
Tensor field visualization using Eulerian fluid
simulation

Marcelo Caniato Renhe ?, José Luiz de Souza Filho, Marcelo Bernardes Vieira,
and Antonio Oliveira

Universidade Federal de Juiz de Fora, DCC, Brazil
Universidade Federal do Rio de Janeiro, COPPE, Brazil

{marcelo.caniato,jsouza,marcelo.bernardes}@ice.ufjf.br

oliveira@lcg.ufrj.br

http://www.gcg.ufjf.br

Abstract. In symmetric second order tensor fields, the colinearity and
coplanarity of the represented structures are properties of major interest.
In this paper, we present a method that induces the human perceptual
system to extract these structures by using an Eulerian fluid simulation.
Differently of previous approaches, our model explores the interaction
between the particles to improve the perception of the underlying struc-
tures in the tensor field. The main contribution is the introduction of a
tensor based advection step and a gradient based external force, suitable
for viewing colinear and coplanar structures. Our experimental results
show that fluids are suitable to reveal curves, surfaces and their connec-
tions.

Keywords: Tensor Field Visualization; Orientation Tensor; Fluid Sim-
ulation.

1 Introduction

Among the different tensor field visualization methods, those developed consid-
ering a dynamic approach usually present better results. This approach consists
in using motion to stimulate the human visual system. Applying some sort of dy-
namics to the tensor field makes it easier for the observer to identify and analyze
specific data of interest in the field. For example, we could define the motion as
a function of characteristics of the tensors, in order to enhance structures that
they represent.

A viable solution for introducing motion into the field is to use it as a medium
for simulating fluid flow. Previous works related to tensor field visualization used
advection mechanisms [1–3], which are an essential part of any fluid simulation.
Many works in the computer graphics area explored techniques for controlling
the fluid direction of flow in order to meet specific application requirements.

? Authors thank to Fundação de Amparo à Pesquisa do Estado de Minas Gerais and
CAPES for financial support.

Tensor field visualization means to turn visible some of their properties or
somewhat continuous colinear and coplanar structures formed by the tensors.
Showing this kind of structures can be challenging due to the huge amount of
data. Using particle-tracing methods allows to enhance desired properties by
analyzing the paths and arrangement of the particles along the field. Some of
these methods are static and does not describe interaction between particles [4,
1].

We propose an interactive and dynamic method for tensor field visualization.
It is based on the usage of fluid dynamics to rule the behavior of particles inside
tensor fields. An Eulerian method based on Navier-Stokes equations was chosen
for that. An external force was proposed to concentrate particles around areas of
higher energy. A modification in the the advection is also proposed. This change
consists on using properties of the acting tensors to make particles arrange in a
way to highlight consecutive colinear structures.

2 Related Work

Most works related to tensor visualization are interested in developing more
intuitive forms of visualization. Usually, the problem of analyzing a tensor field
is its multivariate information. Methods encountered in literature fall into three
categories. The discrete methods often employ some kind of glyph representation
to visualize the field. Shaw et al [5] proposes using superquadrics to display
the tensor data. The idea of superquadrics was later used by Kindlmann [6] to
generate a tensor glyph that encodes the geometric shape of the tensor. A tensor
shape can be determined based on coefficients introduced by Westin et al [7].
The main advantage of using these measures in a visualization is that they avoid
ambiguities in the identification of the tensor shape.

The continuous methods, on the other hand, try to establish a continuous
path along the tensor field. The hyperstreamlines method [8, ?], followed by the
tensorlines method [1], are examples of them. They define paths that can be
used to achieve a smooth visualization of the field in a global fashion. This kind
of visualization is very useful for tracking linear features in the field, which are
highly present in DT-MRI, for example. Vilanova et al [9] presents a thorough
explanation of the methods mentioned above and other discrete and continuous
methods. More recently, Mittmann et al [10] devised a real-time interactive fiber
tracking method that can determine new paths automatically based on user
feedback, while Crippa et al [11] proposed an interpolation method to avoid
low-anisotropy regions during fiber tracking.

