
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas - ICE

Bacharelado em Ciência da Computação

Modeling nanocarbon structures using
adaptive remeshing

Ramon Nogueira da Silva

JUIZ DE FORA

DEZEMBRO, 2014

Modeling nanocarbon structures using
adaptive remeshing

Ramon Nogueira da Silva

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas - ICE

Departamento de Ciência da Computação

Bacharelado em Ciência da Computação

Orientador: Marcelo Bernardes Vieira

JUIZ DE FORA

DEZEMBRO, 2014

Modeling nanocarbon structures using adaptive

remeshing

Ramon Nogueira da Silva

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIÊNCIAS

EXATAS - ICE DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE

INTEGRANTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU

DE BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.

Aprovada por:

Marcelo Bernardes Vieira
Doctor in Computer Science

Sócrates de Oliveira Dantas
Doctor in Physics

Marcelo Caniato Renhe
Master in Systems Engeneering

JUIZ DE FORA

11 DE DEZEMBRO, 2014

For my dad.

Resumo

Este trabalho visa avaliar a qualidade de um algoritmo de remalhamento em seu uso para a

geração de nanoestruturas de carbono. O algoritmo representa moléculas de nanocarbono

como superf́ıcies de variedade 2. Partindo de modelos geométricos de forma arbitrária,

o método aplica um remalhamento iterativo e adaptativo para que o modelo apresente

caracteŕısticas para as quais se espera obter simulações f́ısicas estáveis. Colocando essa

esperança à prova, esse trabalho propõe avaliar a qualidade dessas estruturas com sim-

ulações de dinâmicas moleculares. O potencial REBO2 é utilizado para cálculo das forças

de atração e repulsão entre os átomos.

Palavras-chave: remalhamento, simulação, nanoestruturas.

Abstract

This work seeks to evaluate the quality of a remeshing algorithm in its use for the gen-

eration of carbon nanostructures. The algorithm represents nanocarbon molecules as a

2-manifold mesh. Starting from geometric models of arbitrary shape, the method performs

an iterative and adaptive remeshing in order to achieve a model that presents the features

for which its physics simulations should be stable. In order to verify its effectiveness, this

work proposes to evaluate the quality of the resulting structures with molecular dynamics

simulations. The REBO2 potential is used to calculate the attraction and repulsion forces

between the atoms.

Keywords: remeshing, simulation, nanostructures.

Acknowledgements

Thanks to my family, for always believing in me. Specially my mom, for being

just amazing.

Thanks to FAPEMIG and UFJF for financial support.

Thanks to my laboratory colleagues, for all the work and all the play.

Thanks to my true friends. To Yuri, for hearing the things I needed to say. To

Lucas, for saying the things I needed to hear. To Ibraim, for sharing his hapiness. To

Cândida, for reminding me to read and write. To Cedrik, for the things he make me think

about.

Thanks to my training partners, Zelicássio, Flávio and Diego, for helping me to

unload any stress and for giving me motivation to go on. Thanks to my instructor Daniel,

for teaching me more than just Krav Maga.

Thanks to my advisor Marcelo Bernardes, for putting me in the right way the

times I deviated.

And thanks to Ju, for being with me.

“...a scientist must also be absolutely like

a child. If he sees a thing, he must say

that he sees it, whether it was what he

thought he was going to see or not. See

first, think later, then test. But always

see first. Otherwise you will only see

what you were expecting.”.

Douglas Adams (So long, and thanks

for all the fish)

Contents

List of Figures 7

Abbreviations List 8

1 Introduction 9
1.1 Problem definition . 10
1.2 Objectives . 10

2 Related works 11

3 Fundamentals 13
3.1 Manifold . 13
3.2 Polygon meshes . 13
3.3 Remeshing . 14
3.4 Dual mesh . 14
3.5 Stellar operations . 16

3.5.1 Edge split . 16
3.5.2 Edge collapse . 16
3.5.3 Edge flip . 17

3.6 Laplacian operator . 17
3.7 REBO2 potential . 18
3.8 Molecular dynamics . 19

4 Adaptive Remeshing 20
4.1 Stellar operations with priority list . 21
4.2 Valence optimizer . 24
4.3 Global optimization . 25
4.4 Local optimization . 27
4.5 Projection . 29
4.6 Post processing . 30
4.7 Dual computing . 30

5 Experimental results 32

6 Conclusion 38

Referências Bibliográficas 39

List of Figures

3.1 The Möbius strip, a classical example of one-sided surface 13
3.2 Example of polygon representation of real objects and remeshing. The real

object (3.2a) was discretized into a triangular mesh (3.2b) to be stored
in computer memory. The model was then remeshed (3.2c) to present
low standard deviation of edge lengths, characteristic that was not present
before. 15

3.3 Edge split operation . 16
3.4 Edge collapse operation . 17
3.5 Edge flip operation . 17
3.6 Example of the effect of the Laplacian operator 18

4.1 Visual overview of the Adaptive Remeshing steps. The color of the edges
illustrates their length and the color of the vertices illustrates their valence.
Long edges are in red and short edges are in green. Edges in blue have
lengths that satisfy the interval. For vertices, the color red indicates a
valence greater than 6 and the color green indicate a valence lower than 6. 22

5.1 Egea model generated with parameters p = 0 and s = 2. The time step
of each iteration of the simulation was 0.001 ps. For the visualization, the
bonds depicted in the last picture correspond to the bonds formed in the
first iteration, so we can see the displacement of the repelled atoms. 32

5.2 Egea model generated with parameters p = 10 and s = 5. The molecule
presents geometric distortions, but maintain the main structure without
losing any atoms. 33

5.3 Egea model at the end of 5000 iterations of molecular dynamics simulations
for different parameters. 34

5.4 Resulting molecules of different models. The method was capable of achiev-
ing very stable structures. 35

5.5 Rockerarm . 36

Abbreviations List

DCC Departamento de Ciência da Computação

UFJF Universidade Federal de Juiz de Fora

REBO Reactive Empirical Bond Order

REBO2 Second generation Reactive Empirical Bond Order

9

1 Introduction

Nowadays, nanostructures are present in several areas of technology. There are appli-

cations involving microprocessors, super resistant clothes, cancer treatment, etc. The

proper study and understanding of these structures can bring a revolution in many as-

pects of human well being. Consequently, they have drawn attention of a large amount

of researchers worldwide.

