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Abstract. In this paper, we propose a new motion descriptor which uses
only block matching vectors. This is a different and simple approach con-
sidering that most works on the field are based on the gradient of image
intensities. The block matching method returns displacements vectors as
a motion information. Our method computes this information to obtain
orientation tensors and to generate the final descriptor. It is considered
a self-descriptor, since it depends only on the input video. The global
tensor descriptor is evaluated by a classification of KTH, UCF11 and
Hollywood2 video datasets with a non-linear SVM classifier. Our results
indicate that the method runs fast and has fairly competitive results
compared to similar approaches. It is suitable when the time response
is a major application issue. It also generates compact descriptors which
are desirable to describe large datasets.

Keywords: self-descriptor, compact descriptor, block matching, human
action recognition.

1 Introduction

Human action recognition has been extensively researched over the past years
due to its application in many areas such as: video indexing, surveillance, human-
computer interfaces, among others. In order to approach this problem, many
authors have proposed video descriptors using motion representation, which is
one of the main characteristics that describes the semantic information of videos.

Among the methods to detect motion, block matching is used to find vectors
that indicate block displacements between two video frames. We chose this tech-
nique as it has not been extensively applied to human action recognition and
several works on literature use block displacement vectors for other applications,
for example [1–3]. Moreover, this method runs fast and can potentially generate
compact descriptors since it is widely used in video compression.

This work is motivated by the possibility of generating a compact and easy
to compute descriptor. Our main contribution is a new motion descriptor, based
on orientation tensor [4], which uses only block matching information. This is
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a different approach, considering that most works on the field are based on
the gradient of image intensities [5, 6]. The global tensor descriptor created is
evaluated by a classification of KTH, UCF11 and Hollywood2 video datasets
with a non-linear Support Vector Machine (SVM) classifier.

We present three variants of our method. The first, called Single Scale Single
Vector (SSSV), is the simplest and fastest. It has the same elements as the block
matching method: one fixed block size and one vector field generated for each pair
of frames. The second, called Multiple Scales Single Vector (MSSV), yields better
results than the first, at the cost of slower execution speed. Since it considers
more than one block size, it requires multiple computations for each pair of
frames. The third version, called Multiple Scales Multiple Vectors (MSMV),
yields even better recognition rates but is also even slower. It considers multiple
block sizes and also goes through more than two consecutive frames.

2 Related Works

Several works in literature use the motion intensity obtained from block matching
in many applications. Hafiane et al [1] presents a method for video registration
based on Prominent Feature (PF) blocks. Block matching was used to identify
moving objects in a video. Structured tensors sensitive to edge and corners were
used to extract a point of interest in each block. In order to find region cor-
respondences between images, block matching was used along with Normalized
Cross-Correlation (NCC) or Sum of Absolute Differences (SAD) as an error es-
timate. NCC is less sensitive to absolute intensity changes between the reference
and target images due to normalization, but is much more expensive to compute
than SAD. In this work, we employ SAD as an error function and the Four Step
Search (4SS) as a fast search strategy since it is computationally more efficient
than Full Search (FS). As another less costly alternative for handling intensity
outliers, we apply a smoothing filter on each frame, so that SAD obtains quality
results.

Similar to [1], a block matching method was used for extracting motion infor-
mation in [2]. However, this information was used to generate a motion activity
descriptor for shot boundary detection in video sequences. The chosen method
for quickly computing the motion vectors was Adaptive Rood Pattern Search
(ARPS). These vectors were used to calculate the intensity of motion and also
classify among the categories presented by the authors. Vectors with higher val-
ues indicate a greater probability of being a shot.

An activity descriptor, consisting of a temporal descriptor and a spatial de-
scriptor, is presented in [3]. The temporal descriptor is obtained through the
ratios between moving blocks and all the blocks on each frame. In order to be
labelled as a moving block, the error must be within a margin of tolerance. These
ratios are then adjusted into quantized levels. The spatial descriptor, also used
in [2], is obtained through a matrix containing all the motion vectors norms from
each frame.

