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Abstract. This paper presents an iterative method to remesh an arbi-
trary surface into a mesh with all edge lengths within an interval. The
process starts with a triangular 2-manifold mesh. It uses stellar opera-
tions to achieve the necessary amount of vertices and triangles. Subse-
quently, it applies a constrained version of the Laplacian filter in order
achieve a more uniform distribution of the vertices over the surface. In
order to prevent the natural shrink caused by the Laplacian filter, we
perform a projection over the original surface. We also apply a post pro-
cessing step to correct the lengths of troubling edges. Our method results
in a regular mesh, with vertices uniformly distributed. The dual mesh
obtained can be useful for several applications. The main contribution of
this work is a new approach for edge length equalization, with explicit
constraints definition, lower global geometry losses and lower memory
cost if compared to previous works.

Keywords: iterative remeshing, edge length equalization, interval con-
straining

1 Introduction

Computational models of real objects are currently used for several applications.
The growing need of geometric models conducted to the development of many
technologies for mesh generation, such as computer vision algorithms with 3D
scanners [1, 2] or direct modeling softwares [3, 4]. However, these technologies
not always lead to an optimal mesh representation for a specific application.
Therefore, the improvement of the quality of these representations became a
primal research area in computer graphics.

The precise quality criteria for an arbitrary mesh depends on its usage. For
real time applications, for instance, it is usually required a simplification of the
model, in order to achieve high performance. In physics and chemistry simula-
tions [5, 6], some constraints may be necessary to guarantee the fidelity of the
results, e.g. constraints on edge lengths, valid vertices valency, proper distri-
butions of vertices, etc. Bommes et al [7] enumerate the quality aspects most
commonly required.
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This work is interested in the regularization of the edge lengths of a trian-
gular 2-manifold mesh. Specifically, our goal is to impose a constraining interval
for the lengths. So, we iteratively remesh the model until all the edge lengths
satisfy the defined constraints. Since the average of the edge lengths in a region
impact on the amount of the edges and faces found there, the method applies
stellar operations to adjust the amount of edges locally. It also applies an ap-
proximation of the Laplacian filter to relax the mesh on each iteration. Then, it
projects the vertices over the original surface, in order to preserve the geome-
try. Finally, after the execution of the iterations, it performs a post processing
step that eliminates the remaining problems. Although the process is designed
to maintain the original geometry of the model, some local geometry losses may
occur, specially in regions with high curvature.

As our results indicate, the method generates models which satisfy the input
constraining for most cases. Moreover, in the final mesh the standard-deviation
of edge lengths tends to be low. The resulting mesh can also be used to generate
a very regular trivalent mesh, by computing its dual. This kind of mesh can
be greatly useful for engineering and physics applications, such as nano carbon
simulations, which firstly motivated this work.

2 Related works

There are many remeshing processes focused on obtaining more regular meshes
for applications. N-Symmetric fields [8] can be used for generating highly reg-
ular polygonal meshes. The work of [7] applies the method for remeshing an
arbitrary triangular mesh into a high quality quadrangular mesh. The method
is computationally expensive, since the formalism proposed by [8] results in a
mixed-integer system, which is a well known NP-Hard problem.

Using a similar approach, Huang J. et al [9] aims to obtain a mesh where
the angle between two arbitrary edges of a triangle is 60o. Computing the N-
Symmetric field for this technique requires a set of feature lines of the model,
which can be either automatically estimated or defined by the user. That esti-
mation has a high computational cost.

The work presented in [10, 11] proposes a method to obtain a regular trivalent
mesh. At first it estimates a quadrangular mesh, as proposed by [7]. The following
step computes the rhomboid mapping of that quadrangular mesh, resulting in
the desired trivalent mesh. Although is not the main goal of that work, a very
regular triangular mesh could be obtained by computing the dual from that
resulting trivalent mesh.

Pietroni et al [12] use a global parametrization to obtain an almost isometric
mesh. This method leads to a very regular triangular mesh. Their results are
really competitive as showed in the results, however the global parametrization
is complex and computationally expensive, since it requires a set of feature lines
of the model. As well, they are not explicitly concerned with edges lengths.