The major barrier involving studies in nanoscale is the high cost associated to

the manufacturing of nanomaterials. It makes impracticable to perform laboratory ex-

periments. This fact led to intense searches for tools that would make feasible the studies

of these materials.

The computer graphics and geometry area provides supporting tools for a wide

range of science’s branches. It supplies scientific applications with proper interfaces for

problems solving, while allowing simulation of real events, such as some physics and

chemistry phenomena, inside virtual environment. This kind of support has become

mandatory to the nanostructures researches. It makes possible the study of the properties

and behavior of such structures at a lower cost.

A noteworthy example of this support are the works involving nanostructures

generation. As we will see in Chapter 2, there are many efforts in the solving of this

problem. The reason is that the simple achieving of a stable structure for simulation can

be a challenging task, since there are many features that the molecules should present

in order to keep the bonds of atoms. Most works found in literature are concerned to

very specific structures, in a way that their solutions apply only to certain applications.

General purpose algorithms are still scarce.

Considering that, this work aims to evaluate the adaptive remeshing algorithm

proposed in (Hauck et al., 2015) in its use to prepare a model of arbitrary shape to be

applied on simulations of nanocarbons. The method is based on the intrinsic relationship

between a molecule stability and its geometry. Through the modeling of the nanostructure

as a 2-manifold mesh, the algorithm is able to apply geometric transformations on the

1.1 Problem definition 10

model until it satisfies some of its bonding requirements. The final structures obtained

by the algorithm will be evaluated by the simulation of their molecular dynamics, using

the REBO-2 potential (Brenner et al., 2002).

1.1 Problem definition

Let M be a 2-manifold input mesh of arbitrary geometry. The problem is to obtain a mesh

M′ of minimal geometric discrepancy from M, in such a way that, being |e′j| the length of

the edge e′j in angstrons, then 1.2 ≤ |e′j| ≤ 1.8 for every e′j ∈ E′, where E′ ⊂M′ is the set of

edges from M′. Also, if M′ is submitted to t iterations of the REBO-2 molecular dynamics

simulations, then M′t remains homeomorphic to M and the geometric distortions of M′t

are minimal, for any t in [0,+∞[.

1.2 Objectives

The main objective of this work is to produce nanocarbon structures of any arbitrary

shape that are stable for simulations of molecular dynamics. The secondary objectives

are:

• To understand the geometric features associated with the stability of nanocarbon

molecules;

• To describe the implementation of a remeshing method capable of achieving models

that satisfy those features for different input sizes and shapes;

• To verify the stability of the resulting structures with molecular dynamics simula-

tions;

• To compare the method performance and efficiency against energy minimization

approaches.

11

2 Related works

The generation of carbon nanostructures can be done in two different ways. The first is

through physics approaches, in which the goal is to minimize the total potential energy

of a system in order to achieve stable molecule. These methods usually make use of

a potential energy expression, e.g. the Lennard-Jones potential (Lennard-Jones, 1931)

and the REBO2 potential (Brenner et al., 2002), which is minimized with a numerical

method, such as the conjugate gradient method (Press et al., 1992). The second is through

geometric approaches, in which the geometric features are considered rather than the

physics ones, in a way that, if the geometric requirements are achieved, so are the physics.

This chapter provides some examples of this kind of works.

Works focused on direct geometric modeling of nanostructures make a study of

what geometric features are associated to what physics features. A natural disadvantage

of this approach is that solutions are usually developed to very specific problems, e.g.

the generation of carbon nanotubes. There are few evidences of methods focused on

generating structures for general purposes.

The first efforts to generate nanostructures with a geometric approach date from

1992, when Hamada et al. (1992) proposes a way to describe any carbon nanotube using

only two integers n and m, known as Hamada indexes. These indexes relate to the

generation of straight lines on hexagonal grids (Liu, 1993), a concept later extended in

the work of Pampanelli et al. (2009) for the generation of hexagonal models that can

represent several kinds of nanocarbon structures.

Zsoldos et al. (2004) proposes a method to construct junctions of carbon nan-

otubes. The work describes some patterns used for building different types of junctions.

The structures are composed mostly by hexagons, but pentagons appear in the regions

where the structure must be closed. Similarly, heptagons appear in the regions where the

diameter of the junction is higher. The method is limited to the specific geometry and

topology of the junctions of carbon nanotubes.

It is also possible to combine energy minimization approaches and geometric

2 Related works 12

methods. Lászlo and Rassat (2003) present a study of the geometric characteristics of

nanotubes that, if physically optimized, naturally result in an helicoidal structure. Again,

this work is limited to these structures.

As a different approach, it is possible to remesh models to satisfy physical condi-

tions rather than generating those structures. The advantage of remeshing methods over

direct modeling methods is the possibility of working with a higher degree of freedom,

since remeshing methods usually apply to arbitrary model. Although remeshing methods,

in general, are used to improve geometric features, there are works that apply a remeshing

approach to achieve quality in other aspects, like good cloth simulation (Narrain et al.,

2012) and the generation of surfaces that are self-supporting (Liu et al., 2013).

For the generation of nanocarbon structures, it is necessary to obtain regular

trivalent models. Instead of approaching this problem directly, Peçanha et al. (2013)

argue that remesh a triangular mesh to be more regular is not only an equivalent problem,

but also more general for use in applications. In that work, an iterative method for edge

length equalization is presented, in such a way that the dual of the final model could be

used for nanocarbon simulations. The method adjust the amount of edges with stellar

operations and improve their distribution with a low-pass filtering over the surface.

Following that line, Hauck et al. (2014) propose an improvement to the method.

It inserts a more strong constraining to the edge lengths, and adds a post processing step

to achieve convergence. The work have the disadvantage of presenting serious geometric

distortions for some cases. In order to correct it, a new improvement to the method was

proposed in (Hauck et al., 2015). The post-processing step was integrated to the iterations

cycle, achieving lower geometric distortions and a faster convergence rate. The authors

demonstrate that the potential energy of a model generated with their technique is much

more uniform than the original model. However, no real simulation was performed to

validate the stability of the model. Because of that, the goal of the present work is to

verify that stability.