Other video descriptors were proposed using different methods for extract-
ing information, such as the human action descriptor shown in [4–8]. Klaser et
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al [9] propose a local feature based descriptor for video sequences generalizing
Histogram of Oriented Gradient (HOG) concepts to 3D. In [7], they extend the
Features from Accelerated Segment Test (FAST) method for the 3D space. The
information of shape and motion was obtained detecting spatial and temporal
features. Following [9], they produced a descriptor based on HOG3D which de-
scribes corner features. Both use KTH and Hollywood2 databases to evaluate
performance. We also use these databases to evaluate our descriptor, but we
generate a global descriptor using information from Motion Estimation (ME).

Mota et al [10] presented a tensor motion descriptor for video sequences using
optical flow and HOG3D information. They use an aggregation tensor based
technique. This technique combines two descriptors, one includes polynomial
coefficients which approximate optical flow, and the other accumulates data from
HOGs. This descriptor is evaluated by a SVM classifier using KTH, UCF11 and
Hollywood2 datasets. In our work, the approach of using block matching vectors
reduces considerably the effort of tracking motion as compared to the use of
HOG3D. Moreover, the bidimensional nature of block displacements reduces
significantly the size of the histogram coded into a tensor. Compared to [10], our
descriptor is more compact and easier to compute, while still yielding competitive
results.

3 Block Matching Descriptor: Single Scale Single Vector

There are several block matching methods which can be used to extract motion
information. The simplest is the Full Search. This method searches for each
16× 16 block from the reference (current) frame in the target (next) frame. The
corresponding, or matching, block is the one which minimizes a cost function
such as SAD or MAD (Mean Absolute Difference), representing high similarity
between blocks. The search window on the target consists of all the possible
blocks differing from −7 to 7 pixels in both directions from the reference frame
block. Thus, all the 225 neighbouring blocks are evaluated. Although it is a
precise method, it is computationally expensive. Therefore, several fast methods
were proposed such as 4SS [11], ARPS [12] and DS (Diamond Search) [13], based
on steepest descent methods.

The 4SS consists of four steps with three distinct search patterns. In the first
step, it checks nine points in a 5 × 5 window. The point referring to the block
with the lowest Block Distortion Measure (BDM) becomes the center of the
search window in the following step. Whenever the minimum BDM is at the
center window point, the algorithm proceeds to the fourth step. In the second
and third steps, it checks five or three blocks depending on whether the previous
step results on a corner or a side point, respectively. The last step consists on
checking eight points in a 3 × 3 window. In the worst case scenario, 27 blocks
are evaluated.

The DS is fairly similar to 4SS. In both, the first step checks nine points
and the following steps check three or five points. However, DS uses a diamond
shaped search window and instead of having four steps, it repeats the second
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step until the lowest BDM is found at the center of the pattern or it reaches
an iteration limit. It then proceeds to the third step for the final four BDM
evaluations.

In this work, we use the displacement map generated by the 4SS algorithm.
The input is a video, i.e., a set of frames V = {Fk}, where k ∈ [1, nf ], nf is the
number of frames and the output is a tensor descriptor T ∈ R

n×n which, in fact,
can be viewed as a vector in R

m, m = n2. Our descriptor is considered a self-
descriptor, since it depends only on the input video. It is computed by extracting
and accumulating information from each frame of the video. Basically, the frame
is divided into blocks and their displacement vectors are computed. As proposed
in [10], this vector field is represented by a histogram which is encoded into an
orientation tensor. The tensors of each frame are accumulated to form the final
tensor descriptor T of the video. This first method is simpler and faster than
the following methods.

3.1 Computing the Motion Estimation Histogram

In the 4SS schemes, each frame k of the video is subdivided into nx × ny non-
overlapping blocks of exactly s × s pixels. Thus, our first method (SSSV) is
constrained to use square sub-images of the frame. If the frame dimension is not
a multiple of s, the remaining right and bottom pixels do not form blocks. For
each block, displacement vectors vk(i, j) = (x, y) ∈ R

2 are calculated, where
(i, j) ∈ [1, nx] × [1, ny] are the block indexes. These vectors are converted to
equivalent polar coordinates ck(i, j) = (θ, r) with θ = tan−1( yx ), θ ∈ [0, 2π] and
r =‖ vk(i, j) ‖.

