
A Semi-automatic Approach to Mix Real and Virtual
Objects for an Augmented Reality Game

Luiz Maurílio da Silva Maciel, Felipe Andrade Caetano, Rodrigo Luis de Souza da Silva
Departamento de Ciência da Computação

Universidade Federal de Juiz de Fora
Juiz de Fora, Brasil

felipe.caetano@ice.ufjf.br, luiz.maurilio@ice.ufjf.br, rodrigoluis@ice.ufjf.br

Resumo—This work describes an approach to mix real and
virtual objects in an augmented reality game. The steps to setup
the system and the basic logic of the game are detailed. The
semi-automatic approach is based on the correct positioning of
fiduciary markers over some real objects. An association between
these auxiliary markers and one central marker is set during
the registration process. Once registered, these markers can be
removed from the scene. The main objective of this work is to
present this approach in detail, showing how this technique can
be used in a augmented reality game based on the interaction
between two virtual cannons, and some virtual and real objects.

Keywords—Augmented Reality; Virtual Games; Real Object
Registration; Mixing real and virtual objects.

I. INTRODUCTION

The gaming industry is one of the fastest growing area
in recent years. In addition to the search for more realistic
graphics, better storylines and gameplay, this growth has
prompted the industry to look for new ways of player interac-
tion with the games. The objective is to attract the public from
different ages, making interaction more simple and natural,
leaving aside the traditional joystick.

Examples of this trend can already be found in the market
today. We can cite the Nintendo R© Wii Remote Controller TM,
the PlayStation3 R© Move TM, the PlayStation3 R© Eye TMand
Microsoft R© Kinect TM.

Augmented Reality (AR) emerges as a new alternative
in this scenario, since it allows a very natural interaction
of the player without using very sophisticated electronic
equipments. Augmented Reality combines virtual computer-
generated elements with the real environment and reproduces
this combination in a display device such as a monitor, mobile
phone, tablet or Head Mounted Display (HMD).

Moreover, basic AR games only need a video capture
device, such as a webcam, and a few markers used for
projection of virtual objects in the scene. Some games even
use real objects as markers.

A. Related Works

In recent years several games using augmented reality have
been proposed. In 2002, a first-person game shooter called
ARQuake [10] was proposed. That game is an extension of
the desktop game Quake, using augmented reality resources to
insert virtual elements in the environment. Markers are used
for the placement of objects projected and a tracker system

is used to locate the player in the scenario. A similar game
called AR Shooter [11] was proposed in 2010. This one uses
a gun with embedded video cameras and infrared markers for
tracking.

Board games using Augmented Reality has also been
developed recently. One of those works uses, as an example,
the traditional MonopolyTMgame [4]. In that game, the board
is used as a marker as well as pawns. The board texture is used
for tracking so the virtual objects can be projected, increasing
user immersion.

Another game that also uses a board to identify the position
of the game scenario is the NerdHerder [12]. That mobile game
works basically through device movement in the game scenario
achieved by the board position.

The ARPong [6] consists of a Pong game using Augmented
Reality without fiducial markers. The interaction with the game
is made by the hands of the players.

Many works have been done to identify real objects in
Augmented Reality systems. One of these works [8] uses a 2D
marker (a square shaped barcode), that simultaneously identify
the real world objects and estimate its coordinate system.

Another paper proposes the recognition of static objects in
a room [7]. The geometry of the objects is simple (doors and
windows, for example). The system has a priori information
about the location and description of the object.

Using a previously calibrated camera it is possible to
determine the geometry of relatively complex objects, by
selecting some points of the object to be mapped as described
in [9].

This paper propose a method for a semi-automatic registra-
tion of objects with relatively simple geometry (cylinders and
parallelepipeds) through fiducial markers. Once registered, the
auxiliary markers can be removed from the scene. This method
is described in details in Section II-A.

II. SETUP OF THE SCENARIO

The game uses seven fiducial markers. One is positioned
approximately in the center of the scene and the position
of other objects is determined by its relation to this central
marker.

Two markers represent the cannons used by the players to
interact with the game. Two additional markers are used for the

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 1



representation of virtual objects, one representing a cylinder
and one to represent a rectangular parallelepiped object.

The other two markers are used to register the position of
the objects in relation to the central marker. The real objects
in this prototype are expected to be one cylindrical and the
other as a rectangular parallelepiped. They must be placed on
the desired positions by the players and the fiducial markers
used to the registration of each one must be centered on these
objects. Then, the registration of the real objects is ready to be
performed, as described in Subsection II-A. Once real objects
are registered, the markers that were placed over them can be
removed and the game can be started.

The markers that represent virtual objects should also have
their positions set before the start of the game, since during
the game, only the markers representing the cannons can be
moved.

A. Real Objects Registration

The registration of the real objects begins with the posi-
tioning of the markers used for registration above them. The
markers must be positioned in the center of the surface of the
real objects.