13

3 Fundamentals

This chapter presents some basic concepts for the understanding of this work.

3.1 Manifold

Manifolds are topological spaces, immersed in spaces of higher dimension, that are similar

to the Euclidian space at small regions around each point. A surface is a k-manifold if it

is immersed in a Euclidian space Rn, with k ≤ n, and its homeomorphic to the Euclidian

space Rk in the neighborhood of each point (Guillemin and Pollack, 1974).

This work operates over 2-manifold surfaces immersed in the tridimensional space.

This kind of surface can be orientable if it has two sides. Although uncommon, some

surfaces can present only one side, as depicted in Figure 3.1. This work is concerned only

to orientable surfaces.

Figure 3.1: The Möbius strip, a classical example of one-sided surface

3.2 Polygon meshes

The computer is a machine that works with discrete domains and codomains. As a

consequence, continuous manifolds must be discretized to be represented in computer.

The most common way to do this is to represent the surface as a polygon mesh.

Polygon meshes are a set of faces, edges, and vertices. Each vertex is a position

3.3 Remeshing 14

and each edge is a connection between two vertices. A face is a closed collection of

edges, consisting on a polygon, usually convex due to its rendering simplicity. Figure 3.2

illustrates how a real object is represented as a polygon mesh.

To present a formal definition, let V be a set of vertices. Let E be a set of edges,

with ej ∈ E if ej is the pair {vj1, v
j
2} ⊂ V. Also, let F be a set of faces, with f j ∈ F if f j

is a closed collection {e1, ..., es} ⊂ E. Then, M ≡ V ∪ E ∪ F.

For most applications, including this work, the meshes are chosen to be composed

of triangles only. That is because triangles are the only polygon capable of defining a

plane without ambiguity. Moreover, any mesh composed of convex polygons can be easily

transformed into a triangular mesh through a process known as triangulation.

3.3 Remeshing

The process of remeshing a given mesh M is to obtain a new mesh M′ that is close enough

to M and satisfy certain quality that M does not (Botsch et al., 2010). There is no precise

definition of how close the mesh must be. Each application can define its own similarity

criteria, that can be topological, geometric, or the maintenance of defined constraints.

Bommes et al. (2009) enumerate some quality aspects usually considered.

3.4 Dual mesh

According to Taubin (2002), the dual of a 2-manifold mesh can be defined as a mesh with

the same topology, in which the location of its faces correspond to the locations of the

vertices in the primal, and vice versa. In addition, the vertices of the dual are positioned

in the centroid of its corresponding face in the primal.

One can easily notice that the number of sides of a polygon in the primal mesh

corresponds to the valence of the corresponding vertex on the dual mesh. Consequently,

the dual of triangular mesh is a trivalent mesh. This property allows the generation

of nanocarbon molecules from triangular meshes, since those molecules are composed of

trivalent bonds.

3.4 Dual mesh 15

(a) The original object for the Stanford
Bunny

(b) The polygon mesh representing the Stanford Bunny

(c) The Stanford Bunny remeshed to present low standard deviation of edge lengths.

Figure 3.2: Example of polygon representation of real objects and remeshing. The real
object (3.2a) was discretized into a triangular mesh (3.2b) to be stored in computer
memory. The model was then remeshed (3.2c) to present low standard deviation of edge
lengths, characteristic that was not present before.

3.5 Stellar operations 16

3.5 Stellar operations

Stellar operations are local modifications on a mesh that preserve its Euler characteristic.

The Euler characteristic of a mesh M, denoted by χ, is defined as:

χ = |V| − |E|+ |F|

where |V|, |E| and |F| are, respectively, the number of vertices, edges and faces of M.

For triangular meshes, there are three stellar operations applied in this work: the

edge split, the edge collapse and the edge flip.

3.5.1 Edge split

This operation splits an edge ej into two new, also creating two additional edges. Firstly,

a new vertex vn is created in an arbitrary position over ej. Next, we connect this new

vertex to the two opposite vertices of ej. The operation is illustrated in Figure 3.3.

Figure 3.3: Edge split operation

3.5.2 Edge collapse

The edge collapse operation removes an edge ej from the mesh. One of the original

vertices connected by ej is removed, and all the edges connected to it are connected to

the remaining vertex. The remaining vertex is then repositioned in any arbitrary point

over ej. The operation is illustrated in Figure 3.4.

3.6 Laplacian operator 17

Figure 3.4: Edge collapse operation

3.5.3 Edge flip

This operation replaces an edge ej with an edge connecting its opposing vertices. It is

illustrated in Figure 3.5.

Figure 3.5: Edge flip operation

3.6 Laplacian operator

The Laplacian operator ∇2 of a function g : Rn 7→ R is a measure of its dispersion in Rn.

It is given by the following formula:

∇2g =
∂2g

∂2x1
+ ...+

∂2g

∂2xn
.

If the function g is a signal, the value of the Laplacian increases along with the high

frequencies of g. Therefore, to obtain the values of {x1, ..., xn} for which the Laplacian

is zero is equivalent to eliminate the high frequencies of g. Consequently, the Laplacian

operator works as a low-pass filter.

Taubin (1995) demonstrates that a surface can be treated as a signal, and that

the problem of smoothing the surface can be reduced to a low-pass filtering of the surface’s

signal. He proposes a discrete linear approach, denoted by L, to calculate the Laplacian

3.7 REBO2 potential 18

Figure 3.6: Example of the effect of the Laplacian operator

for remeshing applications, given by the equation:

L(vi) =
∑
vj

wij(vi − vj), (3.1)

where vj are all the vertices in the first star of vi and wij is the weight of the edge vivj,

with
∑

j wij = 1.

The literature provides many strategies for assign the wij value of an edge, e.g.

schemes with edge lengths (Taubin, 1995) and cotangent (Alliez et al., 2002). This work

applies the scheme of neighborhood (Peçanha et al., 2013).