A motion estimation histogram is used as a compact representation of the
motion vector field obtained from each frame. It is defined as the column vector
hk = (h1, h2, . . . , hnθ

)T , where nθ is the number of cells for the θ coordinate.
We use an uniform subdivision of the angle intervals. Each interval is populated
as the following equation:

hl =
∑

i,j

r(i, j) · ω(i, j) , (1)

where l = 1, 2, . . . , nθ and ω(i, j) is a vector weighting factor, which is a Gaussian
function with σ = 0.01 in our experiments. The whole frame vector field is thus
represented by a vector hk with nθ elements.

3.2 Tensor Descriptor: Coding the Motion Estimation Histogram

An orientation tensor is a representation of local orientation which takes the
form of a n × n real symmetric matrix for n-dimensional signals [14]. Given a
vector v ∈ R

n, it can be represented by the tensor T = vvT. Then, we use the
orientation tensor to represent the histogram hk ∈ R

nθ . The frame tensor for
the size s, Tk(s) ∈ R

nθ×nθ , is given by:

Tk(s) = hk · hT
k . (2)



A Video Tensor Self-descriptor Based on Block Matching 405

Individually, these frame tensors have the same information as hk, but several
tensors can be combined to find component covariances.

3.3 Orientation Tensor: Accumulating the Motion Estimation
Tensors

The motion average of consecutive frames can be expressed using a series of
tensors. The average motion is given by

T(s) =

nf∑

k=1

Tk(s)

‖ Tk(s) ‖2 ,

using all video frames. By normalizing T with a L2 norm, we are able to compare
different video clips or snapshots regardless their length or image resolution.

Since T is a symmetric matrix, it can be stored with d = nθ(nθ+1)
2 elements.

If the motion captured in the histograms are too different from each other, we
obtain an isotropic tensor which does not hold useful motion information. But,

Fig. 1. Example of a tensor descriptor computed for one frame. The ellipse is merely
an illustration since generally nθ > 2. (a) Extracted block displacement vectors. (b)
Vectors represented by a histogram hk. (c) Coding histogram into an orientation tensor.

Fig. 2. Frame tensors accumulated in order to model the temporal evolution of motion
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if accumulation results in an anisotropic tensor, it carries meaningful average
motion information of the frame sequence [10].

Figure 1 shows an example of a video tensor descriptor. To a better under-
standing of the method, the tensors are represented as ellipses. However, this is
only for illustrative purposes since, at this point, the tensor is totally anisotropic
and generally nθ > 2. Figure 2 shows the video tensor, which is the sum of all
frame tensors, and its ellipse representation.

4 Block Matching Descriptor: Multiple Scales Single
Vector

In this variation, we use multiple block sizes to obtain vectors between only two
consecutive frames. This allow us to extract coarse and fine movements, since
some blocks will have regions with different motion vectors. We first define a
block size set S = {s1, s2, ..., sns}. Each block size results in a tensor as defined
in 2. The final tensor for a given frame k is the combination of the multiple
scales by

Tk(S) =
∑

s∈S

Tk(s)

‖ Tk(s) ‖2 . (3)

Note that the histogram will have the same size for any block size, but this
parameter is important to define how many vectors will be represented.

Then, the final video tensor is given by:

T(S) =

nf∑

k=1

Tk(S) .

5 Block Matching Descriptor: Multiple Scales Multiple
Vectors

Heretofore, our methods used only one successor frame to extract displacement
vectors. However, a sequence of successor frames could be used in order to track
the block displacement. Thus, this new method (MSMV) uses pairs of adjacent
frames of this sequence. The correspondent block found for the previous pair is
used as a reference block for the next matching (Fig. 3). Note that with this
method it is possible to have block overlaps, which might lead to redundant
information in contrast with the previous variations.