Finally, we have the dynamic visualization methods. These methods focus
on exploring visual cues to stimulate the human perceptual system, making
it easier for the observer to analyze the tensor field. Kondratieva et al [12]
proposes the advection of particles through the directions of a generated tensor
field. The goal of the advection is to induce motion in the field to enhance user
perception. Leonel et al [2] used this idea to create an adaptive method, in
which the position and orientation of the observer are taken into account in an

interactive visualization of the field. Souza Filho et al [3] extended Leonel’s work
by using multiresolution data to improve the method, while reducing the number
of required parameters and artifacts that were present in previous works.

This work proposes a dynamic visualization of tensor fields using fluid sim-
ulation. We use a simple and stable fluid simulator just like the one found in
Stam’s work [13]. Many other recent methods for fluid simulation exist, but they
are focused on achieving physically accurate simulations, which is not our ob-
jective. We seek to use fluids as an alternative to introduce motion in the field.
To direct the flow along a specific path, previous works used gradient fields to
define an external force. In [14], this force is applied to the fluid in a morphing
context, making the densities travel from an origin point to a predefined target.
Similarly, we define a gradient field that is used in the calculation of the external
forces. We also propose a modification in the advection mechanism, where the
motion is distorted by the local tensors.

3 Fundamentals

3.1 Tensors

In this work, we are interested in visualizing tensor fields composed by second-
order tensors. This type of tensor is represented by a 3x3 matrix, representing
a linear transformation between vector spaces. Westin [7] introduces a special
case of tensor, which is non-negative, symmetric and has rank 2. This tensor,
used for estimating orientations in a field is called a local orientation tensor. It
can be defined as:

T =

n∑
i=1

λieie
T
i

where e1, e2, ..., em is a base of Rn and λi is the eigenvalue associated to the
eigenvector ei.

In R3, the orientation tensor can be decomposed into a sum of the contribu-
tions of its linear, planar and spherical features. The equation, then, becomes:

T = (λ1 − λ2)Tl + (λ2 − λ3)Tp + λ3Ts

The above decomposition has an important geometrical meaning. Analyzing
the relation between the three eigenvalues, we can determine the approximate
shape of the tensor. Basically, we have three possibilities:

– λ1 � λ2 ≈ λ3 indicates an approximately linear tensor
– λ1 ≈ λ2 � λ3 indicates an approximately planar tensor
– λ1 ≈ λ2 ≈ λ3 indicates an approximately isotropic tensor

Usually we are interested in the main direction of the tensor. A tensor, when
applied to a vector, distorts the space in accordance with its inherent shape.

Isotropic tensors have no main orientation, reason why we try to avoid them in
the visualization process, as we will discuss in Section 4.

In order to identify the shape of the tensor, Westin defines three coefficients,
each related to one of the types of tensors mentioned above. The so-called coef-
ficients of anisotropy are defined as:

cl =
λ1 − λ2

λ1 + λ2 + λ3
,

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
,

cs =
3λ3

λ1 + λ2 + λ3
,

where each coefficient lies in the range [0, 1]. Besides, they have the following
property: cl + cp + cs = 1.

3.2 Fluid Simulation

Fluids have been extensively researched in the Computer Graphics field for the
last decade. Simulations involving fluids evolved to the point of being able to
reproduce very complex phenomena. Instead, even a simpler fluid simulation
requires the use of many techniques from the Computational Fluid Dynamics
field. All these techniques must be put together in order to solve the Navier-
Stokes equations, which are responsible for describing the motion of fluids. The
Navier-Stokes equations, in their vector form, are presented below:

∇ · u = 0, (1)
∂u
∂t = −(u · ∇)u− 1

ρ∇p+ ν∇2u + f, (2)

where u represents the velocity vector, p is the pressure, ν is the fluid viscosity
and f is the sum of external forces. The first equation is called the continuity
equation, and accounts for the conservation of mass for incompressible flow.
Equation 2 imposes momentum conservation [15].