In the approach of [13], a regular triangulation is not the final objective, but
a necessary step for achieving a self-supporting surface, i.e., a surface that stands
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in static equilibrium without external support. The method used for obtaining
the regular triangulation is the power diagram [14].

The method proposed by [15] processes a mesh to obtain a more regular
version. The first step is to apply the edge split operation in edges that are
longer than 4

3 l and edge collapse in edges that are shorter than 4
5 l. Next, they

perform edges flips to correct the valency. Finally, they equalize the triangle area
with an area based tangential vertex smoothing. This work is not focused in edge
length so it did not constrain the edge length into an interval.

Surazhsky et al [16] proposed a remeshing method based on area equaliza-
tion and angle smoothing. Their method aims a mesh with triangle areas almost
uniform and maximizes the minimum angle of the triangle. This interesting ap-
proach build a high regular surface. They also propose a new method to smooth
the surface based on angles. However, this method does not remove elements
and is not suitable for simplifications.

For the problem of edge length equalization [17], the goal is to obtain an
average edge length that is close to a user defined value, with low standard
deviation. Our work uses a similar approach. That method solves a large linear
system to apply the Laplacian filter. In our work, that process is no longer
necessary due to a new explicit approximation. This allows the method to process
larger models with the same memory cost.

3 Proposed method

Our method is an extension of the work of [17]. However, while [17] aims to
obtain a mesh where the average edge length is as close as possible to a target
value, our goal is to generate a mesh without any long or short edges aj , classified
as:

long, if |aj | > emax ,short, if |aj | < emin

where emin is the shortest edge length allowed and emax is the longest edge
length allowed.

The input for this algorithm is a tuple (M, emin, emax, n, k, p), where M is
the triangular mesh, n the number of iterations, k the number of rings used at
the Laplacian optimization step and p is the number of iterations before the
original mesh is replaced by the current mesh in order to relax next projections.
At the end of each iteration, we save the resulting mesh if it has a lower amount
of long and short edges than the current saved mesh. The Algorithm 1 is an
overview of the proposed method.

Detailed information about the CorrectValency and Projection procedures
can be found in [17]. The other steps will be explained ahead.

3.1 Stellar operations

The amount of edges necessary to achieve the constraining interval is directly
related to the average length m of the interval. Thus, in this step we modify
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M′ = Copy(M)
m = emin+emax

2

for i = 1 to n do

if p > 0 and (i mod p) = 0 then

M = Copy(M′)
end
StellarOperations(M′)
CorrectValency(M′)
LowPassFiltering(M′, k)
Projection(M, M′)

end
PostProcess(M′)
returnM′

Algorithm 1: UniformRemeshing(M, emin, emax, n, k, p)

the number of edges in the model to reach a feasible amount. However, if m is
much greater than the current average edge length, a strong simplification of the
mesh is required. In order to prevent the degeneration of the mesh, we calculate
intermediate values for emin and emax that only allow smooth transformations.
These values are defined as:

eimin =MIN(2 ·mi,m)− emax−emin

2 ,
eimax =MIN(2 ·mi,m) + emax−emin

2

where mi is the current average edge length of the model.
The order of appliance of the stellar operations is important. Therefore, we

create a priority list of edges, as presented in [17]. Once the list is set, the
algorithm traverses it processing each edge.

If the edge length is shorter than eimin, it is collapsed. Otherwise, if the edge
length is longer than eimax, then it is split. This modifies the amount of edges
locally, since in an arbitrary mesh some regions need to be refined while others
need to be simplified. If the edge is neither shorter or longer nothing is done. This
may occur when one of the vertices were modified by another stellar operation.
After an edge is processed, all vertices affected are marked as processed. When
an edge has its two vertices marked, it is removed from the list.