Thus, we use the frame k and its t successor frames, generating t vectors for
each trajectory starting in the original grid. The parameter t is fixed for all
frames. The vector that describes the displacement between a block in frame
a and a + 1 is defined by vk,a(i, j) = (x, y) ∈ R

2, where a ∈ [k, k + t]. All
the displacement vectors are included in the histogram of the base frame k, i.e.
hl =

∑
i,j rk,a(i, j) · ω(i, j) (analogous to 1), where rk,a(i, j) is the magnitude of
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Fig. 3. Block trajectory scheme with two vectors. The first match for frame k is similar
to SSSV. The vector found (frame k + 1) indicates the position of the new reference
block (dark green block in frame k+1) and this block is used to make a second match
between frame k + 1 and frame k + 2, generating another displacement vector.

the displacement vector vk,a(i, j). Then, the frame tensor using t frames and S
scales is defined as:

Tt
k(S) =

k+t∑

a=k

∑

s∈S

Tk,a(s)

‖ Tk,a(s) ‖2 . (4)

and the final video tensor is given by:

Tt(S) =

nf∑

k=1

Tt
k(S) .

6 Experimental Results

We chose the 4SS method to generate our descriptor because it is a fast block
matching method. We apply a Gaussian filter on each frame to reduce noise. The
experiments were made using the three methods shown in Sect. 3, 4 and 5. We
use a SVM classifier to evaluate our descriptor on KTH [15], UCF11 [16] and
Hollywood2 [17] datasets, which contains six, eleven and twelve human action
classes, respectively.

For the SSSV method, we evaluate the descriptor varying its main parameters:
block size and the number of histogram cells. The results for KTH dataset are
shown in Tab. 1. The best result was achieved with 12× 12 blocks and 28 cells.
Note that other block sizes and number of cells also produce satisfactory rates.
In some applications involving large datasets, for example, the size of the final
descriptor play a major role. In that case, the number of cells might be reduced
to obtain smaller descriptors.

We achieve 84.8% of recognition rate on KTH dataset with the previous pa-
rameters and the confusion matrix of this experiment is shown in Tab. 2. Note
that the method obtains good recognition rates for walking because this motion
class has many blocks moving to the same direction. This is the same reason
that it has difficulty to differ clapping to boxing where the key motion occurs in
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Table 1. Experiments on KTH dataset with different block sizes and number of cells

Block
Cells

Recognition Block
Cells

Recognition
Size Rate (%) Size Rate (%)

8 26 81.6 12 24 84.1
10 26 82.9 12 26 84.5
12 26 84.5 12 28 84.8
14 26 83.2 12 30 83.7
16 26 81.6 18 24 81.9
18 26 83.1 18 26 83.1
20 26 81.7 18 28 84.4
22 26 81.1 18 30 84.1
24 26 81.6

Table 2. Confusion matrix of the best result on KTH dataset with SSSV method. The
average recognition rate is 84.8%.

Box HClap HWav Jog Run Walk
Box 90.2 7.7 2.1 0.0 0.0 0.0

HClap 20.1 79.2 0.7 0.0 0.0 0.0
HWav 3.5 8.3 88.2 0.0 0.0 0.0
Jog 2.1 0.7 0.0 82.6 8.3 6.2
Run 0.7 0.7 0.0 21.5 71.5 5.6
Walk 1.4 0.0 0.0 0.0 1.4 97.2

small regions of the frame. One may see the classical problem to differ running
and jogging because of their similarity.

The confusion matrix of the best UCF11 experiment with SSSV is shown in
Tab. 3. We achieve 57.2% of recognition rate in this experiment with the same
parameters of KTH test. Note that other objects moving in the scene causes
difficulty to describe the human movement. It confuses the biking action as
riding, for example. The motion direction in both actions is the same but it is
hard to infer the vehicle. As in KTH dataset, the best recognition rate was in
classes with many vectors having similar directions.

The best result achieved on Hollywood2 dataset was 33.9% and the average
precision (AP) for each class of Hollywood2 dataset is given in the Tab. 4. Again,
we achieve better recognition rates in classes with more expressive movement in
one direction. As expected, this is a challenging dataset where the actions in
the video are highly mixed with uncontrolled scenes and are subjected to several
sudden cuts. Our result in this dataset is competitive if compared to other global
descriptors [10], but with faster processing (Tab. 13).