Each term of the Navier-Stokes equations has its own meaning. The first
term represents the advection part. The advection is the process of transporting
properties through the fluid. These properties include the velocity itself. Other
examples of properties or substances that can be advected through the velocity
field are the density, the temperature or any other value which might be inter-
esting for the simulation. The second term accounts for the pressure. It plays
an important role in the projection step of the simulation. This step is respon-
sible for enforcing Equation 1, i.e., the divergent of the velocity must always be
zero, ensuring conservation of mass. The next term accounts for the viscosity,
which smooths out the velocities, limiting the fluid motion. That’s why numeri-
cal dissipation in the fluid simulation is also called numerical viscosity. It makes
velocities dampen faster. We will discuss numerical issues in Section 4.3. Finally,
the last term represents any external forces acting on the fluid. This term is

often used as a means of controlling the motion direction of the fluid [14]. We
could, for example, add a constant wind-like force in a certain portion of the
fluid to shape its path.

Usually, in standard fluid simulations, we deal with non-viscous fluids. In
these cases, the viscosity term can be suppressed. The resulting equation, suit-
able for inviscid fluids, is called the Euler equation. While inviscid means that
density is constant throughout the fluid, we can still advect density, like any
other property, to use it for visualization.

Two approaches are commonly employed with respect to the internal rep-
resentation of the fluid. The Lagrangian approach focuses on the fluid itself,
discretizing it in a number of particles. Thus, the properties of the fluid are rep-
resented in each particle. On the other side, the Eulerian approach, which we use
in this work, takes the space surrounding the fluid as the reference, discretizing
it into a grid. Each cell of the grid stores the values of the fluid properties at
that point in the space.

In an Eulerian simulation, in order to solve the Navier-Stokes equations and
actually simulate the fluid, we employ a technique called fractional steps, or
operator splitting. It consists in breaking the target equation into parts, and
solve each part with an adequate numerical method. The advantage is that we
simplify the solution of the equation by allowing the conjugation of different
methods for the solution of its terms. This means we can choose, for a particular
term, the best suitable method to solve it. This technique can be used whenever
the equation involves a sum of different terms that present different contributions
to the final result. The solution of each term is then takes as input to the next
term of the equation.

The first step in the simulation process consists in the application of the
external forces. This stage produces a new velocity field, which is then taken as
input for the advection step. In this step, we employ an unconditionally stable
method presented in [13], which guarantees that no output velocity is bigger than
the maximum velocity in the input field. This feature prevents the simulation
from blowing off. The process is simple: we trace the advected property back in
time to find what was its value in its previous position in the grid. Then, we
use that value interpolated with its neighbors to update the current value of the
property.

After the advection, we pass on to the last step, called projection. It takes the
advected velocity field and makes it divergence free by subtracting the pressure
from it. This is accomplished by observing a mathematical statement, known
as the Helmholtz-Hodge Decomposition, which says that any vector field can be
decomposed into a sum between a divergence free vector field and a scalar field.

4 Proposed Method

In this section, we present our method, which conjugates tensor field visualization
with fluid simulation. The tensor field information is used to govern the fluid
motion, allowing the observer to detect regions of interest in the field.

4.1 Fluid Representation

As stated in Section 3.2, we implemented an Eulerian fluid representation. We
define a grid with a number of cells equal to the dimension of the tensor field. For
simplicity, each fluid property is discretized at the center of each cell, as in [13].
Some works in the literature use a staggered arrangement for the velocities [16],
in which they are discretized at the cell faces instead of its center. Trottenberg
et al [17] analyzes the advantages of using the staggered grid, which are mainly
related to avoidance of possible numerical instabilities that may arise during the
simulation, creating a checkerboard pattern in the visualization (hence the name
checkerboard instability). We were able to obtain, though, satisfactory visual-
izations even without using a staggered arrangement. However, it is important
for non-staggered grids, when using central differences, to define pressure values
at all boundaries of the grid to achieve second-order accuracy.

