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Abstract—This paper presents an application that allows the
generation of virtual terrains interactively, using augmented
reality markers. This application also allows the user to navigate
in the generated virtual environment. To demonstrate how the
process is done, a terrain generation scenario was chosen. Virtual
objects were augmented using markers and the detection is done
through the ARToolKit framework. A particle system was used
to simulate deformation to better incorporate the needs of terrain
generation. The deformation itself follows an interparticle force
between the particles attached to a movable physical marker and
the particles attached to a fixed multi-marker representing the
mesh. A viscous force is also used to generate a plastic material
effect ensuring permanent deformation. The resulting application
although conceptually simple and easy to use, can produce an
immersive output environment that the user can freely navigate.

Index Terms—Navigation Environment, Augmented Reality,
Terrain Visualization, Particle System.

I. INTRODUCTION

Recently, augmented reality has been the focus of several
studies. In the general context of this field, it has been
used to provide a better understanding of our surroundings
adding some sort of virtual information and/or content to
real scenarios. In fact, it is possible to develop complete
applications with a very limited amount of resources, including
applications that involve computational geometry.

In this context, 3D User Interfaces present themselves as
a natural way of using the inherently spatial nature of the
augmented reality environment. Among the categories of the
3D UIs research field one to be noted is spatial arrangement,
which studies, by definition, the properties of an array of things
that have space between them. This scenario can serve as a
powerful tool for developers, for instance, when generating
terrains, or deforming meshes in an augmented reality envi-
ronment. In fact, when associating a mesh to a physical marker
it is not only possible to visualize in 3D, but the user can also
rotate and translate freely using its hands, providing a higher
interaction level between user and model. The final terrain can
also be used as base for a virtual navigation environment.

Considering this, one of the main contributions of this work
is to present an intuitive interface for modeling terrains in

augmented reality and generating a virtual navigation environ-
ment based on it. We use a previously defined virtual object
to deform a mesh by direct interaction, calculating collision
and potential forces between them. The user interacts with
the system by manually moving the marker related to the
deformation object along the area of the mesh he wants to
deform.

A. Related work

In the research field of 3D UIs a good survey on the
categories and goals of this area can be found in [1], [2]. More
relevant works closer to what is proposed in this paper can be
found in [3], where the user makes freeform sketches in a
2D sketching interface so the system can generate a plausible
3D polygon mesh, and in [4] where the authors present
an interactive system for generating photorealistic, textured,
piecewise-planar 3D models of architectural structures and
urban scenes from unordered sets of photographs. The essence
of these works is followed here, the user can freely deform a
3D mesh using physical markers and then the system generates
a virtual environment based on it.

There are not many works which deal with the problematic
of physically based terrain deformations and the use of aug-
mented reality. In many studies, the focus is laid on deformable
models in general or applied to other areas such as surgical
operation simulation [5], clothes modeling [5], [6] and crash
modeling [7]. In all these cases the model which is deformed
in time does not correspond to large terrains, which consists
of thousands of triangles and is described by its surface only.

Regarding deformation and Augmented Reality, a related
work can be found in [8], where the authors present a 3D
modeling system in an Augmented Reality environment called
3DARModeler. With this system it is possible to create a
3D model, apply textures, add animations, estimate real light
sources and cast shadows. The contributions of this work
related to modeling in an Augmented Reality environment in-
clude the possibility of customizing objects and the capacity of
creating complex models by combining primitive geometries.

SBC Journal on 3D Interactive Systems, volume 3, number 3, 2012 29

ISSN: 2236-3297



A more specific paper regarding terrain deformation in real-
time is presented in [9]. This paper enumerates the methods
that can be used to generate plastic deformation in a physical
body represented by a mesh, and why a dynamical system
(such as the one used in the presented paper) was chosen to
simulate the deformations occurred.

Another work to be mentioned can be found in [10]. The
authors present a deformable material to free modeling in
Spatial Augmented Reality. This material can be sculpted with
bare hands and, by having invisible markers immersed in
a layer of white silicone, can still count with the capacity
of having images projected and mapped over its surface. In
the end the material represents a low fidelity sketch of a
final product but already with details on it, speeding up the
production process.