The effect of the Laplacian in a mesh moves all vertices to the median of their

neighbors, as depicted in Figure 3.6. This tends to reduce the standard deviation of the

edge lengths, making the mesh more smooth and more equalized.

3.7 REBO2 potential

The REBO2 model (Brenner et al., 2002) was proposed as a low cost function to calculate

the potential energy from covalent bonds. Its efficiency comes from the fact that only the

nearest neighbors iterations are considered, in contrast to total energy approaches. This

fact makes the REBO2 a widely used model for large atomic systems. In this model, the

binding energy Eb is given by:

Eb =
∑
i

∑
j,j>i

[V R(rij)− bijV A(rij)], (3.2)

3.8 Molecular dynamics 19

where, V R(r) and V A(r) are the pair-additive functions that represent the interatomic

repulsions and attractions, rij is the distance between atoms i and j and bij is the bond

order function between atoms i and j. Wang (2006) describes the whole formulation with

great clarity.

3.8 Molecular dynamics

Molecular dynamics are computer simulations of the behavior of molecules over time. The

atoms and molecules are modeled in virtual environment, where they interact so we can

observe their motion. Usually, if we have an expression for the potential energy between

the particles, the trajectory of each atom can be determined by the Newton’s law of

motion. Time is discretized in intervals of duration t, in a way that each iteration of the

algorithm computes the movement of each atom for the next instant.

In this work, all molecular dynamics performed make use of the REBO2 expres-

sion for potential energy.

20

4 Adaptive Remeshing

This work seek to evaluate the efficiency of the algorithm Adaptive Remeshing, from

the work Adaptive remeshing for edge length interval constraining (Hauck et al., 2015),

accepted for publication, for generating nanocarbon molecules. The algorithm operates

over triangular meshes and is concerned to the edge lengths of the model. More precisely,

it aims to obtain a mesh without any long or short edges, defined as:

long, if |ej| > lmax

,
short, if |ej| < lmin

where ej ∈ E is an edge from M, lmin is the smallest value allowed for edge length and

lmax is the biggest value allowed for edge length.

Although it is not the main goal of the algorithm, it also improves the valence of

the vertices as a way to achieve more equalized edge lengths. The method is iterative and

adapts itself over time in accord to the current features of the model. At the end of the

iterations, it computes the dual of the resulting mesh to obtain a the trivalent mesh used

for simulations. Its input is the tuple (M, lmin, lmax, n, k, p, s), where M is a 2-manifold

mesh, n is the maximum number of iterations, k is the number of rings used for the

Laplacian approximation, p is the number of steps performed before each replacement of

the projection mesh and s is the percentage threshold of short and long edges for which

the algorithm switches the optimization strategy.

For this work, we seek to obtain models in which these characteristics are opti-

mized for nanocarbon simulations. As the edges represent the bonds between the atoms,

their length neither can be so long that the attractive force is not enough to keep the bond,

or so short that the repulsive force between the atoms destroy the molecule. Hence, this

work constrains the length of the edges to the interval between 1.2 and 1.8 angstrons.This

value was chosen based on Figure 1 of (Brenner et al., 2002), in which the potential ener-

gies are given as a function of the interatomic distance. The figure indicates that a value

close to 1.5 angstrons gives the best results. The lengths of the edges of the models were

constrained to the interval that allows up to 20% of standard deviation. Moreover, the

4.1 Stellar operations with priority list 21

method imposes that the valence of each vertex cannot be lower than 5 or greater than

7. As each vertex corresponds to a polygon in the dual space, its valence corresponds to

the number of sides the polygon will have. The best case scenario would be a structure

composed of hexagons only. However, in order to compensate the different curvatures

over the surface, some pentagons and heptagons may be necessary.

Algorithm 1 is an overview of the method, and Figure 4.1 provides a visual

overview. Detailed information about each step will be provided in the following sections.

Algorithm 1: AdaptiveRemeshing(M, lmin, lmax, n, k, p, s)

1 M′ = Copy(M)

2 Mp = Copy(M)

3 m = lmin+lmax

2

4 while (short+ long) > 0 and iter < n do

5 if p > 0 and (i mod p) = 0 then

6 Mp = Copy(M′)

7 end if
8 StellarOperations(M′)

9 ValenceOptimizer(M′)

10 if CalcEdgesPercent() ≤ s then

11 NonLinearOptimizer(M′)

12 end if
13 else

14 LowPassFiltering(M′, r)

15 end if
16 M′ = Projection(M′, Mp)

17 end while
18 NonLinearOptimizer(M′)

19 PostProcess(M′)

20 M′ = Dual(M′)

21 return M′

4.1 Stellar operations with priority list

The first step of the algorithm seeks to adjust the amount of vertices through the ap-

plication of stellar operations. This adjustment must be local, because arbitrary models

have regions that need to be simplified and others that need to be refined (Peçanha et

al., 2013).

4.1 Stellar operations with priority list 22

(a) The original mesh before any process-
ing.

(b) The model after the application of stel-
lar operations. Long edges are split and
short edges are collapsed.

(c) Result of the valence optimizer step.
The valence of most vertices become 6, as
we can see by the amount of blue vertices.

(d) Result of the optimization step, in
which the edges are equalized. The trian-
gles become more regular, and the length of
most edges are constrained to the interval
(edges in blue).

Figure 4.1: Visual overview of the Adaptive Remeshing steps. The color of the edges
illustrates their length and the color of the vertices illustrates their valence. Long edges
are in red and short edges are in green. Edges in blue have lengths that satisfy the
interval. For vertices, the color red indicates a valence greater than 6 and the color green
indicate a valence lower than 6.