4.2 Extenal Force from the Tensor Field

In order to control the direction of the flow, we apply an external force based on
tensor information. A more straightforward definition for this force would be to
use the main eigenvector from the tensor matrix to set the direction of the force
vector. Although this definition could produce rather good results, we decided
to use a gradient field based on each tensor weight. The weight of a tensor is
defined as:

w =
1√

λ21 + λ22 + λ23
(3)

We then set the external force to be the product between the gradient of the
tensor weight at a specified and a parameter used to scale the force modulus.
We discretize the gradient as follows:

∇w =
1

2
· [wi+1,j,k − wi−1,j,k wi,j+1,k − wi,j−1,k wi,j,k+1 − wi,j,k−1]

T
(4)

where (i, j, k) ∈ N3 are the coordinates of the neighbor tensors in the grid. The
force from the gradient is applied to all cells in the grid. Since the tensor field
is static, the applied force produces a velocity field which quickly converges to a
stable configuration through the advection process. This makes the velocity field
completely still, which is not interesting, since we want a dynamic visualization.
Thus, we employed a different scheme for the application of the force. At each
iteration, we apply the force only for a limited amount of tensors. Considering
a 3-dimensional grid, these tensors are located in a single plane. So, in each
iteration, forces are added to a specific plane in the grid. We sweep the all the
planes through the iterations until we get to the first plane again. We then
restart the cycle. With this mechanism, we are able to inject energy at varying
portions of the grid, generating the illusion of motion in the velocity field. This
immediatly allows us to visualize the tensor field simply by updating the velocity
field over time, discarding the advection of densities, which is commonly used to
visualize the fluid.

4.3 Advection with Tensors

The advection is the transport of properties along the flow path, as mentioned in
Section 3.2. We solve the advection term in the Navier-Stokes equations through
a semi-Lagrangian scheme. To compute the new velocity at a point x, we imagine
a particle at this point and trace its path backwards in time, finding the position
x0 where it was located in the previous iteration. We then interpolate the value
at x0 with the values in its adjacent cells. This new value is used to update the
velocity at the point x. Notice that, as we interpolate through already existent
velocity values, the advection itself cannot cause the simulation to blow up.

In our case, however, the fluid path is determined by the tensor field. The
tensors distort the space in which the fluid is enclosed. So, if in a previous itera-
tion the supposed particle was at x0, we must take into account the contribution
of the tensors in the cells used for interpolation. In other words, we must find the
direction determined by these tensors that led the particle to its current posi-
tion. Thus, at each cell, we apply the tensor located at that site to its associated
velocity vector, yielding a new velocity in a distorted space. This distorted ve-
locity is then used to update the current one. This process is depicted in Figure
1.

Fig. 1. Advection in the tensor field. The velocity of the cell at position y in time
t−∆t is used to define the position x in time t. The nearest tensors of y are applied
on their respective velocities. The distorted velocities are summed to define the new
velocity at x.

Generalizing the example in Figure 1 for threedimensional grids, suppose
y ∈ R3 in time t−∆t is the point computed from the grid point x ∈ N3 at time
t using its current velocity backwards. Let {T1,T2,T3,T4,T5,T6,T7,T8} be
the tensors from the nearest neighbors of the point y in the grid, forming a 2x2x2
block of cells. We can then define the new velocity vx at x as

vx =

8∑
i=1

αiTi · vi, (5)

where αi are the weighting factors of a trilinear interpolation.
The semi-Lagrangian method for advection is highly subject to numerical

dissipation. Because we are linearly interpolating properties every iteration, the
numerical error tends to accumulate. The excessive averaging required by the
linear interpolation acts as a low-pass filter, smoothing out values over time [18].
The result is that velocities dampen quite fast, and interesting visual effects,
like swirling movements in the fluid, can be lost during the simulation. Possible
overcomings include the utilization of sharper interpolation methods [16] and
techniques like the vorticity confinement method, first presented by [19] and also
used by [16]. As for the first solution, care must be taken to avoid overshooting,
because it does not provide the same stability as a simple linear interpolation.

For our purpose of tensor field visualization, however, the usual dissipation
that arises from the semi-Lagrangian advection is not exactly an issue. We are
more interested in adding some level of fluid dynamics to the field than to accu-
rately and realistically simulate the fluid. The fluid is just an interesting medium
for the field visualization. The real problem is that the application of tensors to
the velocities deeply aggravates the already present dissipation.