In MSSV experiments, we combine the block sizes to obtain better results.
Using KTH as a reference, the best combination was S = {18, 12} (Tab. 5).
This combination improves the previous results because bigger blocks tracks
bigger objects reducing motion confusion with smaller blocks that capture more
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Table 3. Confusion matrix of the best result on UCF11 dataset with SSSV. The
average recognition rate is 57.2%.

Bike Dive Golf Juggle Jump Ride Shoot Spike Swing Tennis WDog
Bike 58.5 1.7 1.0 0.0 0.7 18.5 1.0 1.7 6.2 4.3 6.4
Dive 0.6 72.2 2.3 2.7 0.0 3.4 8.0 4.8 1.2 1.2 3.5
Golf 0.0 2.6 74.3 5.4 0.0 2.0 1.7 4.0 0.0 9.4 0.7
Juggle 1.4 5.6 5.5 32.1 13.3 1.2 9.5 7.8 11.5 8.7 3.2
Jump 2.5 0.7 1.0 6.9 71.3 0.0 2.7 0.0 14.3 0.7 0.0
Ride 6.9 0.9 0.0 1.2 0.0 81.0 1.3 2.2 0.7 0.6 5.2
Shoot 2.4 16.8 6.3 8.9 3.0 3.0 26.8 12.3 2.9 14.8 2.9
Spike 0.7 11.9 5.0 4.0 1.8 1.1 2.7 60.4 0.0 7.3 5.0
Swing 6.4 0.8 0.5 8.9 17.2 0.0 0.0 0.0 59.4 2.6 4.1
Tennis 2.49 8.6 10.6 6.7 1.7 2.3 6.9 5.9 1.1 50.5 3.4
WDog 14.2 4.6 5.9 3.4 0.0 18.9 3.5 1.8 2.6 2.6 42.5

Table 4. Best result on Hollywood2 dataset with SSSV method. The average recogni-
tion rate is 33.9%.

Action APhone DCar Eat FPerson GetOutCar HShake
AP(%) 14.4 70.4 19.8 56.5 21.3 10.2

Action HPerson Kiss Run SDown SUp StandUp
AP(%) 21.3 41.5 48.4 49.3 8.0 45.5

Table 5. Experiments on KTH dataset using multiple scale

Block Sizes Set Recognition Rate (%)

{24, 18, 12} 86.2
{24, 18} 85.1
{24, 12} 86.1
{14,12} 85.8
{14,18} 85.4

{18,14, 12} 85.5
{18, 12} 86.8

details. MSSV has increased the recognition rate for all classes (Tab. 6) resulting
in 86.8% recognition rate.

We also used the block sizes S = {18, 12} to test the UCF11 dataset. It resulted
in 58.8% average recognition as shown in Tab. 7. Note that most recognition
rates have increased compared to Tab. 3. The same test was performed with
Hollywood2 dataset yielding exactly the same average recognition of 33.9% but
with different rates for some classes.

In MSMV experiments, we used multiple vectors in two cases: with and with-
out multiple scales. The results for KTH are shown in Tab. 8. Multiple vectors
with one block size produces better results than the SSSV method. However,
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Table 6. Confusion matrix of the best result on KTH dataset with MSSV method.
The average recognition rate is 86.8%.

Box HClap HWav Jog Run Walk
Box 91.6 7.7 0.7 0.0 0.0 0.0

HClap 17.4 81.9 0.7 0.0 0.0 0.0
HWav 2.8 7.6 89.6 0.0 0.0 0.0
Jog 2.1 0.7 0.0 85.4 7.6 4.2
Run 0.7 0.0 0.0 22.9 74.3 2.1
Walk 1.4 0.0 0.0 0.0 0.7 97.9

Table 7. Confusion matrix of the best result on UCF11 dataset with MSSV. The
average recognition rate is 58.8%.