4.1 Stellar operations with priority list 23

The ideal amount of edges depends on the the average edge length m of the

interval. However, being mi the average edge length of the mesh at the i-th iteration, if

mi is much smaller than m, the model will have to be strongly simplified, what can lead to

the degeneration of the mesh. In order to prevent it, the method computes intermediate

values for lmin and lmax that only allow smooth transformations. These values are:

lmin
i = MIN(2 ·mi,m)− lmax−lmin

2
.

lmax
i = MIN(2 ·mi,m) + lmax−lmin

2

Edges whose length is greater than lmax
i become candidates to be split, and edges

whose length is lower than lmin
i become candidates to be collapsed. As in any series of

local modifications, the operations order impact on the results. The work of Peçanha

et al. (2013) proposes to create a priority list of edges as a way to ensure the method

stability and improve its convergence. The priority dj associated to each edge ej is the

deviation dj = ||ej| −mi|. A list Lp is created as a set of edges {e1, ..., ec} ⊂ E ⊂M, with

d1 ≥ d2 ≥ ... ≥ dc−1 ≥ dc, where ej ∈ Lp if |ej| /∈ [lmin
i , lmax

i] ∈ R (Peçanha et al., 2013).

Algorithm 2: CreatePriorityList(M′, lmin
i , lmax

i)

1 foreach ej ∈ E ⊂M′ do

2 if |ej| < lmin
i then

3 priorityList.Add(ej)

4 end if
5 else if |ej| > lmax

i then

6 priorityList.Add(ej)

7 end if
8 SortDescent(priorityList)

9 end foreach

After the list is set, the algorithm traverses it processing each edge, in order.

Edges with length smaller than lmin
i are collapsed, and edges with length greater than

lmax
i are split. Each edge processed has its both vertices marked as visited. Edges for

which both vertices were marked are not processed. This prevents a vertex from being

moved too many times in one single iteration, improving the vertices distribution per

iteration.

Both the vertex generated by the edge split operation and the remaining vertex

of the edge collapse operation can be placed in an arbitrary position over the operated

4.2 Valence optimizer 24

Algorithm 3: StellarOperations(M′, Lp)

1 foreach ej ∈ Lp do

2 if bothVerticesVisited(ej) then

3 continue

4 end if
5 else if |ej| < lmin

i then

6 EdgeCollapse(ej)

7 end if
8 else if |ej| > lmax

i then

9 EdgeSplit(ej)

10 end if
11 MarkVerticesAsVisited(ej)

12 end foreach

edge. Hauck et al. (2014) proposes to choose this position based on the length of the edges

affected by the corresponding stellar operation. The work proposes an error measurement

S for the edges connected to the vertex of interest vi, given by the equation:

S =
∑
ej

(|vi − vj| −m)2, (4.1)

where vj are the vertices connected to vi. The vertex vi is placed in the position that

minimizes Equation 4.1.

4.2 Valence optimizer

For a fully equalized triangular mesh, the projection of all triangles to the tangent plane

should be equilateral. In this scenario, their internal angles would be 60◦, and the valence

of each vertex would be 6. Hence, in order to achieve more equalized edge lengths, the

algorithm performs an optimization of the valence of the vertices, in a way that they are

closer to the ideal value 6.

Surazhsky and Gotsman (2003) describe a simple procedure, based on edge flips,

to optimize the valence. For each edge ej, let vj1 and vj2 be the vertices connected by ej,

and let vj3 and vj4 be the opposite vertices of ej. Denoting by vl(v) the valence of the

vertex v, if the desirable edge length is φ, we can describe the valence error ψj associated

4.3 Global optimization 25

to the edge ej as:

ψj = |vl(vj1)− φ|+ |vl(v
j
2)− φ|+ |vl(v

j
3)− φ|+ |vl(v

j
4)− φ| (4.2)

For each edge in the model, the method computes its ψj, and then applies the

edge flip operation. If the value of ψj is reduced, the operation is maintained. Otherwise,

the operation is undone.

For this work, an improvement of this strategy is proposed. Since the final mesh

should not present polygons with fewer than five sides nor more than seven sides, it is

necessary to increase the penalty for higher deviations in the valence. So, the error of

each vertex on Equation 4.2 is modified to be quadratic, and the new error formula is

given by:

Ψj = (vl(vj1)− φ)2 + (vl(vj2)− φ)2 + (vl(vj3)− φ)2 + (vl(vj4)− φ)2 (4.3)

The algorithm proceeds as previously described, using the error proposed in Equa-

tion 4.3.

In addition, this step is now performed iteratively. Each iteration process all

the vertices in the model. If any edge flip operation is performed and not undone, the

method proceeds to a new iteration. When no improvement is achieved, the step is

finished. Algorithm 4 illustrates the process.

4.3 Global optimization

Once the method achieves a good amount of vertices and improves their valences, it is

necessary to improve the vertices distribution over the mesh to obtain equalized edge

lengths. There are two main strategies for doing so. The first one is a global optimization

strategy, in which the distribution of the vertices of the model is improved as a whole. In

contrast, there is the local optimization strategy, in which the distribution of the vertices

is improved only in small regions at each time.

For the Adaptive Remeshing algorithm (Hauck et al., 2015), the global strategy

4.3 Global optimization 26

Algorithm 4: ValenceOptimizer(M)

1 improved = true
2 while improved do
3 improved = false
4 foreach ej ∈ E ⊂M do

5 preDev = (vl(vj1)− 6)2 + (vl(vj2)− 6)2 + (vl(vj3)− 6)2 + (vl(vj4)− 6)2

6 EdgeFlip(ej)

7 posDev = (vl(vj1)− 6)2 + (vl(vj2)− 6)2 + (vl(vj3)− 6)2 + (vl(vj4)− 6)2

8 if preDev < posDev then

9 EdgeFlip(ej)

10 end if
11 else

12 improved = true

13 end if

14 end foreach

15 end while

is applied at earlier stages and the local strategy is applied at later stages, controlled by

the parameter s. If the percentage of long and short edges is greater than s, the method

applies the global strategy. Otherwise, it applies the local strategy. The local strategy

is useful to correct troubling regions of the model, but since it ignores the edges around

those regions, it tends to decrease the final quality of the mesh as a whole (Hauck et al.,

2015). Because of this, it is recommended to use a value of s as low as possible, while

still enough to ensure the convergence.

The global optimization strategy tries to obtain a mesh with a more uniform

distribution of vertices. Taubin (1995) demonstrates that this problem can be reduced to

a low-pass filtering over the signal surface. Hence, this step performs an application of

the Laplacian operator over the surface.

