
Occlusion of Virtual Objects for
Augmented Reality Systems using Kinect

João Vitor de Sá Hauck
Computer Science Department

Universidade Federal de Juiz de Fora
Email: jhauck@ice.ufjf.br

Matheus R. F. Mendonca
Computer Science Department

Universidade Federal de Juiz de Fora
Email: matheus.mrfm@gmail.com

Rodrigo Luis de Souza da Silva
Computer Science Department

Universidade Federal de Juiz de Fora
Email: rodrigoluis@ice.ufjf.br

Abstract—This work presents a novel approach to creating
realistic occlusions of virtual and real objects placed inside a
real environment in an augmented reality system. In this work
we use the Kinect depth sensor together with AVRLIB library
in order to position and occlude virtual objects into the scene.
This framework creates a realistic and robust system capable of
rendering and effectively occluding a virtual object inside a real
environment in real time, without the need of any preprocessing.

I. INTRODUCTION

Augmented reality is an interesting technique and it has
several applications, such as architectural planning, gaming
and even technological devices like Google glass. Despite this
there are few works that concerns with occlusion in virtual
objects. The use of occlusions leads to a much more realistic
system as the virtual objects interacts better with the real ones.

The main problem when dealing with occlusion is that
usually there is no depth information of the scene. Estimation
of the depth information is computationally expensive. So, in
our work, rather than estimate the depth of the scenario, we use
the Microsoft Xbox KinectTMsensor to get this information.

Augmented reality may also be with or without markers.
The ideal system is fast, robust, precise and not intrusive.
Commonly, systems that use markers are more robust, simpler
and faster than the ones without. However you have to include
a strange object into the scene. In this work we use markers
due it is simplicity and robustness.

II. RELATED WORKS

In an effort to create realistic augmented reality systems,
it has been created different approaches to tackle the problem
of creating a precise occlusion of virtual objects placed in a
real environment. In this section, we describe some of these
approaches.

In [1] it is presented two approaches to create realistic
interactions between real and virtual objects. The first, called
model-based method, requires a virtual object to be registered
to a real object, in an effort to recreate a real object based on a
virtual object with a similar shape. It then converts the object
position to the camera coordinates, calculating the occlusion
of each object. As for the second approach, called depth-based
method, uses Weng’s algorithm [2] to generate a dense depth-
map of the environment. The depth of each pixel is then used
to determine the occlusion of the virtual objects placed in the
scene.

A more recent work, described in [3], tackles the occlusion
problem by using a SLAM tracking system to acquire a set
of feature points of the real environment and then determines
which of these points belongs to a plane, in an effort to find
every planar object in the scene. The planes encountered are
used to determine the position of real foreground objects,
such as a hand. It then considers that every virtual object is
positioned between a plane and a foreground object. Thus, only
foreground objects can occlude a virtual object, constraining
this technique to environments where planes constitute a back-
ground and virtual objects are always between a background
and a foreground object. Furthermore, the method described
requires an environment scanning before the occlusion can
actually take place.

A different approach is presented in [4], in which is used
a marking system that allows users to mark the background
and the real object that will occlude the virtual object. The
marking process is made directly upon the video. Through
this technique, it is extracted a set of feature points of the real
object, followed by the retrieval of its exact border, allowing
the program to track the object throughout the video. A virtual
object, placed in the real environment, will then be occluded
by the real object and occlude the background. Although this
technique is capable of tracking the real object and performing
the occlusion process during the video capture in real time, it
suffers from unrealistic effects when the real object is placed
behind the virtual object, since the first will still occlude the
last even when it belongs to the background.

In the current work, we use the Microsoft Kinect to aid
in the process of acquiring the depth map of the environment.
This system has been largely used in academic research due
to its efficiency in capturing the depth value of a scene. Some
examples of systems created using the Kinect are as follows:
a controller-free system for medical images visualization [5],
a multi-purpose system that allows users to control avatars or
virtual characters in remote environments [6], human detec-
tion using depth information [7], hand detection and gesture
recognition using depth information [8] and Kinect Fusion [9],
a system capable of building a 3D model of the environment
in real-time [10] based on the depth map of the objects present
in the scene.