Bike Dive Golf Juggle Jump Ride Shoot Spike Swing Tennis WDog
Bike 56.2 1.0 0.0 0.0 1.0 21.1 1.0 1. 7.0 4.3 6.8
Dive 0.6 73.4 1.6 4.0 0.0 2.8 8.5 1.0 1.2 2.4 4.5
Golf 0.0 2.3 80.1 5.4 0.0 2.0 1.0 2.4 0.7 5.4 0.7
Juggle 0.6 4.6 7.9 36.0 11.9 1.2 10.3 4.3 9.1 10.8 3.2
Jump 1.8 0.0 1.0 8.1 74.8 0.0 2.0 0.0 12.3 0.0 0.0
Ride 6.7 1.4 0.0 0.5 0.0 80.0 0.7 2.9 1.3 0.7 5.9
Shoot 1.8 18.4 4.4 13.7 3.0 4.0 25.0 13.8 2.1 10.9 2.8
Spike 0.7 9.1 3.0 1.0 2.8 2.1 6.0 62.9 0.0 7.3 5.0
Swing 5.4 0.8 1.0 7.1 16.4 0.8 0.0 0.0 64.6 2.0 2.0
Tennis 3.0 8.0 11.1 7.8 1.7 1.7 7.5 4.1 1.1 53.4 0.6
WDog 12.7 4.7 5.6 1.6 0.0 21.2 3.5 3.8 3.6 2.6 40.7

we achieve even better results combining multiple vectors and multiple scales.
Another interesting observation is that the recognition rate increases along with
the number of trajectory vectors up to a certain point, and then decreases. This
occurs because using more frames augments the probability of objects disap-
pearing from the scene or to cover other blocks causing redundancies. The best
recognition rate was 87.7% with S = {24, 18, 12} and 3 vectors. Its confusion
matrix is shown in Tab. 9. Note that the major benefit in this variant is the
recognition gain in clapping class, reducing the confusion between clapping and
boxing.

We obtain 59.5% on UCF11 dataset using MSMV and its confusion matrix
is shown on Tab. 10. Note that dive and swing improved considerably, which
contributed to improve the recognition rate. The Hollywood2 dataset rates are
shown in Tab. 11, we also obtain a better result than previous variants of our
method: 34.9%.

Table 12 shows that our results are close to, but lower than the state-of-the-art
results. The best results for these databases are presented in [18, 19]. However
this method is more complex than ours. It combines trajectories, HOG, His-
togram of Optical Flow (HOF) and Motion Boundary Histogram (MBH), along
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Table 8. Experiments on KTH dataset using multiple vectors

Block
Vectors

Recognition Block
Vectors

Recognition
Sizes Set Rate(%) Sizes Set Rate(%)

{18} 2 85.5 {18,12} 2 86.9
{18} 3 85.5 {18,12} 3 86.4
{18} 4 84.7 {18,12} 4 86.4
{18} 5 84.4 {18,12} 5 86.0
{18} 6 85.1 {24,12} 2 86.2
{12} 2 84.7 {24,12} 3 86.5
{12} 3 85.2 {24,12} 4 87.1
{12} 4 84.8 {24,12} 5 86.7
{12} 5 84.8 {24,18} 2 86.9
{12} 6 84.7 {24,18} 3 87.0

{24,18} 4 86.2
{24,18} 5 86.0

{24,18,12} 2 87.6
{24,18,12} 3 87.7
{24,18,12} 4 86.5
{24,18,12} 5 85.9

Table 9. Confusion matrix of the best result on KTH dataset with MSMV method.
The average recognition rate is 87.7%.

Box HClap HWav Jog Run Walk
Box 91.6 7.0 1.4 0.0 0.0 0.0

HClap 13.2 86.1 0.7 0.0 0.0 0.0
HWav 2.1 4.2 93.8 0.0 0.0 0.0
Jog 1.4 0.0 0.0 84.7 6.2 7.6
Run 0.7 0.0 0.0 25.0 70.8 3.5
Walk 0.7 0.0 0.0 0.0 0.0 99.3

with a Bag-of-Features (BoF) technique, which includes a clustering overhead in
order to generate the final descriptor. Yet, for KTH dataset using block match-
ing approach, our method can achieve high execution speed as shown in Tab. 13.
All experiments where generated in a machine with Intel Xeon E-4610, 2.4GHz,
32GB of memory using 10 threads. Using the SSSV on KTH dataset achieves
around 2ms per frame. As expected, in Hollywood2 the frame rate is lower
because of its higher resolution.