Through the keyboard, the player enters the registration
mode. Upon entering that mode, the object’s position is
computed automatically through the relationship between the
registration marker and the central marker. Then using the key-
board, the player can specify the radius, in case of the cylinder,
and the length and width, in the case of the parallelepiped. A
wired-frame projection with the current size of the object is
displayed to assist the user in the registration step.

After confirming the registration, the position and size of
the real objects will be saved and the registration markers can
be removed from the scene. The Figure 1 shows the steps of
the parallelepiped registration while the Figure 2 shows the
steps of the cylinder registration.

III. AVRLIB

The AVRLib is a object-oriented framework based on the
ARToolkit [3] library. The main advantages of this framework
over the ARToolkit is the object-oriented interface of the
library, in which all of the ARToolkit files were separated in
several classes according to their functionality. Most of the
code presented in the ARToolkit examples were hidden in the
avrApplication class.

The class avrApplication has methods to define the camera
parameters, the threshold for the detection, the single or multi-
marker mode and callbacks for events (mouse, keyboard etc).
The class also includes a method for obtaining the relationship
among the markers of the application.

There is a class called avrPatt used to store marker infor-
mation. The class avrPatt contains information like id marker,
center, width, transformation matrix and visibility. The class
avrApplication has a dynamic vector of avrPatt and through
this method new markers are added to the application, passing
a file with the information of the markers to be added, in
addition to the associated drawing function.

(a)

(b)

Figura 1: Registration of the parallelepiped with the initial sce-
nario (a) and the final result with the manual width adjustment
(b).

Thus, to create an Augmented Reality application using
AVRLib, it is necessary to include the avrApplication.h header
and create an instance of the avrApplication class.

Just as in the ARToolkit, a drawing function for each
marker used in the application must be created. The markers
are added in the application by the addPatt function. This
function receives a configuration file as a parameter, the width
and the drawing function for that marker.

The setCameraFiles function is responsible for initializing
the parameters of the camera through files and the setKey-
Callback function sets the interaction function through the
keyboard (the function must be created). When calling the start
method, the application starts to run.

The AVRLib is under development at the Federal Univer-
sity of Juiz de Fora and the first public release is expected to
be launched in 2014.

IV. EXPERIMENTAL RESULTS

This section explains the operation of the game, showing
the game rules and collision system developed.

A. The Two Hit Game

The scenario of the game consists of two cannons and four
static objects, two real and two virtual. After performing the

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 2



(a)

(b)

Figura 2: Registration of the cylinder with the initial scenario
(a) and the final result with the manual width adjustment (b).

assembly of the scenario as described in Section II the players
can start the game.

Each round of the game, one player can move your cannon
through the marker that represents it. After setting the position,
the player makes the shot using the keyboard. The projectile
launched must collide at least into a real object and a virtual
object so that it is valid. If the valid projectile hits a cannon,
that cannon loses one life. Projectiles that hit a cannon without
first hit at least a real object and a virtual object do not decrease
the life of the hit cannon.

Figura 3: Game in progress

Each cannon initially begins with three lives. As the

cannon loses its lives, its texture is changed to indicate the
suffering damage. The projectile starts with a black texture
when launched and acquires an yellow color to be valid. The
Figure 3 shows the game in progress. The projectile has a
projected shadow to increase the realism of the game.

B. The Collision system

A simple collision system was developed for this experi-
ment. For simplicity, a system of collision in two dimensions
was used by ignoring the height and considering all the objects
on a same plane. First, the position of all objects in relation
to the central marker that became the origin of the coordinate
system is used. Then, the Oriented Bounding Boxes (OBB) of
each object in the scene is determined. The collision detection
was then made through the bounding boxes obtained using the
Separating Axes Method [2].

This method is based on the fact that if the bounding
boxes (convex polygons) are not colliding, there is a line that
separates them and this line is parallel to one side of at least
one of the bounding boxes. Figure 4 shows an example of that
line. The line found is parallel to the red side of the yellow
arrow bounding box.

Figura 4: Example of Oriented bounding boxes examples with
the Separating Axes Method

The method consists in determining if this line exists. If
it does not exist then the bounding boxes are colliding. The
method begins by taking one side of one of the bounding boxes
and setting a vector of that line and a vector perpendicular to
it.

The next step is the projection of the bounding boxes on
this vector. In this step, each vertex is projected onto the
vector generating one line with the extreme projected points.
If the lines do not overlap then the line that separates the
two bounding boxes is found. Otherwise, the other side of
the bounding box should be tested. If after testing all sides
of the two bounding boxes the line that separates them is not
determined, a collision is found.

However, that Bounding Box technique may not be good
for detecting collision in some cases. For example, some shots
are detected as a collision in the cylinder, when they are
not supposed to. The Figure 5.a shows this problem. The
green area in the figure represents the area where false-positive
detection can occur.