Originally, both the remaining vertex of the edge collapse operation and the
new vertex of the edge split operation can be placed in an arbitrary position over
the operated edge. Hence, in order to optimize the convergence of our algorithm
we compute the position that minimizes the equation:

∑
Vj

(|Vi − Vj | −m)2,

where Vi is the vertex we want to position and Vj the vertices connected to Vi.
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3.2 Low-pass filter

To achieve equalized edge lengths, we globally distribute the vertices uniformly
over the surface. To do so, after the valency correction step, as described in [17],
we proceed to the low-pass filtering. In this work, we use a modified version of
the Laplacian filter.

The classic Laplacian filter is defined as:

∇2f =
∂2f

∂2x1
+ ...+

∂2f

∂2xn
.

It is a measurement of the dispersion in Rn of a function f . Taubin [18]
propose a discrete approach to the Laplacian operator. The approach is:

L(Vi) =
∑
Vj

wij(Vi − Vj),

with Vj in the neighborhood of Vi. In the literature, many weights were proposed
for wij . There are schemes based on cotangent [19] and neighborhood [17].

The discrete Laplacian is largely used due to its simplicity. Basically, its
appliance moves each vertex to the average of its neighbors. This procedure tends
to equalize edge lengths, minimizing the standard deviation. The Laplacian must
be zero to achieve these properties and the system to be solved is given by:∑

vj

wij(vi − vj) = 0.

The technique employed in this work does not solve the system. Instead, we
run an iterative approximation that gives us almost the same results, significantly
reducing the memory cost.

In the classical Laplacian filter, we add some additional constraints to reduce
the geometry loss:

Ni ·Di = 0, ∀Di ∈M′,
|Di| = 0 ∀Di ∈ B,

where Ni is the normal of the current mesh in the vertex Vi and Di is the
unknown displacement of the vertex Vi. These constraints were imposed in the
approximation in a extremely restrict way. It means that all restrictions were
exactly matched.

The iterative Algorithm 2 approximates the constrained Laplacian filter-
ing described above. It calculates the new vertex position based on the k-
neighborhood as proposed in [17]. The first step is to compute for each vertex
the new position without the application of the new constraints. This position
is defined by the center of mass of all neighbors vertices weighted by their ring
number in such a way that distant vertices contribute less than near vertices.

The second step is to impose the constraintNi ·Di = 0 by removing the vector
projection of Di in Ni. When all displacements are computed, the vertices Vi
are updated, except those on the borders.
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foreach Vi ∈M′ do
kStar=getKStar (Vi,k)
fat=0
foreach Vj ∈ kStar do

V ′
i =V ′

i +
Vj

star

fat=fat+ 1
star

end

V ′
i =

V ′
i

fat

Di=V ′
i -Vi

Di=Di -projection (Di,Ni)
end
foreach Vi ∈M′ do

if Vi 6∈ B then
Vi=Vi+Di

end
end

Algorithm 2: LowPassFiltering(M′, k)

3.3 Post processing

After n iterations, we proceed to the last step of the algorithm. This is step is run
over the saved mesh with best results from the previous iterations. It distributes
the vertices locally, only in the problematic regions.

First, we propose an error measurement for a region around an edge:∑
Vi

∑
Vj

(|Vi − Vj |2 −m2)2, (1)

where Vi are the vertices in the forth star of the edge and Vj the vertices in the
first star of Vi.

If we want to approximate the edge lengths to m, it is enough to minimize
the Equation 1. Nonetheless, it may greatly modify the local geometry, once
there are no constraints for the vertices displacement. Thence, we restrict those
displacements to the tangent plane. For each vertex Vi, we obtain an orthonormal
base with its normal vector.

This local base is < Ni, Ti1, Ti2 >, where Ni is the normal direction, and Ti1,
Ti2 are the directions over the tangent plane. Using this local base we impose a
restriction in the Equation 1, and the final error measurement to minimize is:∑

Vi

∑
Vj

(|Vi + αi · Ti1 + βi · Ti2 − (Vj + αj · Tj1 + βj · Tj2)|2 −m2)2, (2)

where αi and βi are the variables in the function and represent the displacement
over the tangent plane. If the index i does not exist both αi and βi are set zero.
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In this work we use a conjugate gradient method [20] for minimizing Equation
2. Due to performance and numerical problems, we do not minimize it for all
the vertices in the model. Instead, we process the model per edge.