Each vertex vj is moved to the center of mass of its neighbors until the k-star,

weighted by their ring number. The contribution of closer vertices (vertices with lower

ring number) is greater than the contribution of distant vertices, as proposed by Peçanha

et al. (2013). First, the new position v∗j of each vertex vj is obtained. Following that, a

constraint is added to the Laplacian in a way that the vertices displacements are limited

to the tangent plane. To do this, the displacement vector δj = v∗j − vj is projected onto

the plane tangent to vj by removing the normal component. Therefore, being δNj the

normal component of δj, then the displacement δTj over the tangent plane is given by

4.4 Local optimization 27

δTj = δj − δNj . Hence, the new position vTj for the vertex vj is vTj = vj + δTj . After all

the new positions are computed, the vertices are updated. The vertices on the borders, if

any, remain unchanged to prevent the shrink of the model.

Hauck et al. (2014) proposes to approximate the discrete Laplacian with an it-

erative algorithm (Algorithm 5), rather than solving the linear system resulting from

Equation 3.1. Although not exact, this algorithm presents very similar results with a

much lower computational cost.

Algorithm 5: LowPassFiltering(M′, k)

1 foreach vj ∈ V′ ⊂M′ do

2 kStar=getKStar (vj ,k)
3 fat=0
4 foreach vi ∈ kStar do

5 v∗j=v
∗
j+

vi
star

6 fat=fat+ 1
star

7 end foreach

8 v∗j=
v∗j
fat

9 δj=v
∗
j -vj

10 δj=δj -projection (δj ,Nj)

11 end foreach
12 foreach vj ∈ V′ ⊂M′ do

13 if vj 6∈ B then

14 vj=vj+δj
15 end if

16 end foreach

4.4 Local optimization

The effectiveness of the global optimization is reduced as the iterations progresses. At

certain point, some regions cannot be corrected by the Laplacian operator. In order to

solve this issue, a local optimization was proposed. First, Hauck et al. (2014) propose an

error measurement for a region around an edge:

∑
vi

∑
vj

(|vi − vj|2 −m2)2, (4.4)

4.4 Local optimization 28

where vi are the vertices in the forth star of the edge and vj the vertices in the first star

of vi.

If we find the positions v∗i and v∗j for vi and vj, respectively, that minimize

Equation 4.4, we obtain a very uniform model. Nonetheless, as the vertices have three

degrees of freedom, the geometric distortions caused by these displacements are severe.

In order to prevent it, Hauck et al. (2014) proposes to constrain the displacement of the

vertices to the tangent plane.

To do this, first consider an orthonormal base < Ni, Ti, T′i > for the plane tangent

to the vertex vi, where Ni is the normal and Ti, T’i are orthogonal directions over the

plane. If we move vi to a new position v∗i , the displacement δi = |v∗i −vi| can be described

as the sum:

δi = αi · Ti + βi · T ′i + γi ·Ni, (4.5)

where α, β and γ are the displacements in the directions Ti, T′i and Ni, respectively. So,

to find positions v∗i , v
∗
j for vi and vj that minimize Equation 4.4 is equivalent to find the

values of α, β and γ that minimize:

∑
vi

∑
vj

[|vi + αi · Ti + βi · T ′i + γi ·Ni − (vj + αj · Tj + βj · T ′j + γj ·Nj)|2 −m2]2. (4.6)

If we want to limit the displacements to the tangent plane, we make γ = 0 in

Equation 4.6. Then, the final error measurement to minimize is:

∑
vi

∑
vj

[|vi + αi · Ti + βi · T ′i − (vj + αj · Tj + βj · T ′j)|2 −m2]2. (4.7)

Both αi and βi are set zero when the index i does not exist.

The Equation 4.7 is minimized with the conjugate gradient method, as seen in

Press et al. (1992). The minimization is performed around one edge at each time, to

improve the performance and avoid numerical issues.

In a similar way to what occurs in the stellar operations, as this step is a series

of local modifications, the order in which they will be applied impact on the results. As

a consequence, a new priority list must be created. This list set the higher priorities to

4.5 Projection 29

the regions in which the operation will impact in the greatest amount of long and short

edges.

For this new list, the priority Pj assigned to each edge ej is defined as Pj = elj+esj ,

where elj and esj are the amount of long and short edges in the neighborhood of ej,

respectively. This neighborhood is considered to be all the edges until the forth star of

ej. The list Lo
p is the set {e1, ..., et} ⊂ E ⊂ M, with P1 ≥ P2 ≥ ... ≥ Pt, where ej ∈ Lo

p if

|ej| /∈ [lmin, lmax] ∈ R (Hauck et al., 2015). After Lo
p is set, the minimization of Equation

4.7 is performed for each edge on the list, in order.

4.5 Projection

After the relaxation of the mesh, the vertices assume positions that are not found in the

original surface M. Those vertices need to be projected over M if we expect to minimize

the geometric distortions. However, being {v′1, ...v′u} the vertices of M′, the problem of

finding its corresponding vertices over the surface of M can be reduced to the problem

of finding the nearest points between two sets (Botsch et al., 2010), which is a problem

of high computational cost. Instead of finding an optimal solution, Peçanha et al. (2013)

propose a method of low cost to find a good candidate position.

The method finds the vertex vm ∈M that is nearest to v′j. Next, v′j is projected

orthogonally on every triangle incident to vm, obtaining the candidates {vm1 , ...vmt }. The

candidate vmc for which we obtain lower value of |v′j − vmc | is chosen as the new v′j.

For some cases, the nearest vertex does not provide the best correspondence. In

this work, as a way to improve this approximation, the method is processed for the five

nearest vertices, instead of only one. This improvement also does not guarantee that an

optimal result is found, but can find better correspondences in some cases.

The mesh Mp in which we perform the projection can be updated with the pro-

gressing of the algorithm. At each p iterations, the projection mesh Mp is replaced with

the current mesh M′. This procedure relax the next projections, accelerating the conver-

gence of the method. However, it also increases the geometric losses, as the smoothing

caused by the Laplacian become more permanent. If the input p is set zero, then Mp

is never replaced and all the projections are performed over the original mesh, achieving

4.6 Post processing 30

Algorithm 6: Projection(M′,Mp)

1 foreach vj ∈M′ do

2 Nearest = getNearestVertices(vj,Mp,5)
3 vm = getFirstVertex(Nearest)
4 foreach vi ∈ Nearest do

5 Triangles = getIncidentTriangles(vi)

6 foreach f i ∈ Triangles do

7 candidate = OrthogonalProjection(vj, f i)

8 if |vj − candidate| < |vj − vm| then

9 vm = candidate

10 end if

11 end foreach

12 end foreach
13 vj = vm

14 end foreach

higher fidelity of geometry and reducing the convergence.