II. AUGMENTED REALITY

An Augmented Reality (AR) system supplements the real
world with virtual (computer-generated) objects that appear
to coexist in the same space as the real world. While many
researchers broaden the definition of AR beyond this vision,
[11] says an AR system is capable of:

• combine real and virtual objects in a real environment;
• run interactively, and in real time;
• register, or align, real and virtual objects with each other.
The ambitious goal of AR is to create the sensation that

virtual objects are present in the real world. To achieve
this effect, software combines virtual reality (VR) elements
with the real world. Obviously, AR is most effective when
virtual elements are added in real time. Because of this, AR
commonly involves augmenting 2D or 3D objects to a real-
time digital video image. The simplest example of visual AR
is overlaying a 2D image on digital video. However, it is also
possible to add 3D objects - they can be rendered so that
they appear to belong to a scene containing real 3D objects.
Generally speaking, adding a 3D object to real-time video
improves a more impressive demonstration of AR technology.

With that in mind, Augmented Reality is a natural way
to explore 3D objects and data, as it brings virtual objects
into the real world where we live, rather than forcing us to
learn how to navigate inside the computer. With video-see-
through technology, AR handheld devices such as tablet PCTMs,
PDATMs, or camera cell phones (or in many cases even just
a webcam and our standard computer monitor), one can hold
the device up and see through the display to view both the real
world and the superimposed virtual object. It is also possible
to move around the display and see virtual objects, models,
animations, or even a game from different views as the AR
system performs alignment of the real and virtual cameras
automatically.

A. ARToolKit

ARToolKit is a software library for building Augmented
Reality (AR) applications. The basic idea of this framework
is to add virtual objects into the real world [12].

ARToolKit uses computer vision algorithms to detect mark-
ers in an image captured by a camera. From the optical
tracking of the marker, one can make the adjustment of
position and orientation allowing the rendering of the virtual
object, so that seems to be linked to the marker. The user can
then manipulate the virtual object using a real object.

In this work two markers were used: a fixed one with
multi pattern and a movable one with the ’Hiro’ pattern to
be detected by the ARToolKit framework. The markers are
shown in Figure 1.

Fig. 1. Physical markers for camera position and orientation calculation.

III. DEFORMATION MODELS

Deformation is a process of changing, interactively, the
surface of a model in response to a control mechanism [13]. In
this work, the main goal is to generate a virtual environment
based on a permanently deformed 3D object represented by a
mesh in an Augmented Reality environment. This mesh can
be defined as a collection of vertexes, edges and faces that
represents the shape of a polyhedral object.

There are several ways of implementing a system in order
to generate a plastic deformed mesh. The first naive approach
is to simply offset the mesh points according to some pre-
defined conditions (like canonical form functions). Another
way is to use physical based systems, like the spring-mass,
with a viscous force in its formulation. One can also use a
particle system with the same viscous force combined with an
inter particles’ force based on the Lennard-Jones potential. The
rest of this section presents a naive method to permanent mesh
deformation, a brief review of the geometry based models and
a more in-depth description of the physical based models that
were used in this work.

A. Naive Method

In the augmented reality environment, a simple but effective
scheme can be formulated using geometric functions in their
canonical forms. A fixed physical marker can serve as the
coordinate system origin and a canonical volume function can
be set in another movable marker to test collisions and offset
mesh points. Utilizing the ARToolKit framework the distance
between two markers can be obtained through the position and
orientation of both markers as follows:

• For a given 3× 4 matrix M of an initialized object, the
first three columns contain the orientation of the marker
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and the fourth column has the relative translation between
the marker and the camera.

• To obtain the relative translation between two markers is
necessary only to multiply the inverse matrix of the first
marker by the second marker matrix. So, given that the
camera is the same for both markers, the fourth column
of the resulting matrix will have the translation values.

• Mt = M−1
1 ∗M2.

Considering the first marker as the origin of the coordinate
system, it is possible to set a mesh (physical body as a virtual
object) related to this marker with a simple translation. With
this relation it is possible to obtain the relative distance be-
tween the mesh and the second marker. Including the volume
canonical function as another virtual object, now related to the
second marker, it is possible to calculate the distance between
the mesh and this volume.

To serve as an example, consider a sphere S with radius r
and center c = (x0, y0, z0). The distance d between a mesh
point p = (xp, yp, zp) and the center of the sphere is given as

d =
√

(xp − x0)2 + (yp − y0)2 + (zp − z0)2.

The canonical volume form of the sphere can be expressed
by:

r2 = (x− x0)2 + (y − y0)2 + (z − z0)2.