To work around this tensor dissipation issue, we adopted a simple solution.
We defined a boost parameter to apply to each tensor in the field before it is used
in the velocity calculation. Thus, we counteract the numerical dissipation with a
simple scale in the tensor. If correctly adjusted, it is possible to create a balance
between the boosting and the dissipation, producing controlled fluid simulations,
which allow nice visualizations as the one shown in Figure 3 in the next section.
We also can control which tensors receive the boost through checking of its
weight or some of its anisotropy coefficients mentioned in Section 3.1. This is
useful, for example, if we want to visualize just linear tensors. We then set the
boost based on the linear anisotropy coefficient, letting the dissipation naturally
smooth out the velocities in the cells with isotropic or planar tensors.

5 Results

In this section, we present some results from our visualization. All experiments
were conducted in a computer with an Intel i3 processor running at 2.1GHz, 4GB
RAM memory and an nVidia GeForce 540M graphics adapter. We generated a
simple tensor field in order to demonstrate our method behavior. In a regular
2D grid of 64× 64 elements, with integer coordinates (i, j) ∈ [0, 63]× [0, 63], we
defined three main points q1 = (16, 16), q2 = (48, 16) and q3 = (32, 48). For all
points pij = (i, j) in the grid, a tensor is computed as

Tij =

3∑
k=1

(qk − pij) · (qk − pij)
T

||(qk − pij)||
,

where qk 6= pij . The result is a tensor Tij that captures the uncertainty of
the direction between the grid point pij and all qk points, weighted by their
Euclidean distances. Figure 2a shows a representation of the tensor norms of

(a) (b)

Fig. 2. (a) Norms of a 64× 64 2D tensor field represented by a colored dot going from
blue (lowest) to red (highest). (b) The corresponding gradient field of the tensor norms.

this 2D field, varying from lowest (blue) to highest (red). In Figure 2b, the
gradient of the tensor norms is shown.

We employ a fluid simulation for the visualization as explained in Section 4.
Observing the Figure 2b, we can see that the gradient norms are greater near the
main points, since we use the tensor weight at each site to calculate them. The
central region has the weakest gradients, which is in accordance with the fact
that the tensors in that area are mainly isotropic. In our simulation, it means
that, if we apply a force in that area, any velocity generated by this force will
soon be reduced to zero.

We can see a screenshot of the aforementioned simulation in Figure 3. The
velocity vectors are represented as two-colored lines, with the red edge indicating
the direction. We interactively applied a series of external forces to the fluid in
different points of the grid. These forces produced motion in the direction of the
force, but the flow direction soon converged to the charges. As one can observe,
the tensor-guided simulation produces continuous paths between the charges,
leading the fluid from one charge to another. The velocities originated from the
borders are directed towards the center of the field. In this simulation, we applied
a tensor boost equals to 1.2, which avoided rapid velocity dissipation and created
a fluid-like motion of the velocity field, with the velocities continuously moving
around the charges. The velocities seen at the very center of the field in Figure
3 are not created there, because, as previously said, that area is full of isotropic
tensors. Those velocities come from the linearly anisotropic tensors present in
the diagonal line connecting the left (or the right) and the top charges.

This field represents a simple example where it is more clear to visualize the
wanted behavior. There are two more challenging examples that are a 3D helical
field and a DT-MRI brain. In these examples, we did not use interactive force

Fig. 3. Screenshot of the 3-point field visualization. Time step = 0.1; tensor boost =
1.2.

placement. The details on how forces were applied are explained in the following
discussion.