4.6 Post processing

For complex models, some edge lengths may not satisfy the constraining interval after the

limit of n iterations is reached. For these cases, the algorithm proceeds to the minimization

of Equation 4.4 without any constraints, using the conjugate gradient method (Press et

al., 1992). This resort solve most problems. However, since there are no constraints about

the displacement of the the vertices, it also increases the geometric distortions.

4.7 Dual computing

After the method successfully constrains the edge lengths to the desirable interval, or

the limit of iterations is reached, we transform the resulting model in a trivalent mesh

by computing its dual. The dual transformation is very simple and it is illustrated in

Algorithm 7. It creates for each face f j of the primal mesh a corresponding vertex v′′j on

the dual mesh, in the barycenter of f j. Next, for each vertex vj in the primal it creates a

face f ′′j , whose vertices v′′i are the ones corresponding to the faces f i in which the vertex

vj participates.

4.7 Dual computing 31

Algorithm 7: Dual(M)

1 count = |F|
2 V′′ = {v′′1 , ..., v′′count}
3 count = |V|
4 F′′ = {f ′′1 , ..., f ′′count}
5 insertVertices(V′′, M′′)
6 insertFaces(F′′, M′′)

7 foreach f j ∈ F ⊂M do

8 v′′j = newVertexPosition(centroid(f j))

9 end foreach
10 foreach vj ∈ V ⊂M do

11 foreach {f i | vj ∈ f i} do

12 addVertex(v′′i , f ′′j)

13 end foreach

14 end foreach
15 return M′′

32

5 Experimental results

This chapter describes the experiments performed and discusses the obtained results.

Different models were used for results generation. All the models were scaled, putting the

average edge length to the desirable value of 1.5 angstrons.

(a) The output model from adaptive
remeshing

(b) The model after 5000 iterations
of molecular dynamics, showing the
atoms that were repelled.

Figure 5.1: Egea model generated with parameters p = 0 and s = 2. The time step of
each iteration of the simulation was 0.001 ps. For the visualization, the bonds depicted
in the last picture correspond to the bonds formed in the first iteration, so we can see the
displacement of the repelled atoms.

The tests were performed with varying values for the parameters p and s. All the

tests assign the value 2 to the parameter k, since it gives the better results for the great

majority of cases (Peçanha et al., 2013; Hauck et al., 2014, 2015). The maximum number

of iterations n for these tests is 150.

The first experiments show the different results obtained with varying parameters

of the adaptive remeshing for the model egea, and the relationship between the algorithm

convergence and the stability of the simulations. Firstly, Figure 5.1 show the results

achieved when the projection mesh is never replaced and s = 2, a scenario for which

the remeshing algorithm did not converge. In the very early iterations, some atoms are

5 Experimental results 33

repelled from the molecule.

In contrast to this result, with the parameters p = 10 and s = 5, for which the

method converge, the model maintain stability, as depicted in Figure 5.2. One may notice

that the stable model presents several geometric distortions, once many knobs arise in

the model. This effect is probably a consequence of the non-regularization of the angles

formed by the edges incident to a same vertex, suggesting that the adaptive remeshing

could be improved to consider this kind of constraining.

(a) The output model from adaptive
remeshing

(b) The model after 5000 iterations of
molecular dynamics

Figure 5.2: Egea model generated with parameters p = 10 and s = 5. The molecule
presents geometric distortions, but maintain the main structure without losing any atoms.

The convergence of the adaptive remeshing is much slower in this work if com-

pared to the version presented in (Hauck et al., 2015). This difference comes from the

improvement in the valence optimizer step, which reduces the convergence in order to ob-

tain meshes of better quality. Consequently, the impact of parameter p in the results was

greatly increased. The same goes for the parameter s, since the efficacy of the Laplacian

operator is reduced more quickly. For the egea model, the method did not converged for

s = 2 in any case, and converged for s = 5 for all cases, presenting better results for

tests with more replacements of the projection mesh. Figure 5.3 illustrates the results for

different scenarios.

For different models, the method presents similar results. Figure 5.4 illustrates

the efficacy of the method for molecules of different shapes.

5 Experimental results 34

(a) p = 0, s = 5 (b) p = 10, s = 2

(c) p = 25, s = 2 (d) p = 25, s = 5

Figure 5.3: Egea model at the end of 5000 iterations of molecular dynamics simulations
for different parameters.

Visually, one may notice that the resulting models shrink before achieving sta-

bility, suggesting that the ideal average edge length should be lower than 1.5. In order to

verify the best average length for simulation, an exhaustive test was performed with the

rockerarm mesh. The model was submitted to 200000 iterations of molecular dynamics,

until it became very stable. Following that, the average bond length for this rockerarm

was calculated, resulting in the value 1.43 angstrons. Next, models were generated with

an average edge length closer to this value. The models were constrained to the interval of

1.1 to 1.7 angstrons. This experiment failed, as all of these models submitted to simula-

tion degenerated. This fact, in addition to the previous results, in which the models that

5 Experimental results 35

(a) Bunny model generated with p = 25 and s = 5. The model in the right was submitted to
3000 iterations of molecular dynamics.

(b) Fertility model generated with p = 10 and s = 5. The model in the right was submitted to
3000 iterations of molecular dynamics.

(c) Rockerarm model generated with p = 25 and s = 5. The model in the right was submitted
to 3000 iterations of molecular dynamics.

Figure 5.4: Resulting molecules of different models. The method was capable of achieving
very stable structures.

had short edges presented repulsion of some atoms, lead us to conclude that, despite the

average edge length should be lower than 1.5, the lower bound for the interval should not

5 Experimental results 36

Figure 5.5: Rockerarm

be lower than 1.2. Since longer edges did not present the same problem (the model could

stabilize even in the presence of some long edges), it seems like the standard deviation of

lengths bellow the average should be lower than the standard deviation above the average.