In the deformation scheme, one can conclude that if a point
p has its distance d to the center of the sphere inferior to the
radius of the same sphere, this point resides inside it. If this
happens it means that this point collided with the sphere at
some point and it is necessary to offset it back to the sphere
surface. This can be achieved by making a vector ~v ∈ R3 to
represent the direction that the point p must move in order to
reach the sphere surface. This vector can be represented by:

~v =
(p− c)
||(p− c)|| . (1)

The final part is to move p along the normalized vector
~v until the sphere volume canonical function reaches a value
equals to the radius r. The overall process can be observed in
2.

B. Geometry based models

One of the most relevant approaches for deformation of 3D
objects was proposed in [14], where rules are presented for
global deformations (which modify the global space coordi-
nates of a point) and local deformations (which modify the
tangent space of a model). Another widely cited technique in
the literature [15], [16], [17], [18], [19] is called Free-Form
Deformation (FFD) and was presented in [20]. The main idea
is to deform the space in which an object is contained (defined
by a grid on it) and the object itself, through the interpolation
of Bernstein polynomials.

The FFD was extended by S. Coquillart [21], which made
possible the addition of arbitrary projections on the surface

Fig. 2. Naive method, example of mesh particles offset towards the surface
- from p0 to p1.

and fold it along a curve of arbitrary shape, i.e., the user can
set their own bars on the object. The extension of Coquillart
originated the name Extended Free Form Deformation of
(EFFD).

Other authors such as Yu-Kuang Chang and Alyn P. Rock-
wood [22] used a different approach to FFD where the
distortion of the object along the Bezier curve is made by
Casteljau algorithm [23].

C. Mass-Spring System

In the classical mass-spring system a physical body can be
represented by a mesh with n nodes. Each node i of this mesh
is then associated with a particle of mass mi and each edge
has an elastic constant Kij , denoting the connection between
nodes i and j. It is then calculated the force Q applied to the
particle i by the spring i→ j as

Qj
i = Kijq

i
j ,

being the set of forces acting on a node i calculated by

Qi =
k∑

j=1

Kijq
i
j ,i = 1, 2, ..., n.

A system dynamic movement equation is finally determined.
This equation can be shown in a simplified form as

mir̈i−
k∑

j=1

Kijq
i
j +

k∑

j=1

βij q̇
j
i −F e

i = 0, (i = 1, 2, ..., n) (2)

where the first term represents the mass of node i multiplied
by its acceleration value, the second term relates to the elastic
force, the third to a damping factor and the last to the external
forces acting on the system. Being a physical based system,
this equation is necessary by Newtons’ second law. In other
words, to have an equilibrium of the system, the sum of
the forces acting on it must be equal to zero. It is often
necessary to make a permanent deformation to a mesh so the
system equilibrium is not reached at the original position of
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the nodes. This plastic deformation effect can be achieved by
incorporating a viscous force to the deformation model [24]

f~vi = Wd(~vj − ~vi), (3)

where f~vi is the viscous damping force acting on the mass
i, Wd is the viscous damping coefficient, ~vj and ~vi are the
velocities of the masses i and j. Although possible, calibrating
a mass-spring system for any significant model can represent
a challenge to the developer [25] due to many free parameters.
A possible solution that was used in this work is to develop
a loosely coupled particle system.

D. Loosely Coupled Particle System

Following the same idea of physically based systems using
Newtonian physics, one can replace the fixed springs between
nodes (particles) present in the system by a potential field
representing the interparticle relation. Associated to this field
there is a potential force which must be repulsive when the
distance between two particles is smaller than the rest distance,
and attractive when its bigger. One possible way to define this
force is to model it according to the molecular level, being an
example of approximation the Lennard-Jones potential defined
as

fij =

(
48ε

σ2

)[(
σ

rij

)14

− 1

2

(
σ

rij

)8
]
rij .

The fij term represents the potential magnitude, ε and σ are
specific parameters varying with the desired material effect to
be achieved, rij is the distance between two particles.

IV. PROPOSED SYSTEM

To achieve the desired plastic material deformation effect
as the terrain gets modified, the system dynamic movement
equation was defined as

mir̈i −
k∑

j=1

Wd(~vj −~vi)−
k∑

j=1

fij −F e
i = 0, (i = 1, 2, ..., n)

where the first term is the same as in Equation 2, the second
term is from Equation 2, the third represents the interaction
potential force and the last term relates to the external forces.