The 3D helical field is an artificial tensor field, in which we have mainly
linear tensors, composing the helix, surrounded by isotropic tensors. In order
to better illustrate the tensor field, Figure 4 only shows the tensors below the
threshold of 0.7 for the spherical coefficient of anisotropy presented in Section
3.1. Figure 5 shows screenshots of our simulation in different iterations for the
helical field. As in the 2D example, we used the velocity field itself to visualize
the tensor field. Since tensors do not inherently point in a particular direction,
we used parallelepipeds as glyphs to represent the velocity vectors. Besides, to
put the fluid into motion we need to apply an external force in the beginning
of the simulation. This force starts the velocity advection process. If we do not
apply additional forces, the velocities tend to dissipate at some point during the
simulation. If we keep the tensor boost on, they will at most reach equilibrium,
presenting no movement at all. We cannot arbitrarily scale the boost, because
the simulation can become unstable. On the other hand, if we apply a constant
force in all the grid in every iteration, the velocities will be directed along the
linear tensors path, as expected, but they will still not move. Thus, we employed
a scheme in which we apply forces cyclically along varying planes of the 3D
grid. In the helical field example, we applied forces, based on the tensor weight
gradients, to every cell in the plane x = k, with k = 0..N − 1. Letting the

(a) (b)

Fig. 4. Snapshots of the tensor fields: (a) 40×39×38 helical tensor field. (b) 40×38×37
DT-MRI brain.

tensor boost off, the velocities in the cells not subject to the gradient force tend
to smooth out, while the affected cells create new velocities, which are advected
through the tensor field. With this method, we were able to induce motion in the
field, generating the visualization shown in Figure 5. The colors of the glyphs
indicate the velocity norm, which means that the red velocities represent the
places where the external force is being applied at the current iteration. This
simulation did not run in real-time due to the grid resolution needed for this
field. A downscaled version of the field may be used to work around this issue,
although we lose some information, producing slightly poorer simulations.

Finally, we simulated the DT-MRI brain tensor field. For this simulation, we
used a size-reduced version of the field. Since the brain field is quite large, we were
also not able to achieve a real-time visualization, even with downscaling. Plus,
the brain field is highly noisy. So, we used a filtered version of the original field.
Figure 4 shows this field. Tensors with spherical anisotropy coefficient higher
than 0.7 were omitted, as in the previous example. Again, as in the helical
example, we applied forces by sweeping the grid planes x = k, with k = 0..N−1.
Also, we let the tensor boost in each cell be set by a gaussian function with
respect to the distance between the cell plane and the plane x = k. Figure 6
shows 9 subsequent frames from a simulation, with a time step of 0.001. The
size of each tensor glyph is defined as a function of its weight w, as defined in
Section 4.2, and the velocity norm at the cell. The brain central region, which
has many colinear fibers, contains tensors with higher weight, resulting in the
red glyphs seen in the figure. The difference between the glyphs can be better
seen in Figure 7, which zooms in the mentioned region in the brain. Also, Figure
7 shows alternative views of the brain, like its side and top views, for instance.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Helical field visualization in different times and different points of view. Screen-
shots were taken at each 3 iterations. Time step = 0.001; tensor boost = 1.0.

6 Conclusion

We presented a new visualization method based upon fluid simulation. We use
the fluid as a means for visualizing tensor fields. The velocity field generated by
the simulation is used to define the paths along linear tensors in the field. We
apply external forces to the field in such a way that the velocities produce a
continuous movement, enhancing the visualization process. Our method works
both for 2D and 3D fields. We have shown our results for two artificial fields and
for a DT-MRI brain field.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Visualization of the DT-MRI brain field. Screenshots show 9 sequential frames,
taken at subsequent iterations. Time step = 0.001.

As mentioned in Section 5, we were not able to achieve real-time simulations
for high resolution grids. Even with downscaling, the brain field visualization had
to be generated offline. In an Eulerian simulation, fluid properties are calculated
for every grid cell. The original brain field has dimensions 80x95x74. Further re-
search must be done in order to work around this limitation and achieve real-time
visualization. Parallelization may be a feasible solution, since it is not difficult
to parallelize the stages of the simulation. Another possible experiment includes
the utilization of particles through a hybrid fluid simulation method.

We used velocities to visualize the field, which led us to find a way to induce
motion due to the reasons presented in Section 5. The use of fluid densities or

(a) (b) (c)

(d) (e)

(g) (h)

Fig. 7. Different views of the DT-MRI brain visualization depicted in Figure 6. Figure
(c) shows a side view of the brain. Figure (g) shows it as seen from the top. Figures
(e) and (h) show scaled views of the frames shown in Figures (d) and (g), respectively,
to provide a detailed view of the tensor glyphs. Time step

other property like temperature would be a better solution for the movement
issue. However, we still need to evaluate the best way to represent the density.
More importantly, we would need to determine the best places to insert fluid

density into the grid in such a way that the visualization produced can actually
enhance the observer experience. Also, it would be interesting to explore the
possibilities created by tweaking other fluid properties, like viscosity for instance.