There are several works on literature proposing compact image descriptors.
For video descriptors, this property has not been exploited yet. One compact
image descriptor is presented in [20] and each image is stored using 256 bits.
With 28 histogram cells, our resulting video descriptor has only 406 elements.
In KTH dataset for example, this represents an average of 138.2 bits per frame.
According to them, this property is an advantage for large datasets and also
enables fast search in retrieval systems.
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Table 10. Confusion matrix of the best result on UCF11 dataset with MSMV. The
average recognition rate is 59.5%.

Bike Dive Golf Juggle Jump Ride Shoot Spike Swing Tennis WDog
Bike 56.0 1.0 0.0 0.0 2.3 20.9 2.0 0.7 5.2 4.3 7.6
Dive 0.6 76.8 1.6 4.0 0.0 1.8 7.4 1.7 1.2 2.2 2.8
Golf 0.0 3.3 78.3 4.9 0.0 1.0 1.0 2.4 0.0 7.8 1.2
Juggle 1.4 4.5 10.8 35.3 9.0 0.6 9.3 4.0 9.4 11.9 3.7
Jump 1.8 0.0 1.0 8.3 73.6 0.0 2.0 0.0 13.3 0.0 0.0
Ride 7.2 1.4 0.0 0.0 0.0 78.9 0.7 2.9 1.3 0.5 7.1
Shoot 1.0 19.2 7.1 10.9 2.3 3.0 27.5 14.7 3.4 9.8 1.2
Spike 1.7 10.6 3.7 1.0 2.8 1.1 6.0 61.5 0.0 7.7 4.0
Swing 5.4 0.8 1.0 5.1 13.0 0.8 0.0 0.0 71.3 1.3 1.3
Tennis 4.2 8.1 8.8 7.8 1.7 0.6 5.0 7.0 2.3 53.9 0.6
WDog 15.0 4.3 3.5 2.4 0.0 21.8 1.0 3.8 4.9 1.8 41.6

Table 11. Average precision for each class of Hollywood2 dataset with MSMV. The
average recognition rate is 34.9%.

Action APhone DCar Eat FPerson GetOutCar HShake
AP(%) 16.1 68.7 24.1 60.6 23.9 8.9

Action HPerson Kiss Run SDown SUp StandUp
AP(%) 18.7 42.9 50.3 48.6 11.5 45.2

Table 12. Comparison with state-of-the-art for KTH, UCF11 and Hollywood2 datasets

KTH UCF11 Hollywood2

Klaser et al. (2008) 91.0 24.7
Liu et al. (2009) 93.8
Mota et al. (2013) 93.2 72.7 40.3
Sad et al. (2013) 93.3 72.6 41.9
Wang et al. (2013) 95.3 89.9 59.9

Wang and Schmid (2013) 64.3

Our method 87.7 59.5 34.9

Table 13. Frame rate for each method

Method KTH (fps) UCF11 (fps) Hollywood2 (fps)

SSSV 502.7 117.6 26.8
MSSV 319.3 69.2 15.5
MSMV 89.1 18.5 2.2
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7 Conclusion

In this paper, we present a novel approach for motion description in videos using
block matching. The resulting tensor descriptor is a simple but effective approach
for video classification. It is simple because of its low complexity in terms of time
and space. Our recognition rate is lower than the approaches in the literature
but fairly competitive in KTH, UCF11 and Hollywood2 datasets, if compared to
other self-descriptors. We obtain 84.8% recognition rate with KTH in the SSSV
version with the processing rate of 502.7 frames per second.

The main advantage of our method is that it reaches good recognition rates
depending uniquely on the input video. This is a different and simple approach
considering that most works on the field are based on the gradient of image
intensities.

Our method is fast and the descriptor is compact, making it suitable for
big datasets. The addition of new videos and/or new action categories with
our approach does not require any recomputation or changes to the previously
computed descriptors. Finally, it might be valuable in a scenario where the ap-
plication demands fast processing and a compact descriptor.
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