As we expect to minimize the geometry losses, we seek to apply the transfor-
mations firstly in the regions with the greatest amount of long or short edges.
To do so, we first create a new priority list of edges. For this list, the priority
assigned to each edge is proportional to the number of long and short edges
in its neighborhood. Next, we perform the minimization of Equation 2 for each
edge on the list, in order.

In the cases in which even this technique does not solve the problem for
all the edges, we perform the minimization without constraints, allowing three
degrees of freedom to each vertex. This is enough for most of remaining cases,
at the cost of geometry losses.

4 Experimental results

In this section we discuss the generated results of the proposed method. The
algorithm was implemented using C++ programming language and compiled
using GCC 4.6.3. All tests were performed in a Intel Xeon(R) CPU E31220 @
3.10GHz x 4 computer with 8 GBs of RAM. The graphics card was an AMD
Radeon HD 5700 series.
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Fig. 1. Progression of Egea model through time

First we analyze the progression of the method over the time. Figure 1 ex-
hibits the graphics for the progression of the Egea model, and Figure 2 shows
the graphics for Fertility model. The graphics on the left illustrates the average
edge length of the model through the iterations, and the deviation around it,
where m is the average length and s is the standard-deviation. The graphic on
the right shows the decrease of the amount of long and short edges over the
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Fig. 2. Progression of Fertility model through time
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Fig. 3. Edge lengths for the processed Egea model, with emin = 1.2 and emax = 1.8.

time. For visualization purposes, the y-axis is presented in logarithmic scale. In
both graphics the hundredth iteration corresponds to the post processing step
of the algorithm.

One may notice that the average edge length quickly converges for a value
very close to the mean of the endpoints of the interval constraining. Furthermore,
the amount of long and short edges for both models is clearly reduced as the
number of iterations increase. The final results for Egea mesh is depicted on
Figure 4, and the Figure 3 illustrates the distribution of edge lengths for the
final result.

We also illustrates the final results for the Bunny model in the Figure 5,
pointing out the method behavior in regions with high curvature. As we can
notice, some local geometry distortions may occur in those cases.
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Fig. 4. Egea comparison between original mesh and processed mesh with parameters
(1.2,1.8,100,2,0)

Fig. 5. Bunny comparison between original mesh and processed mesh with parameters
(1.2,1.8,100,2,0). The images on the right evidence the local geometric distortions in a
region with high curvature.

The experimental data from Egea model can be found in Table 1, where x
is the average edge length, S the standard-deviation; Oiter, Ocpp, Ofinal are the
total number of short and long edges after the iterations, after the constrained
post processing step and after the free post processing, respectively, and Reg.
Vert. is the percentage of vertices with valency 6.

As the data reveals, the best results are usually achieved when k = 2. It
also reveals that parameter p can accelerate the convergence of the algorithm,
once the number of final long and short edges is lower as the frequency in which
the mesh is replaced is higher. However, it is important to note that it can also
slightly modify the geometry, as the projection is performed in a mesh gradually
more distinct from the original, and the geometry distortions caused by the
Laplacian filter become permanent.