To incorporate this interaction potential, the Lennard-Jones
potential, and the viscous force to the system it is necessary
to know and update the position, velocity and acceleration of
the system particles. This leads to the necessity of solving
second order differential equations, which can be achieved
using Verlet Integration. Since the velocity is implicit in the
original Verlet algorithm, the Velocity Verlet algorithm [26]
was used and it can be summarized as follows:

After calculating the values for time t+∆t the acceleration
can be modified by the viscous force. In this work the potential
interaction force and the viscous force are calculated between
a group of particles on a movable marker and the particles
of the mesh. When the movable marker gets closer to the

Define a small ∆t;

Velocity Verlet();

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2;

a(t+ ∆t) = −(
1

m
)∇V (x(t+ ∆t));

v(t+ ∆t) = v(t) +
1

2
(a(t) + a(t+ ∆t))∆t;

End Velocity Verlet();
Algorithm 1: Verlet integration algorithm.

mesh a repulsion force makes the mesh particles move, gaining
velocity and acceleration. As the mesh particles velocity
increase, the viscous force decelerates them until they stop
(see Equation 3), creating the plastic deformation effect.

Analyzing the deformation models and the objective to
be achieved, the proposed work chose to use the potential
force between particles to model deformation due to its local
character, meaning that deformations realized in a specific
region will not affect or change the rest of the mesh. The real-
time constraint also restrict the choices for this model, since
updating a large number of particles has a high computational
cost.

A. Post Processing

The last stage of generating a terrain is the post processing,
used by the user to make fine adjustments to the mesh. In the
proposed application it is possible to erode the terrain using a
thermal erosion scheme and also save and export the results to
different formats, which can be used by different applications.
In order to smooth eventual errors introduce by the user an
average neighborhood position scheme can be used.

Regarding erosion, the presented work follows the modified
thermal erosion proposed in [27]. Using a Von Neumann
neighborhood, the difference in height between a particle and
its neighbors is checked. If it is greater than a talus angle, the
mass is distributed from the central particle to the neighbors
that satisfy the condition. Otherwise, the height stays the same.
An example of the erosion can be seen in Figure 3, after 5
iterations.

Fig. 3. The erosion post processing, on the left a noisy terrain generated
and to the right the eroded terrain.

Another useful resource which helps in the creation of
realistic landscapes are procedural functions such as the Perlin
noise, white noise and pink noise. Those are available to the
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user as a way of quickly adding detail to a mesh in any
particular moment, not just a processed one. An example of a
initial mesh with noise applied over it is presented in 6.

The last post processing resource in the application is the
average position of neighbors. This deal with abrupt move-
ments made by the used and the radial aspect of the potential
force when deforming the mesh. The same Von Neumann
neighborhood was used and, in this case, the horizontal axis
positions x and z of the central particle neighbors is obtained
and a simple average is applied to this central particle. This
softens high frequencies that might appear throughout the
mesh. The results with 10 iterations of this technique are
demonstrated in Figure 4.

Fig. 4. Example of an abrupt terrain generated to the left, and the fixed
terrain to the right.

V. SYSTEM USAGE

This section presents the system usage. The input methods,
user interaction, post processing and connection with other
applications will be described next. The whole process can be
seen in Figure 5.

Fig. 5. Pipeline of the proposed system.

By default the system loads a planar surface as the initial
mesh and the user choses the desired number of particles that
will be evenly distributed over the mesh. The option of loading

a precomputed heightmap as the initial mesh is also available,
as it might be interesting for the user a higher level of initial
detail. Procedural generation methods are also presented as
another option for the initial terrain, where the user can adjust
parameters such as octaves, frequency and amplitude.

Fig. 6. A possible initial terrain generated with Perlin noise.

Following the initial configuration, the user now proceeds
to deform the mesh interactively. The desired deformations are
created using a movable marker, which has a specific pattern
recognized by the system as the deformation tool. The user can
also define the number of particles attatched to this marker,
as they will be used to collide against the mesh particles. The
more particles on the marker, wider is the area of contact
between particles, and less accurate are the modifications on
the mesh.

Fig. 7. Particles attached to the movable marker.

