Hollywood2 database in an Intel I7 2930MHz
processor with 8Gb of memory. For comparison, only
the feature extraction step in the work of [3] performs
at 1.6 frames per second for Hollywood2. Comparing
with [7], its best result is 10 frames per second using a
GTX270 GPU for Hollywood2 database. The compu-
tation of the space-time derivatives dominates the time
complexity of our method. This means that it is highly
scalable and suitable to parallel improvements using
SIMD instructions, multicore processors and GPUs.

4. Conclusion

In this paper, we presented a method for human
action recognition based on the combination of His-
tograms of Gradients into orientation tensors. The re-
sulting tensor descriptor is a simple but effective ap-
proach for video classification. It is simple because of
its low complexity in terms of time and space. Only a
few parameters are needed, resulting in compact tensor
descriptors: a 8×16 HOG3D (128 bins) results in a ten-
sor of only 8256 elements, independently of the frame
dimension, video length or grid size. The computation
of the space-time derivatives dominates the time com-
plexity of our method, thus it is highly scalable and suit-
able to parallel improvements using SIMD instructions,
multicore processors and GPUs.

It is an effective approach because it reaches 92.01%
of recognition rate with KTH, comparable to the best
local approaches [7, 3] which have much higher time
complexity. For the Hollywood2 dataset, however, we
note that local information plays an important role and
that learning methods improve overall recognition. Our
recognition rate is lower than the local approaches but
is fairly competitive. Higher misrecognition may be ac-
ceptable when the dataset is frequently updated or the

time response is a major application issue. The addi-
tion of new videos and/or new action cathegories with
our approach does not require any recomputation or
changes to the previously computed descriptors.

Finally, it might be valuable in a scenario where no
human action classification method solves all applica-
tion demands [11].

5. Acknowledgements

Authors thank Fundação de Amparo à Pesquisa do
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