As an improvement of the remeshing process, this peculiarity could be taken into account.

Another aspect verified was the application of energy minimization approaches.

The problem with these approaches is that they need a minimum of previous stability

to work properly. As a validation test, we performed the energy minimization of the

potential REBO2 with the conjugate gradient method (Press et al., 1992) for the models

previously illustrated. The models degenerated in every case. However, if we want to

make use of this tool for arbitrary models, the adaptive remeshing can be applied as

an intermediate step. It is important to highlight that sometimes the output model of

the adaptive remeshing does cannot be optimized either. However, if the model do not

degenerate in the molecular dynamics, it is possible to let it achieve a certain stability in

the simulation and then submit it to the energy minimization.

As an example, Figure 5.5 depicts the resulting rockerarm model optimized

through a minimization of its REBO2 potential. The output rockerarm model from the

adaptive remeshing did not converge, so we used the right model on Figure 5.4c as input

5 Experimental results 37

instead.

38

6 Conclusion

This work presents the description of an algorithm to remesh an arbitrary model into a

nanocarbon structure, proposed by Hauck et al. (2015), and verify the quality of their

results in an application scenario. It illustrates the behavior of the method for different

models and parameters, exemplify its advantage over an energy minimization approach

and illustrates the possibility of combining both strategies.

While not perfect, the method have presented good results, generating stable

structures of many different shapes. However, it is still very sensible to variations in its

parameters, specially the parameters s, that dictates the moment in which the global

optimization strategy is replaced with the local optimization strategy, and p, that informs

the rate of updating of the projection mesh.

As future works, many improvements for the method can be proposed. It could

be interesting to make the method reactive, eliminating the need of parameter fitting.

Moreover, the method should not optimize the edge lengths in a Gaussian distribution,

since the simulations do not admit a standard deviation of interatomic bonds bellow the

average as high as the deviation above the average. Finally, an optimization strategy

could be proposed for the dual mesh, since that the optimal features of the primal mesh

do not imply that the dual will present them.

39

Bibliography

Alliez, P.; Meyer, M. ; Desbrun, M. Interactive geometry remeshing. ACM Trans.
Graph., v.21, n.3, p. 347–354, Jul 2002.

Bommes, D.; Zimmer, H. ; Kobbelt, L. Mixed-integer quadrangulation. ACM Trans.
Graph., v.28, n.3, p. 77:1–77:10, Jul 2009.

Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P. ; Lévy, B. Polygon Mesh Processing.
A K Peters, 2010.

Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B. ; Sinnott, S. B.
A second-generation reactive empirical bond order (rebo) potential energy expression
for hydrocarbons. Journal of Physics: Condensed Matter, v.14, n.4, p. 783, Jan.
2002.

Guillemin, V.; Pollack, A. Differential topology. Prentice-Hall, 1974.

Hamada, N.; Sawada, S.-I. ; Oshiyama, A. New one-dimensional conductors: Graphitic
microtubules. Phys. Rev. Lett., v.68, p. 1579–1581, Mar. 1992.

Hauck, J. V. d. S.; Silva, R. N.; Vieira, M. B. ; Silva, R. L. S. Iterative remeshing for
edge length interval constraining. In: Computational Science and Its Applications–
ICCSA 2014, p. 300–312. Springer, 2014.

Hauck, J. V. d. S.; Silva, R. N.; Vieira, M. B. ; Silva, R. L. S. Adaptive remeshing for
edge length interval constraining. Journal of Mobile Multimedia, v.11, 2015.

Lászlo, I.; Rassat, A. The geometric structure of deformed nanotubes and the topological
coordinates. Journal of Chemical Information and Computer Sciences, v.43,
p. 519–524, Jan. 2003.

Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society, v.43, n.5, p.
461–482, Set. 1931.

Yong-Kui, L. The generation of straight lines on hexagonal grids. Computer Graphics
Forum, v.12, p. 27–32, Mar. 1993.

Liu, Y.; Pan, H.; Snyder, J.; Wang, W. ; Guo, B. Computing self-supporting surfaces by
regular triangulation. ACM Trans. Graph., v.32, n.4, p. 92:1–92:10, Jul 2013.

Narain, R.; Samii, A. ; O’Brien, J. F. Adaptive anisotropic remeshing for cloth simulation.
ACM Transactions on Graphics (TOG), v.31, n.6, p. 152, 2012.

Pampanelli, P. C. P.; Peçanha, J. P.; Campo, A. M.; Vieira, M. B.; Lobosco, M. ; Dantas,
S. O. Rectangular hexagonal mesh generation for parametric modeling. In:
SIBGRAPI Conference on Graphics Patterns and Images, volume 0, p. 120–125, 2009.

Peçanha, J. P.; Souza Filho, J. L.; Vieira, M. B.; Lobosco, M. ; Dantas, S. O. Iterative
method for edge length equalization. In: International Conference on Computa-
tional Science, p. 481–490, Barcelona,Spain, 2013.

Bibliography 40

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. ; Flannery, B. P. Numerical Recipes in
C (2Nd Ed.): The Art of Scientific Computing. New York, NY, USA: Cambridge
University Press, 1992.

Surazhsky, V.; Gotsman, C. Explicit surface remeshing. In: Proceedings of Euro-
graphics Symposium on Geometry Processing, p. 17–28, Aachen, Germany, Jun 2003.

Taubin, G. A signal processing approach to fair surface design. In: Proceed-
ings of the 22nd annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’95, p. 351–358, New York, NY, USA, 1995. ACM.

Taubin, G. Dual mesh resampling. Graphical Models, v.64, n.2, p. 94 – 113, 2002.

Wang, Z. Reactive empirical bond-order (rebo) potential. Jan. 2006.

Zsoldos, I.; Kakuk, G.; Réti, T. ; Szasz, A. Geometric construction of carbon nanotube
junctions. Modelling and Simulation in Materials Science and Engineering,
v.12, n.6, p. 1251, 2004.