III. PROPOSED METHOD

In most augmented reality systems, the virtual objects are
rendered over the scene, disregarding the depth of the real



objects. This way, real objects are always placed in back-
ground, while the virtual object compose the foreground of
the resulting scene. There has been several attempts to extract
depth information of a real environment, as described in II, but
there are always drawbacks regarding the proposed method.
In an attempt to create a robust, fast and realistic augmented
reality system, we use a very powerful device, the Microsoft
Kinect, that is capable of retrieving the depth information of
an environment in a simple and efficient fashion, eliminating
the need of any preprocessing operation.

Although the depth information retrieval composes a crit-
ical process for creating a realistic augmented reality system,
the insertion of a virtual object also presents its own difficul-
ties, such as the location, depth, scale, rotation and tracking
of the artificial object. To tackle these problems we make use
of the AVRLib [11], an augmented reality library based on
the well known ARToolkit library [12], that is specialized in
markers detection. With this tool, the positioning of the virtual
objects becomes practical and efficient.

In this section, we describe the tools used for this work, as
well as the methods used to integrate them in a single project.

A. Depth Information

To obtain the image and depth information of the environ-
ment, we use the Kinect. This way, we can recreate the scene
with more than just its visual properties (obtained as an RGB
image), making use of the depth information, which is crucial
to creating realistic occlusions of virtual objects.

Kinect uses a depth camera, capable of obtaining the depth
value for each pixel of the scene. The depth value varies from
0 to 10000, where 0 is attributed to the pixels that represents
the closest object and 10000 to the ones that represents the
farthest objects. The interface between the Kinect system and
the computer was made using Freenect, an open source library
for Kinect.

The Kinect system has two different streams: the first one
has the RGB image and the second has the depth information.
Due to physical limitations the depth sensor and the camera
are not exactly in same position. Thus, the depth stream and
the RGB image must be aligned. The Kinect depth camera
also presents distance limitations, as it can only acquire the
depth information of objects within a distance between 800
and 5000 millimeters.

B. Virtual Object Positioning

A very important aspect of a augmented reality system
is the virtual object positioning method used to display the
object in the correct spot of the scene. Placing a virtual object
inappropriately in the environment leads to an unrealistic and
non-immersive augmented reality system, thus, it is of extreme
importance to adopt a reliable method to place these objects
in the scene.

In this work, the virtual object must be placed according
to the user’s desire, since it is the latter that interacts with the
system and determines the correct position of the object. To
add more immersion to the resulting system, the user must
be able to determine the virtual object’s position in real time

through an intuitive method, otherwise, the practical value of
the system is affected.

The virtual object placement was solved by using the
AVRLib, a library that offers all the basic tools for marker
detection. With this tool, the user must place a marker in a
visible place to allow the system to detect it and create a virtual
object in its spot. The object to be rendered can be changed
to any object with an appropriate object file that describes its
properties, thanks to a specialized object handler developed,
described in subsection III-C.

C. Object Handler

The resulting system proposed in this work may be used
in any application focused on evaluating objects positioning
in a real environment before the real objects are actually
moved. Thus, the system must allow the user to choose any
virtual model to be rendered in the scene, and not only a
predetermined set of virtual models.

To accomplish this task, it was developed an object handler
capable of loading and rendering objects described in .off, .ply
and .obj formats. The object handler loads the object shape,
geometry, scale and texture from the file, while the marker
system deals with the object’s rotation and position.

D. Recreating the Environment

When recreating a real environment, it is usually used
a simple plane with an image of the scene as a texture.
This method, yet simple and efficient for a great deal of
augmented reality applications, does not take into account the
depth information of the environment. To recreate a scene
using the depth information, it is necessary to render it in a
three dimensional space. Thus, we create the scene by drawing
points in a 3D space, where each point represents one pixel
in the output RGB image. The scene rendering is made using
OpenGL.

After drawing the points in a 3D space, we create the
virtual object in the scene, where its position and rotation are
determined by the marker used, as described in III-B. Since
the resulting virtual environment is entirely created using the
depth information, there is no distinction of virtual and real
objects, hence, the occlusion occurs naturally when the scene
is rendered by the OpenGL library.

With this scene rendering method, a projection problem
arises, since the set of points that represents the environment
must be rendered in orthographic projection so the points are
aligned in the X, Y plane, obscuring the depth differences
between each one of them, and the virtual objects must be
rendered in perspective, in an effort to give a realistic view of
the object. But, as mentioned before, the virtual representation
of the real environment and the virtual objects are blended
in the same scene. Thus, we need to render the entire scene
using a single projection and apply a projection change matrix
to either the set of points or the virtual objects.