In order to minimize this problem, we use two bounding
boxes on the cylinders. The other bounding box is computed
rotating the original one with an angle of 45◦. The Figure 5.b

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 3



shows these bounding boxes. In this case, there is a collision
only when a collision with both bounding boxes is detected.
We can observe in this figure that the false-positives area is
decreased.

(a) (b)
Figura 5: False-positive detection in the cylinder bounding box
(a) and two bounding boxes to minimize the false-positive
detection problem (b).

Only one projectile (a sphere) moves during a shot. In order
to optimize the calculations, initially we calculate the distance
between the sphere and all objects and the collision test is
done only with the nearest object.

Once a collision is detected, the new direction of the sphere
motion is determined. That direction must be such that the
angle of reflection is equal to the angle of incidence (Figure
6).

Figura 6: Reflection of the direction [1]

We used the following formula to calculate the new direc-
tion [1]:

~Vnew = −2 ∗ (~V · ~N) + ~V (1)

where ~V is the direction before the collision, ~N is the
surface normal where the collision occurred and ~Vnew is the
direction after the collision. Based on the Figure 6, Figure 7
shows how the Equation 1 is obtained.

Figura 7: Computing the new direction of the projectile.

The simplicity of the presented collision system allows
the entire system to run at 30 frames per second on a

Intel R© CoreTM2 Quad Q9550, 4GB of RAM, NVIDIA R©
GeForceTMGTS 250 equipment.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a game using Augmented Reality
and iteration with real and virtual objects. The position and
dimensions of the real objects are obtained semi-automatically
by the relationship between markers. This prototype was
developed at the end of an augmented reality postgraduate
course and the main focus was on the interaction of real and
virtual objects.

Some problems were encountered for detecting the height
of real objects. Some of these problems results from distortions
in the markers detection by the AR libray. Furthermore, the
relationship of height between the markers is not always
accurate, since any rotation in X or Y axes between the central
marker and the marker used in the calibration, may interfere in
the ability to determine where is the base plane of the game.

For future works, techniques for automatic detection of
real objects can be used, making easier and more accurate the
configuration and identification of objects. Also, the accuracy
of the collision system can be improved by implementing a
system based on Octrees [5].

REFERÊNCIAS

[1] 3DKingdoms. http://www.3dkingdoms.com/weekly/weekly.php?a=2,
Jan. 2006.

[2] D. Eberly. Intersection of convex objects: The method of separating
axes. http://www.geometrictools.com/Documentation/MethodOfSepa
ratingAxes.pdf.

[3] H. Kato. ARToolKit 2.33 Documentation (Alpha Version). Hu-
man Interface Technology Laboratory, University of Washington,
http://www.hitl.washington.edu/artoolkit/documentation/, 2005.

[4] E. Molla and V. Lepetit. Augmented reality for board games. In
9th IEEE International Symposium on Mixed and Augmented Reality,
ISMAR 2010, Seoul, Korea, 13-16 October 2010, pages 253–254. IEEE,
2010.

[5] M. Moore and J. Wilhelms. Collision detection and response for
computer animation. In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’88, pages
289–298, New York, NY, USA, 1988. ACM.

[6] Y. L. B. Nogueira, M. O. Freitas, C. A. Vidal, and J. B. Cavalcante-
Neto. Arpong: A viability case study of markerless ar-based interface
to computer games with webcam. In IX SBGames - Florianópolis - SC,
November 8th-10th, 2010. SBC, 2010.

[7] C. Pereira. Object recognition in augmented reality.
http://www.umcs.maine.edu/ markov/chesterslides.pdf, Dec. 2002.

[8] J. Rekimoto. Matrix: A realtime object identification and registration
method for augmented reality. In APCHI, pages 63–69. IEEE Computer
Society, 1998.

[9] E. Rose, D. Breen, K. H. Ahlers, C. Crampton, M. Tuceryan, R. Whi-
taker, and D. Greer. Annotating real-world objects using augmen-
ted reality. Technical report, EUROPEAN COMPUTER-INDUSTRY
RESEARCH CENTER GMBH, ARABELLASTRASSE 17 D-81925,
1995.

[10] B. Thomas, B. Close, J. Donoghue, J. Squires, P. D. Bondi, and
W. Piekarski. First person indoor/outdoor augmented reality application:
Arquake. Personal Ubiquitous Comput., 6(1):75–86, Jan. 2002.

[11] D. Weng, D. Li, W. Xu, Y. Liu, and Y. Wang. Ar shooter: An augmented
reality shooting game system. In ISMAR, page 311. IEEE, 2010.

[12] Y. Xu, S. Mendenhall, V. Ha, P. Tillery, and J. Cohen. Herding
nerds on your table: Nerdherder, a mobile augmented reality game.
In Proceedings of the 2012 ACM annual conference extended abstracts
on Human Factors in Computing Systems Extended Abstracts, CHI EA
’12, pages 1351–1356, New York, NY, USA, 2012. ACM.

SBC – Proceedings of SBGames 2013 Workshop on Virtual, Augmented Reality and Games – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16-18, 2013 4