References

1. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion
based propagation through diffusion tensor fields. In: VIS ’99: Proceedings of the
conference on Visualization ’99, Los Alamitos, CA, USA, IEEE Computer Society
Press (1999) 249–253

2. Leonel, G.A., Peçanha, J.P., Vieira, M.B.: A viewer-dependent tensor field visu-
alization using particle tracing. In: Proceedings of the 2011 international confer-
ence on Computational science and its applications - Volume Part I. ICCSA’11,
Springer-Verlag (2011) 690–705

3. de Souza Filho, J.L.R., Renhe, M.C., Vieira, M.B., de Almeida Leonel, G.: A
viewer-dependent tensor field visualization using multiresolution and particle trac-
ing. In: Proceedings of the 12th international conference on Computational Science
and Its Applications - Volume Part II. ICCSA’12, Berlin, Heidelberg, Springer-
Verlag (2012) 712–727

4. Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyper
streamlines. In: IEEE Computer Graphics and Applications, Volume 13, Issue 4,
Los Alamitos, CA, USA, IEEE Computer Society Press (1993) 25–33

5. Shaw, C.D., Hall, J.A., Blahut, C., Ebert, D.S., Roberts, D.A.: Using shape to visu-
alize multivariate data. In: NPIVM ’99: Proceedings of the 1999 workshop on new
paradigms in information visualization and manipulation in conjunction with the
eighth ACM internation conference on Information and knowledge management,
New York, NY, USA, ACM (1999) 17–20

6. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG
Symposium on Visualization 2004. (May 2004) 147–154

7. Westin, C., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.: Geometrical dif-
fusion measures for mri from tensor basis analysis. In: Proceedings of ISMRM.
Volume 97. (1997) 1742

8. Delmarcelle, T., Hesselink, L.: Visualization of second order tensor fields and
matrix data. In: VIS ’92: Proceedings of the 3rd conference on Visualization ’92,
Los Alamitos, CA, USA, IEEE Computer Society Press (1992) 316–323

9. Vilanova, A., Zhang, S., Kindlmann, G., Laidlaw, D.: An introduction to visualiza-
tion of diffusion tensor imaging and its applications. Visualization and Processing
of Tensor Fields (2006) 121–153

10. Mittmann, A., Nobrega, T., Comunello, E., Pinto, J., Dellani, P., Stoeter, P., von
Wangenheim, A.: Performing real-time interactive fiber tracking. Journal of Digital
Imaging 24(2) (2011) 339–351

11. Crippa, A., Jalba, A., Roerdink, J.: Enhanced dti tracking with adaptive tensor
interpolation. Visualization in Medicine and Life Sciences II (2012) 175–192

12. Kondratieva, P., Kruger, J., Westermann, R.: The application of gpu particle
tracing to diffusion tensor field visualization. In: Visualization, 2005. VIS 05.
IEEE, IEEE (2005) 73–78

13. Stam, J.: Stable fluids. In: Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co.
(1999) 121–128

14. Fattal, R., Lischinski, D.: Target-driven smoke animation. In: ACM Transactions
on Graphics (TOG). Volume 23., ACM (2004) 441–448

15. Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics. 3 edn.
Springer (2002)

16. Fedkiw, R., Stam, J., Jensen, H.: Visual simulation of smoke. In: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques,
ACM (2001) 15–22

17. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press (2001)
18. Bridson, R.: Fluid Simulation For Computer Graphics. Ak Peters Series. A K

Peters (2008)
19. Steinhoff, J., Underhill, D.: Modification of the Euler equations for “vorticity

confinement”: Application to the computation of interacting vortex rings. Physics
of Fluids 6(8) (1994) 2738–2744