We naturally chose the perspective projection, as it mini-
mizes the changes in the AVRLib library. In order to render
a pixel on the screen using a perspective projection we draw
a rectangle in such a way that after the projection it will be
positioned on the correct pixel and measure just like a pixel



measure. To do so we first must correct the position of the
pixel that we will draw, which leads us to an transformation
that is exactly the inverse of the projection, where points that
are closer to near plane have to shrink, while those that are
distant from the near plane must be magnified. The process is
described in the Equation 1:

(X,Y, Z) =

(
X · tan

(
fov

2

)
· Z ·As,X · tan

(
fov

2

)
· Z,Z

)
, (1)

where the vector (X,Y, Z) is the point’s position, fov is
the aperture angle used in the projection matrix and AS is the
aspect ratio. However there is another problem. We must use
the same fov used in the AVRLib library, but we do not know
it. So we have to infer it from the projection matrix P used
by the library. As the first element of the matrix P is defined
by Equation 2, so fov = cotan−1(P1,1 ·As). This leads us to
a fov equals to 37.8o degrees.

P1,1 =
cotan

(
fov
2

)
As

(2)

IV. RESULTS

In this section we discuss the generated results of the
proposed method. It was implemented using C++ program-
ming language and compiled using GCC 4.8.2. All tests were
performed in an Intel Xeon(R) CPU E31220 @ 3.10GHz x 4
computer with 8 GBs of RAM. The graphic card was an AMD
Radeon HD 5700 series.

The resulting system is an augmented reality system ca-
pable of rendering virtual objects in a real environment in
a realistic and efficient fashion, performing the occlusions
between virtual and real objects. The test shows that the
system described in this paper is a robust and reliable method
able to solve the occlusion problem without the need of any
preprocessing and without any major drawbacks, as seen in
other works described in II.

In Figure 1, we demonstrate the output image of different
objects layout. In Figure 1(a), two virtual objects were created
associated to a single marker, where one of the objects is
placed at the same location as the marker and the other one is
translated in the X axis. It is also placed two real objects in
the scene: a bottle, placed between the virtual objects, and a
backpack, placed behind them. As shown in the illustration, the
bottle occludes the furthest virtual object but suffers occlusion
from the nearest one and the backpack is occluded by both of
the virtual objects. Figure 1(b) shows a similar result, but this
time, the backpack is placed between the virtual objects.

The accuracy of the real objects boundaries is directly
related to the precision of Kinect depth camera. To demonstrate
this precision, it is shown in Figure 2 how the resulting
system deals with small objects, such as fingers. In Figure
2(a), the hand is placed over the virtual character. The resulting
image shows that the depth camera is not capable of acquiring
precisely the finger boundaries (although it is capable of
detecting them), resulting in aliasing problems. Figure 2(b)
demonstrates the virtual character occluding the hand, when
the latter is placed further in the scene.

(a) Real objects behind and between the two virtual objects.

(b) Real object between the two virtual objects.

Fig. 1: Simple occlusion example.

In Figure 3, it is demonstrated a case where a virtual
object is placed under a chair. Thus, the further chair legs are
occluded by the virtual car, while the nearest legs occludes it.
In another scenario, we place a virtual table in the environment,
with a real chair behind it and a real box between the table’s
legs, as shown in Figure 4, where the occlusions all occur in
a realistic manner.



(a) Hand over the virtual object.

(b) Hand behind the virtual object.

Fig. 2: Hand occlusion example.

One of the drawbacks presented in the system is the
constant presence of the marker in the scene, as shown in
the Figures 1, 2, 3 and 4, where it has to be visible for the
correct execution of the system. The results also highlight
another issue: the imprecision of the real objects detections,
resulting in aliasing problem when a real object occludes a
virtual object, as shown in Figures 2(a) and 3. At last, the
system is constrained to small real environments due to the
range capabilities of the Kinect depth camera.

Fig. 3: Virtual object between real objects.

Fig. 4: Virtual table rendered over a real chair and a real object
between the virtual object.