Figure 6 presents the surface rockerarm with variant values for emin and emax.
The refined version greatly represents the original surface. When the process
aims to larger edges, however, details of the model are lost. This is a natural
consequence when a strong simplification is performed.
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(emin,emax,n,k,p) x S Oiter Ocpp Ofinal Reg. Vert. Time(s)
Model 2.25 0.702222 - - 33673 76.87 -
(1.2,1.8,100,1,0) 1.528363 0.150698 5568 790 3 79.482452 469.759777
(1.2,1.8,100,2,0) 1.549898 0.104768 321 13 0 89.262466 229.957724
(1.2,1.8,100,3,0) 1.558817 0.111454 803 47 0 88.976165 239.299956
(1.2,1.8,100,4,0) 1.56931 0.121848 1229 110 2 88.402027 270.382254
(1.2,1.8,100,1,10) 1.525323 0.158969 6119 887 4 77.620942 592.869659
(1.2,1.8,100,2,10) 1.550390 0.101163 66 0 0 90.076699 302.429551
(1.2,1.8,100,3,10) 1.558510 0.10615 199 0 0 89.833185 299.922871
(1.2,1.8,100,4,10) 1.569758 0.105946 243 10 1 90.880503 312.314491
(1.2,1.8,100,1,25) 1.524605 0.155988 5856 753 2 78.148691 561.070489
(1.2,1.8,100,2,25) 1.550454 0.100802 91 5 0 90.104096 282.562190
(1.2,1.8,100,3,25) 1.556311 0.107920 372 18 0 89.789667 288.441856
(1.2,1.8,100,4,25) 1.573154 0.108984 595 70 0 90.528588 301.354567
(1.2,1.8,100,1,50) 1.526876 0.155968 5966 684 0 78.074253 517.338868
(1.2,1.8,100,2,50) 1.549427 0.102719 177 2 0 89.747730 266.794273
(1.2,1.8,100,3,50) 1.559335 0.109731 508 46 0 89.532036 273.067145
(1.2,1.8,100,4,50) 1.569257 0.116656 907 102 0 89.014995 298.019677

Table 1. Egea experiments with different k and p values

Fig. 6. Final result for rockerarm model with variant intervals for edge lengths. Each
picture illustrates a specific length constraining.

4.1 Applications

A direct application of regular meshes is computational simulation. Uniform
hexagonal meshes can be used for the simulation of nano carbon-structures, in
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which each vertex represents a carbon. This kind of mesh can be generated by
regular triangular meshes. In this work, we compute the dual mesh of our final
triangular mesh to obtain an highly uniform hexagonal mesh. One may observe
that if the primal mesh is not regular, there will be non hexagonal polygons on
the dual.

To analyze the quality of the resulting dual mesh we calculate the Lennard-
Jones potential with eps = 10.1 and σ = 0.9. As depicted in Figure 7 the
processed model is much more uniform, avoiding great energy variations. This
will lead to a much more stable structure.

Fig. 7. The first picture is the original rockerarm model with potential from −33.4 to
1.21 and the second one is the processed model with potential from −16.94 to −2.99.

Another application is process a model to be more stable for other numerical
methods as finite elements. Due the great regularity of the output mesh, several
numerical problems are avoid.

5 Conclusion

This paper presents a method to remesh an arbitrary triangular 2-manifold mesh
with all the edge lengths within an user defined interval. The main contribution of
this work is an explicit definition of constraints for the edge lengths. In addition,
we achieve a lower memory cost than previous approaches. We apply stellar
operations to adjust the number of edges of the model, and we make use of a new
approximation of the Laplacian filter for mesh relaxation, including constraints
that prevent geometry losses. We also introduce a post processing step for the
problems unsolved at the standard iterations.

Our results indicate that the method achieves the goal for a wide range of
lengths. Moreover, the resulting mesh fairly represent the original surface in most
of cases, and can be useful for several applications.

The parameters have important roles on the algorithm. For higher number
of iterations n, the algorithm is more likely to reduce the number of long and
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short edges before the post processing step. Nonetheless, if the parameter p is
low, but not zero, the geometry is more likely to be softened, and the effect is
aggravated as the number of iterations increase. Lower values of p are useful
for accelerating the convergence, but it should be balanced with a low n value
if one wants to preserve the geometry of the surface. We can also observe that
the number of neighbors k for the Laplacian transformation can also accelerate
the convergence, accelerating the smoothing effect as well. For the minimum
and maximum values allowed for edge lengths, as the values emin and emax are
greater and the difference emin - emax is smaller, the final geometry losses are
greater and the convergence of the method is slower.

The major problem faced by the method is to maintain the local geometry
in regions where the curvature is high. As a future work, a new approach that
avoids local geometry distortions could be proposed.
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