The next feature available is the post processing already
mentioned in the previous section. The user can erode the
terrain, generate noise over the mesh and correct abrupt
movements. It is important to emphasize that both deformation
and post processing can be done interchangeably. When all
modifications made to the terrain are finalized, the user can
proceed to generate the virtual navigation environment.

The system has a save command so the user can start to
carry his augmented reality terrain into the virtual environ-
ment. The particles representing the vertices of the mesh are
distributed in a matrix structure, so the system can easily read
and write them as a raw format file, or as a grayscale image
representing the heightfield, or even as a point cloud scalar
field. With the saved terrain coordinates file in hands, the user
can load this file with another system command and start to
navigate through it. The final result can be seen in Figure 8.
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Fig. 8. Example of generated terrain to the left and to the right the
visualization of the same terrain in another application.

VI. RESULTS

The visual effects were obtained using the graphical li-
brary OpenGL and its high-level shading language GLSL.
The generated images contain a multitexture support and a
moving water texture with refraction and reflection. The results
obtained with both the naive method and the loosely coupled
particle system are shown as follows:

Fig. 9. Deformation using the sphere volume function.

Fig. 10. Deformation using the ellipsoid volume function.

Figures 9, 10, 11 and 12 show the results using the naive
method for a sphere, ellipsoid and hyperboloid canonical
volume functions respectively. These examples were made
utilizing 10000 particles distributed along a 400×400 grid,
and although very simple and with a low computational cost
the figures show that is possible, in our application case, to
generate complex shape terrain.

Figures 13, 14, 15 and 16 show the results for the loosely
coupled particle system used in this work. These examples

Fig. 11. Deformation using the hyperboloid volume function.

Fig. 12. Complex terrain generated using multiple volume functions.

Fig. 13. Simple island created using the proposed system.

Fig. 14. Another example terrain generated with the system.
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Fig. 15. Attraction force example.

Fig. 16. Wireframe view of the surface.

were made using 2500 particles distributed in a 400×400 grid.
Since this is a more expensive method less particles were
used. It is also important to note that a larger grid can be
used, but for practical reasons these dimensions were chosen.
The Lennard-Jones potential was calibrated with a σ = 4,
ε = 20, and the viscous damping coefficient was set to 1. In
our experiments these values can be modified to increase or
decrease the deformation effects.

As seen above, a simple set of parameters were used
to obtain different kinds of terrains with various levels of
complexity. Regardless of its simplicity, the naive method
proved itself able to create terrain deformations through simple
point displacement. Although the same complex terrain can
be generated with the naive approach, the proposed system
using a potential force provides additional advantages such as,
undoing a deformation or dynamically increasing/decreasing
the deformation obtained both through the interaction potential
formulation. It is worth mention that all results were obtained
using the same camera resolution, 640×480 pixels.

After the terrain is generated and modified by the user, the
final virtual environment can be seen as in 17. It is possible to
navigate through this virtual environment, moving and rotating
in any direction as seen in 18. There is also collision detection
implemented, so the camera will not be able to go through the
mesh when forced towards it.

VII. CONCLUSION

Interactive systems providing real 3D freedom for modeling
are rare. In this work, we propose a virtual environment gen-
erator based on an augmented reality terrain which provides
an interactive 3D modeling framework. The whole process is
simple to setup and easy to be controlled by the user. Despite

Fig. 17. Final terrain to the left and the virtual environment generated based
on it to the right.

Fig. 18. A navigation moment example.

this, the terrains generated in real time can be quite complex
with natural look even with a small number of user actions.

The marker utilization, in order to deform the mesh, pro-
vides an intuitive method to create forms and patterns across
the terrain. This allows an easy surface modeling without
any skills on computer programming or rendering knowledge.
The post processing techniques complement the initial terrain,
making it simple to generate a terrain with details to some
extent, and to use it in another application.

As mentioned before, it is not very common to have real
time terrain deformation in an augmented reality environment.
The combination of these well-known techniques produced the
expected results, being possible not only to generate a terrain
in a matter of seconds with few intuitive movements, but also
to add details if desired.

A limitation of this work is the resolution of the equipment
used. Depending on the camera one may have a small visual-
ization volume available to create the mesh and manipulate it.
Other limitation is the problem of keeping a high and stable
frame rate when increasing the number of particles present
on the system, after a determined limit, in order to keep
processing in real time. Our work also needs a better interface
to change basic desired properties such as the shape of the
virtual objects dynamically or inserting procedural noise.
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