V. CONCLUSION AND FUTURE WORKS

We presented an augmented reality system capable of
performing the occlusion of virtual objects by real or other
virtual objects using the Kinect depth camera and the AVRLib.
The real environment is virtually recreated with dots in a three
dimensional space, where the X and Y coordinates and color
are taken from the RGB video taken from the Kinect and
the Z coordinate from the depth camera. Then, the virtual
object is placed in the scene in the position obtained by the
marker detection system. At last, the final scene is rendered in
a perspective projection, where, for each point representing the
real environment, is applied a transformation to its coordinates
to simulate a orthographic projection. This way, the final render
uses different projections for the environment and the virtual
objects. The system is capable of rendering any virtual model
in the scene, given there is a correct model file describing
the object. Furthermore, the system renders everything in real-
time.



Our system can be used in a great deal of different
applications, ranging from design analyses, games, interactive
systems and any other application that requires a realistic
virtual object occlusion simulation. Although it presents some
advantages, it still suffers some issues: the systems must be
used in small areas, ranging from 800 to 5000 millimeters, the
obligatory presence of the markers and the aliasing problem
when a real object occludes a virtual object.

Based on the drawbacks highlighted in this paper, some
future works are proposed. First, the application of an image
processing algorithm in the resulting image in an effort to di-
minish the aliasing problem detected in the occlusion of virtual
objects by real objects. As a final proposal, the application of
inpainting algorithms to remove the marker from the resulting
image might be interesting, in order to increase the realism
and immersion of the system.

ACKNOWLEDGMENT

The authors would like to thank FAPEMIG and CAPES
for the financial support.

REFERENCES

[1] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan, “Interactive
Occlusion and Automatic Object Placement for Augmented Reality,”
Computer Graphics Forum, vol. 15, no. 3, pp. 11–22, 1996.

[2] J. Weng, T. S. Huang, and N. Ahuja, “Motion and Structure From Two
Perspective Views: Algorithms, Error Analysis, and Error Estimation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 5, pp. 451–476,
May 1989.

[3] J. Ventura and T. Hollerer, “Online environment model estimation for
augmented reality,” in Mixed and Augmented Reality, 2009. ISMAR
2009. 8th IEEE International Symposium on, Oct 2009, pp. 103–106.

[4] Y. Tian, T. Guan, and C. Wang, “Real-time occlusion handling
in augmented reality based on an object tracking approach,”
Sensors, vol. 10, no. 4, pp. 2885–2900, 2010. [Online]. Available:
http://www.mdpi.com/1424-8220/10/4/2885

[5] L. Gallo, A. Placitelli, and M. Ciampi, “Controller-free exploration
of medical image data: Experiencing the kinect,” in Computer-Based
Medical Systems (CBMS), 2011 24th International Symposium on, June
2011, pp. 1–6.

[6] A. Nagendran, R. Pillat, A. Kavanaugh, G. Welch, and C. Hughes,
“Amities: Avatar-mediated interactive training and individualized
experience system,” in Proceedings of the 19th ACM Symposium
on Virtual Reality Software and Technology, ser. VRST ’13. New
York, NY, USA: ACM, 2013, pp. 143–152. [Online]. Available:
http://doi.acm.org/10.1145/2503713.2503731

[7] L. Xia, C.-C. Chen, and J. Aggarwal, “Human detection using depth
information by kinect,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2011 IEEE Computer Society Conference on,
June 2011, pp. 15–22.

[8] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture
recognition with kinect sensor,” in Proceedings of the 19th ACM
International Conference on Multimedia, ser. MM ’11. New
York, NY, USA: ACM, 2011, pp. 759–760. [Online]. Available:
http://doi.acm.org/10.1145/2072298.2072443

[9] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux,
S. Hodges, P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time dynamic 3d surface reconstruction and
interaction,” in ACM SIGGRAPH 2011 Talks, ser. SIGGRAPH ’11.
New York, NY, USA: ACM, 2011, pp. 23:1–23:1. [Online]. Available:
http://doi.acm.org/10.1145/2037826.2037857

[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera,” in Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’11.

New York, NY, USA: ACM, 2011, pp. 559–568. [Online]. Available:
http://doi.acm.org/10.1145/2047196.2047270

[11] D. C. B. Oliveira, F. A. Caetano, and R. L. S. Silva, “Avrlib - an object
oriented augmented reality library,” Workshop de Realidade Virtual e
Aumentada (WRVA), pp. 54–59, 2013.

[12] H. Kato, “Artoolkit 2.33 documentation (alpha version),” Human Inter-
face Technology Laboratory, University of Washington, 2005. [Online].
Available: http://www.hitl.washington.edu/artoolkit/documentation/


